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Abstract

We propose algorithms that, given the input string
of length n over integer alphabet of size σ, construct
the Burrows–Wheeler transform (BWT), the permuted
longest-common-prefix (PLCP) array, and the LZ77
parsing in O(n/ logσ n+ r polylog n) time and working
space, where r is the number of runs in the BWT of
the input. These are the essential components of many
compressed indexes such as compressed suffix tree, FM-
index, and grammar and LZ77-based indexes, but also
find numerous applications in sequence analysis and data
compression. The value of r is a common measure of
repetitiveness that is significantly smaller than n if the
string is highly repetitive. Since just accessing every
symbol of the string requires Ω(n/ logσ n) time, the
presented algorithms are time and space optimal for
inputs satisfying the assumption n/r ∈ Ω(polylog n)
on the repetitiveness. For such inputs our result
improves upon the currently fastest general algorithms
of Belazzougui (STOC 2014) and Munro et al. (SODA
2017) which run in O(n) time and use O(n/ logσ n)
working space. We also show how to use our techniques
to obtain optimal solutions on highly repetitive data
for other fundamental string processing problems such
as: Lyndon factorization, construction of run-length
compressed suffix arrays, and some classical “textbook”
problems such as computing the longest substring
occurring at least some fixed number of times.

1 Introduction

The problem of text indexing is to preprocess the input
text T so that given any query pattern P , we can quickly
(typically O(|P |+ occ), where |P | is the length of P and
occ is the number of occurrences of P in T ) find all
occurrences of P in T . The two classical data structures
for this problem are the suffix tree [56] and the suffix
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array [45]. The suffix tree is a trie containing all suffixes
of T with each unary path compressed into a single
edge labeled by the text substring. The suffix array
is a list of suffixes of T in lexicographic order where
each suffix is encoded using its starting position. Both
data structures take Θ(n) words of space. In addition
to indexing, these data structures underpin dozens of
applications in bioinformatics, data compression, and
information retrieval. Suffix arrays, in particular, have
become central to modern genomics, where they are used
for genome assembly and short read alignment, data-
intensive tasks at the forefront of modern medical and
evolutionary biology [42]. This can be attributed mostly
to their space-efficiency and simplicity.

In modern applications, however, which require
indexing datasets of size close to the size of available
RAM, even the suffix arrays can be prohibitively large,
particularly in applications where the text consists of
symbols from some alphabet Σ of small size σ = |Σ|
(e.g., in bioinformatics Σ = {A, C, G, T} and so σ = 4).
For such collections, the classical indexes are Θ(logσ n)
times larger than the text which requires only Θ(n log σ)
bits, i.e., Θ(n/ logσ n) words.

The invention of FM-index [13, 14] and the com-
pressed suffix array (CSA) [21, 22] at the turn of the mil-
lennium addressed this issue and revolutionized the field
of string algorithms for nearly two decades. These data
structures require only O(n/ logσ n) words of space and
provide random access to the suffix array in O(logε n)
time. Dozens of papers followed the two seminal pa-
pers, proposing various improvements, generalizations,
and practical implementations (see [49, 47, 7] for excel-
lent surveys). These indexes are now widespread, both
in theory where they provide off-the-shelf small space
indexing structures and in practice, particularly bioinfor-
matics, where they are the central component of many
read-aligners [40, 41].

The other approach to indexing, recently gaining
popularity due to the quick increase in the amount of
highly repetitive data, such as software repositories or
genomic databases is designing indexes specialized for
repetitive strings. The first such index [34] was based
on the Lempel–Ziv (LZ77) parsing [57], the popular
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dictionary compression algorithms (used, e.g., in gzip
and 7-zip compressors). Many improvements to the basic
scheme were proposed since then [17, 8, 6, 16, 3, 2, 1],
and now the performance of LZ-based indexes is often
on par with the FM-index or CSA [12]. Independently
to the development of LZ-based indexes, it was observed
that the Burrows–Wheeler transform (BWT) [9], which
underlies the FM-index, produces long runs of characters
when applied to highly repetitive data [44, 55]. Gagie et
al. [19] recently proposed a run length compressed suffix
array (RLCSA) that provides fast access to suffix array
and pattern matching queries in O(r polylog n) or even
O(r) space, where r is the number of runs in the BWT
of the text. The value of r is, next to z (the size of LZ77
parsing), a common measure of repetitiveness [36].

Given the small space usage of the compressed
indexes, their space-efficient construction emerged as
one of the major open problems. A gradual improve-
ment [39, 23, 24] in the construction of compressed suf-
fix array culminated with the work of Belazzougui [5]
who described the (randomized) O(n) time construction
working in optimal space of O(n/ logσ n). An alternative
(and deterministic) construction was proposed by Munro
et al. [46]. These algorithms achieve the optimal con-
struction space but their running time is up to Θ(log n)
times larger than the lower bound of Ω(n/ logσ n) time
(required to read the input/write the output).

Our contribution. We propose algorithms that, given
the input string of length n over integer alphabet of size
σ, construct the Burrows–Wheeler transform (BWT),
the permuted longest-common-prefix (PLCP) array, and
the LZ77 parsing in O(n/ logσ n+ r polylog n) time and
working space, where r is the number of runs in the
BWT of the input.

These are the essential components of nearly ev-
ery compressed text index developed in the last two
decades: all variants of FM-index rely on BWT [13, 19],
compressed suffix arrays/trees rely on Ψ [21, 54] (which
is dual to the BWT [46, 24]) and the PLCP array, and
LZ77-based and grammar-based indexes rely on the LZ77
parsing [34, 53]. Apart from text indexing, these data
structures have also numerous applications in sequence
analysis and data compression [42, 48, 52].

Since just accessing every symbol of the string
requires Ω(n/ logσ n) time, the presented algorithms
are time and space optimal for inputs satisfying the
assumption n/r ∈ Ω(polylog n) on the repetitiveness.
Our results have particularly important implications
for bioinformatics, where most of the data is highly-
repetitive [44, 42, 43] and over small (DNA) alphabet.
For such inputs, our result improves upon the currently
fastest general algorithms of Belazzougui [5] and Munro

et al. [46] which run in O(n) time and use O(n/ logσ n)
working space.

We also show how to use our techniques to obtain
an O(n/ logσ n+ r polylog n) time and space algorithms
for other fundamental string processing problems such
as: Lyndon factorization [10], construction of run-
length compressed suffix arrays [19], and some classical
“textbook” problems such as computing the longest
substring occurring at least some fixed number of times.

On the way to the above results, we show how to
generalize the RLCSA of Gagie et al. [19] to achieve a
trade-off between index size and query time. In par-
ticular, we obtain a O(r polylog n)-space data structure
that can answer suffix array queries in O(log n/ log log n)
time which improves on the O(log n) query time of [19].

2 Preliminaries

We assume a word-RAM model with a word of w =
Θ(log n) bits and with all usual arithmetic and logic
operations taking constant time. Unless explicitly
specified otherwise, all space complexities are given in
words. All our algorithms are deterministic.

Throughout we consider a string T [1..n] of symbols
from an alphabet Σ = [1..σ] of size σ≤n. We assume
T [n] = $ with a numerical value of $ equal to 0. For
j ∈ [1..n], we write T [j..n] to denote the suffix j of T .
We define the rotation of T as a string T [j..n]T [1..j − 1]
for any position j ∈ [1..n].

The suffix array [45, 20] of T is an array SA[1..n]
which contains a permutation of the integers [1..n] such
that T [SA[1]..n] ≺ T [SA[2]..n] ≺ · · · ≺ T [SA[n]..n],
where ≺ denotes the lexicographical order. The inverse
suffix array ISA is the inverse permutation of SA, i.e.,
ISA[j] = i iff SA[i] = j. The array Φ[1..n] (see [32])
is defined by Φ[SA[i]] = SA[i − 1] for i ∈ [2..n], and
Φ[SA[1]] = SA[n], that is, the suffix Φ[j] is the immediate
lexicographical predecessor of suffix j.

Let lcp(j1, j2) denote the length of the longest-
common-prefix (LCP) of suffix j1 and suffix j2. The
longest-common-prefix array [45, 35], LCP[1..n], is
defined as LCP[i] = lcp(SA[i],SA[i−1]) for i ∈ [2..n] and
LCP[1] = 0. The permuted LCP array [32] PLCP[1..n]
is the LCP array permuted from the lexicographical
order into the text order, i.e., PLCP[SA[i]] = LCP[i] for
i ∈ [1..n]. Then PLCP[j] = lcp(j,Φ[j]) for all j ∈ [1..n].

The succinct PLCP array [54, 32] PLCPsucc[1..2n]
represents the PLCP array using 2n bits. Specifically,
PLCPsucc[j

′] = 1 if j′ = 2j + PLCP[j] for some
j ∈ [1..n], and PLCPsucc[j

′] = 0 otherwise. Any lcp
value can be recovered by the equation PLCP[j] =
selectPLCPsucc

(1, j)− 2j, where selectS(c, j) returns the
location of the jth c in S.

The Burrows–Wheeler transform [9] BWT[1..n] of
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T is defined by BWT[i] = T [SA[i] − 1] if SA[i] > 1
and BWT[i] = T [n] otherwise. Let M denote the n× n
matrix, whose rows are lexicographically sorted rotations
of T . We denote the rows by M[i], i ∈ [1..n]. Note that
BWT is the last column of M.

The LF-mapping [13] is defined by the equation
LF[ISA[j]] = ISA[j − 1], j ∈ [2..n], and LF[ISA[1]] =
ISA[n]. By Ψ we denote the inverse of LF. The
significance of LF (and the principle underlying FM-
index [13]) lies in the fact that, for i ∈ [1.., n], LF[i] =
C[BWT[i]] + rankBWT(BWT[i], i), where C[c] is the
number of symbols in T that are smaller than c, and
rankS(c, i) is the number of occurrences of c in S[1..i].
From the formula for LF we obtain the following fact.

Lemma 2.1. Let BWT[b..e] be a run of the same symbol
and let i, i′ ∈ [b, e]. Then, LF[i] = LF[i′] + (i− i′).

If i is the rank (i.e., the number of smaller suffixes)
of P among suffixes of T , then C[c] + rankBWT(c, i) is
the rank of cP . This is called backward search [13].

We say that an lcp value LCP[i] = PLCP[SA[i]]
is reducible if BWT[i] = BWT[i − 1] and irreducible
otherwise. The significance of reducibility is summarized
in the following two lemmas.

Lemma 2.2. ([32]) If PLCP[j] is reducible, then
PLCP[j] = PLCP[j − 1]− 1 and Φ[j] = Φ[j − 1] + 1.

Lemma 2.3. ([32, 29]) The sum of all irreducible lcp
values is ≤ n log n.

It can be shown [44] that repetitions in T generate
equal-letter runs in BWT. By r we denote the number of
runs in BWT. We can efficiently represent this transform
as the list of pairs RLBWT = 〈λi, ci〉i=1,...,r, where
λi > 0 is the starting position of the i-th run and ci ∈ Σ.
Note that r is also the number of irreducible lcp values.

3 Augmenting RLBWT

In this section we present extensions of run-length
compressed BWT needed by our algorithms. Each
extension expands its functionality while maintaining
small space usage and low construction time/space.

3.1 Rank and select support. One of the basic
operations we will need are rank and select queries on
BWT. We will now show that a run-length compressed
BWT can be quickly augmented with a data structure
capable of answering these queries in BWT-runs space.

Theorem 3.1. Given RLBWT of size r for text T [1..n]
we can add O(r) space so that, given i ∈ [0..n] and
c ∈ [1..σ], values rankBWT(c, i) and selectBWT(c, i) can
be computed in O(log r) time. The data structure can be
constructed in O(r log r) time using O(r) space.

Proof. We augment each BWT-run with its length and
sort the runs using the symbol as the primary key, and
the start of the run as the secondary key. This allows us
to compute, for every run [b..e], the value rankBWT(c, b)
where c = BWT[b]. Using this list, both queries can be
answered in O(log r) time using binary search. �

3.2 LF/Ψ and backward search support. We now
show that with the help of the above rank/select data
structures we can support more complicated navigational
queries, namely, given any i ∈ [1..n] such that SA[i] = j
we can compute ISA[j − 1] (i.e., LF[i]) and ISA[j + 1]
(i.e., Ψ[i]). Note that none of the queries will require the
knowledge of j. As a simple corollary, we obtain efficient
support for backward search on RLBWT.

Theorem 3.2. Given RLBWT of size r for text T [1..n]
we can add O(r) space so that, given i ∈ [1..n], values
LF[i] and Ψ[i] can be computed in O(log r) time. The
data structure can be constructed in O(r log r) time using
O(r) working space.

Proof. Similarly as in Theorem 3.1 we prepare a (sorted)
list containing, for each symbol c occurring in T , the
total frequency of symbols smaller than c.

To answer LF[i] we first compute BWT[i] (by search-
ing the list of runs), then C[BWT[i]] (by searching the
above frequency table), and finally apply Theorem 3.1.
To compute Ψ[i] we first determine (using the frequency
table) the symbol c following BWT[i] in text and the
number k such that this c is the k-th occurrence of c in
the first column of M. It then remains to find the k-th
occurrence of c in the BWT using Theorem 3.1. �

Corollary 3.1. Given RLBWT of size r for text
T [1..n] we can add O(r) space so that, given a rank
i ∈ [0..n] of a string P among the suffixes of T , for any
c ∈ [1..σ] we can compute in O(log r) time the rank of
cP . The data structure can be constructed in O(r log r)
time using O(r) working space.

3.3 Suffix-rank support. In this section we describe
an extension of RLBWT that will allow us to efficiently
merge two RLBWTs during the BWT construction
algorithm. We start by defining a generalization of
BWT-runs and stating their basic properties.

Let lcs(x, y) denote the length of the longest common
suffix of strings x and y. We define the LCS[1..n]
array [30] as LCS[i] = lcs(M[i],M[i− 1]) for i ∈ [2..n]
and LCS[1] = 0 (recall that M is a matrix containing
sorted rotations of T ). Let τ ≥ 1 be an integer. We
say that a range [b..e] of BWT is a τ -run if LCS[b] < τ ,
LCS[e + 1] < τ , and for any i ∈ [b + 1..e], LCS[i] ≥ τ .
By this definition, a BWT run is a 1-run. For j ≥ 0
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let Qj = {i ∈ [1..n] | LCS[i] = j} and Rτ =
⋃τ−1
j=0 Qj .

Then, Rτ is exactly the set of starting positions of τ -runs.

Lemma 3.1. ([30]) For any i ∈ [2..n],

LCS[i] =

{
0 if BWT[i] 6= BWT[i− 1]
LCS[LF[i]] + 1 otherwise

Since Ψ is the inverse of LF we obtain that for any
j ≥ 1, Qj = {Ψ[i] | i ∈ Qj−1 and Ψ[i] /∈ Q0}. Thus, the
set Rτ can be efficiently computed by iterating each of
the starting positions of BWT-runs τ − 1 times using
Ψ and taking a union of all visited positions. From the
above we see that |Qj+1| ≤ |Qj |, which implies that the
number of τ -runs satisfies |Rτ | ≤ |Q0|τ = rτ .

Theorem 3.3. Let S[1..m], S′[1..m′] be strings with r
and r′ (respectively) runs in the BWT. Given RLBWTs
of S and S′ it is possible, for any integer τ ≥ 1, to build
a data structure of size O(mτ + r + r′) that can, given a
rank i ∈ [0..m] of some suffix S[j..m] among suffixes of
S, compute the rank of S[j..m] among suffixes of S′ in
O(τ(log m

τ +log r+log r′)) time. The data structure can
be constructed in O(τ2(r+r′) log(rτ+r′τ)+ m

τ (log(rτ)+
log(r′τ) + log m

τ )) time and O(τ2(r + r′) + m
τ ) space.

Proof. We start by augmenting both RLBWTs with
Ψ and LF support (Theorem 3.2) and RLBWT of S′

with the backward search support (Corollary 3.1). This
requires O(r log r + r′ log r′) time and O(r + r′) space.

We then compute a (sorted) set of starting positions
of τ -runs for both RLBWTs. For S this requires
answering rτ Ψ-queries which takes O(rτ log r) time
in total, and then sorting the resulting set of positions
in O((rτ) log(rτ)) time. Analogous processing for S′

takes O((r′τ) log(r′τ)) time. The starting positions of
all τ -runs require O((r + r′)τ) space in total.

Next, for any τ -run [b..e] we compute and store the
associated τ symbols. We also store the value LFτ [b],
but only for τ -runs of S. Due to simple generalization of
Lemma 2.1, this will allow us to compute the value LFτ [i]
for any i. In total this requires answering τ2(r+ r′) LF-
queries and hence takes O(τ2(r + r′) log r) time. The
space needed to store all symbols is O(τ2(r + r′)).

We then lexicographically sort all length-τ strings
associated with τ -runs (henceforth called τ -substrings)
and assign to each run the rank of the associated
substring in the sorted order. Importantly, τ -substrings
of S and S′ are sorted together. These ranks will
be used as order-preserving names for τ -substrings.
We use an LSD string sort with a stable comparison-
based sort for each position hence the sorting takes
O
(
τ2(r + r′) log(rτ + r′τ)

)
time. The working space

does not exceed O(τ(r + r′)). After the names are
computed, we discard the substrings.

We now observe that order-preserving names for
τ -substrings allow us to perform backward search τ
symbols at a time. We build a rank-support data
structure analogous to the one from Theorem 3.1 for
names of τ -substrings of S′. We also add support for
computing the total number of occurrences of names
smaller than a given name. This takes O(r′τ log(r′τ))
time and O(r′τ) space. Then, given a rank i of suffix
S[j..m] among suffixes of S′, we can compute the rank
of suffix S[j − τ..m] among suffixes of S′ in O(log(r′τ))
time by backward search on S′ using i as a position, and
the name of τ -substring preceding S[j..m] as a symbol.

We now use the above multi-symbol backward
search to compute the rank of every suffix of the form
S[m − kτ..m] among suffixes of S′. We start from the
shortest suffix and increase the length by τ in every step.
During the computation we also maintain the rank of
the current suffix of S among suffixes of S. This allows
us to efficiently compute the name of the preceding τ -
substring. The rank can be updated using values LFτ

stored with each τ -run of S. Thus, for each of the
m/τ suffixes of S we obtain a pair of integers (iS , iS′),
denoting its rank among the suffixes of S and S′. We
store these pairs as a list sorted by iS . Computing
the list takes O

(
m
τ (log(rτ) + log(r′τ)) + m

τ log m
τ

)
time.

After the list is computed we discard all data structures
associated with τ -runs.

Using the above list of ranks we can answer the query
from the claim as follows. Starting with i, we compute a
sequence of τ positions in the BWT of S by iterating Ψ
on i. For each position we can check in O(log m

τ ) time
whether that position is in the list of ranks. Since we
evenly sampled text positions, one of these positions has
to correspond to the suffix of S for which we computed
the rank in the previous step. Suppose we found such
position after ∆ ≤ τ steps, i.e., we now have a pair
(iS , iS′) such that iS′ is the rank of S[j + ∆..m] among
suffixes of S′. We then perform ∆ steps of the standard
backward search starting from rank iS′ in the BWT
of S′ using symbols S[j+∆−1], . . . , S[j]. This takes
O (∆(log r + log r′)) = O (τ(log r + log r′)) time. �

4 Constructing BWT

In this section we show that given the packed encoding
of text T [1..n] over alphabet Σ = [1..σ] of size σ ≤ n (i.e.,
using O(n/ logσ n) words of space), we can compute the
packed encoding of BWT of T in O(n/ logσ n+ r log7 n)
time and O(n/ logσ n + r log5 n) space, where r is the
number of runs in the BWT of T .

4.1 Algorithm overview. The basic scheme of our
algorithm follows the algorithm of Hon et al. [24].
Assume for simplicity that w/ log σ = 2k for some
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integer k. The algorithm works in k + 1 rounds, where
k = log logσ n. In the i-th round, i ∈ [0..k], we interpret
T as a string over superalphabet Σi = [1..σi] of size

σi = σ2i

, i.e., we group symbols of T into supersymbols
consisting of 2i original symbols. We denote this string
as Ti. The rounds are executed in decreasing order of
i. The input to the i-th round, i ∈ [0..k−1], is the
run-length compressed BWT of Ti+1, and the output
is the run-length compressed BWT of Ti. We denote
the size of RLBWT of Ti by ri. The final output is the
run-length compressed BWT of T0 = T , which we then
convert into packed encoding taking O(n/ logσ n) words.

For the k-th round, we observe that |Σk| = Θ(n)
and |Tk| = Θ(n/ logσ n) hence to compute BWT of Tk
it suffices to first run any of the linear-time algorithms
for constructing the suffix array [33, 51, 38, 37] for Tk
and then naively compute the RLBWT from the suffix
array. This takes O(n/ logσ n) time and space.

Let S = Ti for some i ∈ [0..k−1] and suppose we
are given the RLBWT of Ti+1. Let So be the string
of length |S|/2 created by grouping together symbols
S[2j − 1]S[2j] for all j, and let Se be the analogously
constructed string for pairs S[2j]S[2j + 1]. Clearly we
have So = Ti+1 (recall that we start indexing from
1). Furthermore, it is easy to see that the BWT of S
can be obtained by interleaving BWTs of So and Se,
and discarding (more significant) half of the bits in the
encoding of each symbol.

The construction of RLBWT for S consists of two
steps: (1) first we compute the RLBWT of Se from
RLBWT of So, and then (2) merge RLBWTs of So and
Se into RLBWT of S.

4.2 Computing BWT of Se. In this section we
assume that S = Ti for some i ∈ [0..k−1] and that
we are given the RLBWT of So = Ti+1 of size ro = ri+1.
Denote the size of RLBWT of Se by re. We will show
that RLBWT of Se can be computed in O(re + ro log ro)
time using O(ro + re) working space.

Recall that both So and Se are over alphabet Σi+1.
Each of the symbols in that alphabet can be interpreted
as a concatenation of two symbols in the alphabet Σi.
Let c be the symbol of either So or Se and assume that
c = S[j]S[j + 1] for some j ∈ [1..|S|−1]. By major
subsymbol of c we denote a symbol (equal to S[j]) from
Σi encoded by the more significant half of bits encoding
c, and by minor subsymbol we denote symbol encoded
by remaining bits (equal to S[j + 1]).

We first observe that by enumerating all runs of
the RLBWT of So in increasing order of their minor
subsymbols (and in case of ties, in the increasing order
of run beginnings), we obtain (on the remaining bits) the
minor subsymbols of the BWT of Se in the correct order.

Such enumeration could easily be done in O(ro log ro)
time and O(ro) working space. To obtain the missing
(major) part of the encoding of symbols in the BWT
of Se, it suffices to perform the LF-step for each of the
runs in the BWT of So in the sorted order above (i.e., by
minor subsymbol), and look up the minor subsymbols
in the resulting range of BWT of So.

The problem with the above approach is the running
time. While it indeed produces correct RLBWT of Se,
having to scan all runs in the range of BWT of So
obtained by performing the LF-step on each of the runs
of So could be prohibitively high. To address this we first
construct a run-length compressed sequence of minor
subsymbols extracted from BWT of So and use it to
extract minor subsymbols of BWT of So in total time
proportional to the number of runs in the BWT of Se.

Lemma 4.1. Given RLBWT of size ro for So = Ti+1

we can compute the RLBWT of Se in O(re + ro log ro)
time and O(ro + re) working space, where re is the size
of RLBWT of Se.

Proof. The whole process requires scanning the BWT of
So to create a run-length compressed encoding of minor
subsymbols, adding the LF support to (the original)
RLBWT of So, sorting the runs in RLBWT of So by
the minor subsymbol, and executing ro LF-queries on
the BWT of So, which altogether takes O(ro log ro). All
other operations take time proportional to O(ro + re).
The space never exceeds O(ro + re). �

4.3 Merging BWTs of Se and So. As in the
previous section, we assume S = Ti for some i ∈ [0..k−1]
and that we are given the RLBWT of So = Ti+1 of size
ro = ri+1 and RLBWT of Se of size re. We will show
how to use these to efficiently compute the RLBWT of S
in O(|S|/ log |S|+ (ro + re) polylog |S|) time and space.

We start by observing that to obtain BWT of
S it suffices to merge the BWT of Se and BWT of
So and discard all major subsymbols in the resulting
sequence. The algorithm of Hon et al. [24] achieves this
by performing the backward search. This requires Ω(|S|)
time and hence is too expensive in our case.

Instead, we employ the following observation. Sup-
pose we have already computed the first t runs of the
BWT of S and let the next unmerged character in the
BWT of So be a part of a run of symbol co. Let ce be
the analogous symbol from the BWT of Se. Further, let
c′e (resp. c′o) be the minor subsymbol of ce (resp. co).
If c′o = c′e then either all symbols in the current run
in the BWT of So (restricted to minor subsymbols) or
all symbols in the current run in the (also restricted)
BWT of Se will belong to the next run in the BWT of
S. Assuming we can determine the order between any
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two arbitrary suffixes of So and Se given their ranks in
the respective BWTs, we could consider both cases and
in each perform a binary search to find the exact length
of (t+ 1)-th run in the BWT of S. We first locate the
end of the run of c′o (resp. c′e) in the BWT of So (resp.
Se) restricted to minor subsymbols; this can be done
after preprocessing input BWTs without increasing the
time/space of the merging. We then find the largest
suffix of Se (resp. So) not greater than the suffix at
the end of the run in the BWT of So. Importantly, the
time to compute the next run in the BWT of S does
not depend on the number of times the suffixes in that
run alternate between So and Se. The case c′e 6= c′o is
handled similarly, except we do not need to locate the
end of each run. The key property of this algorithm is
that the number of pattern searches is O(ri log |S|).

Thus, the merging problem can be reduced to the
problem of efficient comparison of suffixes of Se and
So. To achieve that we augment both RLBWTs of Se
and Se with the suffix-rank support data structure from
Section 3.3. This will allow us to determine, given a rank
of any suffix of So, the number of smaller suffixes of Se
and vice-versa, thus eliminating even the need for binary
search. Our aim is to achieve O(|S|/ log |S|) space and
construction time assuming small r values, thus we apply
Theorem 3.3 with τ = log2 |S|.

Lemma 4.2. Given RLBWT of size re for Se and
RLBWT of size ro for So = Ti+1 we can compute the
RLBWT of S = Ti in O((ro + re) log5 |S|+ |S|/ log |S|+
ri log3 |S|) time and O(|S|/ log2 |S|+(ro+re) log4 |S|+ri)
working space.

Proof. Constructing the suffix-rank support for So
and Se with τ = log2 |S| takes O((ro + re) log5 |S| +
|S|/ log |S|) time and O((ro + re) log4 |S|+ |S|/ log2 |S|)
working space. The resulting data structures occupy
O(|S|/ log2 |S|+ re + ro) space and answer suffix-rank
queries in O(log3 |S|) time. To compute the RLBWT
of S we perform 2ri suffix-rank queries for a total of
O(ri log3 |S|) time. �

4.4 Putting things together. To bound the size of
RLBWTs in intermediate rounds, consider the i-th round
where for d = 2i we group each d symbols of T to obtain
the string S = Ti of length |T |/d and let ri be the number
of runs in the BWT of S. Recall now the construction
of generalized BWT-runs from Section 3.3 and observe
that the symbols of T comprising each supersymbol S[j]
are the same as the substring corresponding to d-run
containing suffix T [jd + 1..n] in the BWT of T . It is
easy to see that the corresponding suffixes of T are in
the same lexicographic order as the suffixes of S. Thus,
ri is bounded by the number of d-runs in the BWT of T ,

which by Section 3.3 is bounded by rd. Hence, the size
of the output RLBWT of the i-th round does not exceed
r2i = O(r log n). The analogous analysis shows that the
size of RLBWT of Se has the same upper bound r2i+1

as So = Ti+1.

Theorem 4.1. Given string T [1..n] over alphabet [1..σ]
of size σ ≤ n encoded in O(n/ logσ n) words, the BWT
of T can be computed in O(n/ logσ n + r log7 n) time
and O(n/ logσ n+ r log5 n) working space, where r is the
number of runs in the BWT of T .

Proof. The k-th round of the algorithm takes
O(n/ logσ n) time working space and produces a BWT
taking O(n/ logσ n) words of space. Consider the i-th
round of the algorithm for i < k and let S = Ti, and
re and ro denote the sizes of RLBWT of Se and So
respectively. By the above discussion, we have ro, re =
O(r log n). Thus, by Lemma 4.1 and Lemma 4.2 the i-th
round takes O(ni/ log ni + r log6 ni) = O(n/(2i log n) +
r log6 n) time and the working space does not exceed
O(n/ log2 n+r log5 n) words, where ni = |Ti|=n/2i, and
we used the fact that for i < k, log ni = Θ(log n). Hence
over all rounds we spend O(n/ logσ n + r log7 n) time
and never use more than O(n/ logσ n+ r log5 n) space.
Finally, it is easy to convert RLBWT into the packed
encoding in O(n/ logσ n+ r log n) time. �

Thus, we obtained a time- and space-optimal con-
struction algorithm for BWT under the assumption
n/r = Ω(polylog n) on the repetitiveness of the input.

5 Constructing PLCP

In this section we show that given the run-length
compressed representation of BWT of T , it is possible to
compute the PLCPsucc bitvector inO(n/ log n+r log11 n)
time and O(n/ log n+ r log10 n) working space..

The key observation used to construct the PLCP
values is that it suffices to only compute the irreducible
LCP values. Then, by Lemma 2.2, all other values can
be quickly deduced. This significantly simplifies the
problem because it is known (Lemma 2.3) that the sum
of irreducible LCP values is bounded by O(n log n).

The main idea of the construction is to compute (as
in Theorem 3.3) names of τ -runs for τ = log5 n. This
will allow us to compare τ symbols at a time and thus
quickly compute a lower bound for large irreducible LCP
values. Before we can use this, we need to augment the
BWT with the support for SA/ISA queries.

5.1 Computing SA/ISA support. Suppose that we
are given a run-length compressed BWT of T [1..n]
taking O(r) space. Let τ ≥ 1 be an integer. Assume
for simplicity that n is a multiple of τ . We start by

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited1349

D
ow

nl
oa

de
d 

01
/2

0/
19

 to
 1

37
.2

05
.0

.2
39

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



computing the sorted list of starting positions of all
τ -runs similarly, as in Theorem 3.3. This requires
augmenting the RLBWT with the LF/Ψ support first
and in total takes O(τr log(τr)) time and O(τr) working
space. We then compute and store, for the first position
of each τ -run [b..e], the value of LFτ [b]. This will allow
us to efficiently compute LFτ [i] for any i ∈ [1..n].

We then locate the occurrence i0 of the symbol $
in BWT and perform n/τ iterations of LFτ on i0. By
definition of LF, the position i visited after j iterations
of LFτ is equal to ISA[n − jτ ], i.e., SA[i] = n − jτ .
For any such i we save the pair (i, n − jτ) into a list.
When we finish the traversal we sort the list by the
first component (assume this list is called LSA). We
then create the copy of the list (call it LISA) and sort
it by the second component. Creating the lists takes
O ((n/τ)(log(rτ) + log(n/τ))) time and they occupy
O(n/τ) space. After the lists are computed we discard
LFτ samples associated with all runs. Having these lists
allows us to efficiently query SA/ISA as follows.

To compute ISA[j] we find in O(1) time (since we
can store LISA in an array) the pair (p, j′) in LISA such
that j′ = dj/τeτ . We then perform j′−j < τ steps of LF
on position p. The total query time is thus O(τ log r).

To compute SA[i] we perform τ steps of LF (each
taking O(log r) time) on position i. Due to the way we
sampled SA/ISA values, one of the visited positions
has to be the first component in the LSA list. For
each position, we can check this in O(log(n/τ)) time.
Suppose we found a pair after ∆ < τ steps, i.e., a pair
(LF∆[i], p) is in LSA. This implies SA[LF∆[i]] = p, i.e.,
SA[i] = p+∆. The query time is O (τ(log r + log(n/τ))).

Theorem 5.1. Given RLBWT of size r for text T [1..n],
we can, for any integer τ ≥ 1, build a data structure
taking O(r + n/τ) space that, for any i ∈ [1..n], can
answer SA[i] query in O(τ(log r + log(n/τ))) time and
ISA[i] query in O (τ log r) time. The construction
takes O

(
(n/τ)(log(rτ) + log(n/τ)) + τ2r log(rτ)

)
time

and O(n/τ + rτ) working space.

5.2 Computing irreducible LCP values. We
start by augmenting the RLBWT with the SA/ISA
support as explained in the previous section using
τ1 = log2 n. The resulting data structure answers
SA/ISA queries in O(log3 n) time. We then compute
τ2-runs and their names using the technique introduced
in Theorem 3.3 for τ2 = log5 n.

Given any j1, j2 ∈ [1..n] we can check whether it
holds T [j1..j1 + τ2 − 1] = T [j2..j2 + τ2 − 1] using the
above names as follows. Compute i1 = ISA[j1 + τ2] and
i2 = ISA[j2 + τ2] using the ISA support. Then compare
the names of τ2-substrings preceding these two suffixes.
Thus, comparing two arbitrary substrings of T of length

τ2, given their text positions, takes O(log3 n) time.
The above toolbox allows computing all irreducible

LCP values as follows. For any i ∈ [1..n] such that
LCP[i] is irreducible (such i can be recognized by
checking if BWT[i− 1] belongs to a BWT-run different
than BWT[i]) we compute j1 = SA[i−1] and j2 = SA[i].
We then have LCP[i] = lcp(T [j1..n], T [j2..n]). We start
by computing the lower-bound for LCP[i] using the
names of τ2-substrings. Since the sum of irreducible LCP
values is bounded by O(n log n), over all irreducible LCP
values this will take O(r log3 n+ log3 n · (n log n)/τ2) =
O(r log3 n+n/ log n) time. Finishing the computation of
each LCP value requires at most τ2 symbol comparisons.
This can be done by following Ψ for both pointers as
long as the preceding symbols (found in the BWT) are
equal. Over all irreducible LCP values, finishing the
computation takes O(rτ2 log n) = O(r log6 n) time.

Theorem 5.2. Given RLBWT of size r for T [1..n], the
PLCPsucc bitvector (or the list storing irreducible LCP
values in text order) can be computed in O(n/ log n +
r log11 n) time and O(n/ log n+r log10 n) working space.

Proof. Adding the SA/ISA support using τ1 = log2 n
takes O

(
n/ log n+ r log5 n

)
time and O(n/ log2 n +

r log2 n) working space (Theorem 5.1). The resulting
structure needs O(r + n/ log2 n) space and answers
SA/ISA queries in O(log3 n) time.

Computing the names takes O(τ2
2 r log(τ2r)) =

O(r log11 n) time and O(τ2
2 r) = O(r log10 n) working

space (see the proof of Theorem 3.3). The names
need O(τ2r) = O(r log5 n) space. Then, by the above
discussion, computing all irreducible LCP values takes
O(n/ log n+ r log6 n) time. �

By combining with Theorem 4.1 we obtain the
following result.

Theorem 5.3. Given string T [1..n] over alphabet [1..σ]
of size σ≤n encoded in O(n/ logσ n) words, the
PLCPsucc bitvector (or the list storing irreducible LCP
values in text order) can be computed in O(n/ logσ n+
r log11 n) time and O(n/ logσ n+r log10 n) working space,
where r is the number of runs in the BWT of T .

6 Construction of RLCSA

In this section, we show how to use the techniques
presented in this paper to quickly build the run-length
compressed suffix array (RLCSA) recently proposed by
Gagie et al. [19]. They observed that if BWT of T
has r runs then the arrays SA/ISA and LCP have a
bidirectional parse of size O(r) after being differentially
encoded. They use a locally-consistent parsing [4, 26]
to grammar-compress these arrays and describe the
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necessary augmentations to achieve fast decoding of
the original values. This allowed them to obtain a
O(r polylog n)-space structure that can answer SA/ISA
and LCP queries in O(log n) time.

The structure described below is slightly different
than the original index proposed by Gagie et al. [19].
Rather than compressing the differentially-encoded suffix
array, we directly exploit the structure of the array. It
can be thought of as a multi-ary block tree [6] modified
to work with arrays indexed in “lex-order” instead of the
original “text-order”. Our data structure matches the
space and query time of [19], but we additionally show
how to achieve a trade-off between space and query time.
In particular, we achieve O(log n/ log log n) query time
in O(r polylog n) space.

Data structure. Suppose we are given RLBWT of size
r for text T [1..n]. The data structure is parametrized by
an integer parameter τ > 1. For simplicity, we assume
that r divides n and that n/r is a power of τ . The
data structure is organized into logτ (n/r) levels. The
main idea is, for every level, to store 2τ pointers for
each BWT-run boundary. The purpose of pointers is to
reduce the SA query near the associated run boundary
into SA query at a position that is closer (by at least
a factor of τ) to some (usually different) run boundary.
Level controls the allowed proximity of the query. At the
last level, the SA value at each run boundary is stored
explicitly.

More precisely, for 1 ≤ k ≤ logτ (n/r), let bk =
n/(rτk) and let BWT[b..e] be one of the runs in
the BWT. Consider 2τ non-overlapping consecutive
blocks of size bk evenly spread around position b, i.e.,
BWT[b+ ibk..b+ (i+ 1)bk − 1], i = −τ, . . . , τ − 1. For
each block BWT[s..t] we store the smallest d (called LF-
distance) such that there exists at least one i ∈ [s..t] such
that LFd[i] is the beginning of the run in the BWT of T
(note that it is possible that d = 0). With each block we
also store the value LFd[s] (called LF-shortcut), both as
an absolute value in [1..n] and as a pointer to the BWT-
run that contains it. Due to the simple generalization
of Lemma 2.1, this allows us to compute LFd[i] for any
i ∈ [s..t]. At each level, we store 2τ integers for each
of r BWT runs thus in total we store O(rτ logτ (n/r))
words.

To access SA[i] we proceed as follows. Assume first
that i is not more than n/r positions from the closest
run boundary. We first find the BWT run that contains
i. We then follow the LF-shortcuts starting at level 1
down to the last level. After every step, the distance
to the closest run boundary is reduced by a factor τ .
Thus, after logτ (n/r) steps the current position is equal
to boundary b of some run BWT[b..e]. Let dsum denote

the total lengths of LF-distances of the used shortcuts.
Since SA[b] is stored we can now answer the query as
SA[i] = SA[b] + dsum. To handle positions further than
n/r from the nearest run boundary, we add a lookup
table LT [1..r] such that LT [i] stores the LF-shortcut
and LF-distance for block BWT[(i−1)(n/r) +1..i(n/r)].
The query time is O(logτ (n/r)), since blocks in the same
level have the same length and hence at each level we
spend O(1) time to find the pointer to the next level.
Note that the lookup table eliminates the initial search
of run containing i.

The above data structure can be generalized to
extract segments of SA[p..p + ` − 1], for any p and
`, faster than ` single SA-accesses, that would cost
O(` logτ (n/r)). The main modification is that at level k
we instead consider 4τ−1 blocks of size bk, evenly spread
around position b, each overlapping the next by exactly
bk/2 symbols, i.e., BWT[b+ ibk/2..b+ (i+ 2)bk/2− 1],
i = −2τ, . . . , 2(τ−1). This guarantees that any segment-
access to SA of length at most bk/2 at level k can be
transformed into the segment-access at level k + 1. We
also truncate the data structure at level k where k is
the smallest integer with bk < logτ (n/r). At that level
we store a segment of 2 logτ (n/r) SA values around
each BWT run. These values take O(r logτ (n/r)) space,
and hence the two modifications do not increase the
space needed by the data structure. This way we can
extract SA[p..p + α − 1], where α = logτ (n/r) in O(α)
time, and consequently a segment SA[p..p + ` − 1] in
O((`/α+ 1)α) = O(`+ logτ (n/r)) time.

Theorem 6.1. Assume that BWT of T [1..n] consist of
r runs. For any integer τ>1, there exists a data structure
of size O(rτ logτ (n/r)) that, for any p ∈ [1..n] and ` ≥ 1,
can compute SA[p..p+ `− 1] in O(`+ logτ (n/r)) time.

For τ = 2 the above data structure matches the
space and query time of [19]. For τ = logε n, where ε > 0
is an arbitrary constant it achieves O(r logε n log(n/r))
space and O(log n/ log log n) query time. Finally, for
τ = (n/r)ε it achieves O(r1−εnε) space and O(1) time
query. In particular, if r = o(n) the data structure takes
o(n) space and is able to access (any segment of) SA in
optimal time.

Construction algorithm. Assume we are given the
run-length compressed BWT of T [1..n] of size r. Con-
sider any block BWT[s..t]. Let d be the corresponding
LF-distance and let LFd[i] = b for some i ∈ [s..t] be the
beginning of a BWT-run [b..e]. We observe that this
implies LCP[b] is irreducible and LCP[b] ≥ d.

We start by augmenting the RLBWT with the
SA/ISA support from Section 5.1 using τ1 = log2 n.
This, by Theorem 5.1, takes O

(
n/ log n+ r log5 n

)
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time and O(n/ log2 n + r log2 n) working space. The
resulting structure needs O(r + n/ log2 n) space and
allows answering SA/ISA queries in O(log3 n) time.

Consider now the sorted sequence Q containing every
position j in T such that PLCP[j] is irreducible. Such list
can be obtained by computing value SA[b] for every BWT
run [b..e] and sorting the resulting values. Computing
the list Q takes O(r log3 n) time and O(r) working space.
The list itself is stored in plain form using O(r) space.
Next, for any irreducible value PLCP[j] we compute,
for any t = 1, . . . , b`′/τ2c a pair containing ISA[j + tτ2]
(as key) and tτ2 (as value), where τ2 = log4 n, and `′

is the distance between j and its successor in Q. Since
the sum of `′ values is O(n), computing all pairs takes
O(log3 n · (r + n/τ2)) = O(n/ log n+ r log3 n) time and
O(n/τ2) = O(n/ log4 n) working space. The resulting
pairs need O(n/ log4 n) space.

We then sort all the computed pairs by the keys and
build a static RMQ data structure over the associated
values. This can be done in O (n/τ2)) = O(n/ log4 n)
time and space so that an RMQ query takes O(log n)
time (using static balanced BST).

Having the above samples augmented with the RMQ
allows us to compute LF-shortcuts as follows. Let
BWT[s..t] be one of the blocks. We perform τ2 LF-
steps on position s. In step ∆ we first check in O(log r)
time whether the block [LF∆[s]..LF∆[s]+(t−s)] contains
a boundary of a BWT-run. If yes, then we found the
LF-distance and terminate the procedure. Otherwise,
in O(log n) we compute the minimal value dmin and its
position for the block [LF∆[s]..LF∆[s]+(t−s)] using the
RMQ structure (if the block is empty we skip this step).
We call dmin + ∆ the candidate value. From the way
we computed the pairs, the minimum candidate value
is equal to the LF-distance of BWT[s..t]. It is easy to
extend this procedure to also return the LF-shortcut.

Thus, the LF-shortcut for any block can be com-
puted in O(τ2 log n) = O(log5 n) time. Over all
blocks (and including the shortcuts for the lookup
table LT [1..r]) this takes O(rτ logτ (n/r) log5 n) =
O(rτ log6 n) time. Finally, computing segments of SA
values at the last level (after truncating the tree) takes
O(r logτ (n/r) log3 n) time.

Theorem 6.2. Given RLBWT of size r for text T [1..n]
we can build the data structure from Theorem 6.1
in O(n/ log n + rτ log6 n) time and O(n/ log2 n +
r(τ logτ (n/r) + log2 n)) working space.

By combining with Theorem 4.1 we obtain the
following theorem.

Theorem 6.3. Given string T [1..n] over alphabet
[1..σ] of size σ≤n encoded in O(n/ logσ n) words we

can build the data structure from Theorem 6.1 in
O(n/ logσ n+r(τ log6 n+log7 n)) time and O(n/ logσ n+
r(τ logτ (n/r) + log5 n)) working space, where r is the
number of runs in the BWT of T .

7 Construction of LZ77 parsing

In this section, we show how to use the techniques
introduced in previous sections to obtain a fast and
space-efficient LZ77 factorization algorithm for highly
repetitive strings.

7.1 Definitions. The LZ77 factorization [57] uses the
notion of the longest previous factor (LPF). The LPF at
position i (denoted LPF[i]) in T is a pair (pi, `i) such
that, pi < i, T [pi..pi + `i − 1] = T [i..i + `i − 1] and
`i > 0 is maximized. In other words, T [i..i+ `i − 1] is
the longest prefix of T [i..n] which also occurs at some
position pi < i in T . If T [i] is the leftmost occurrence of
a symbol in T then such a pair does not exist. In this
case we define pi = T [i] and `i = 0. Note that there
may be more than one potential pi, and we do not care
which one is used.

The LZ77 factorization (or LZ77 parsing) of a string
T is then just a greedy, left-to-right parsing of T into
longest previous factors. More precisely, if the jth LZ
factor (or phrase) in the parsing is to start at position
i, then we output (pi, `i) (to represent the jth phrase),
and then the (j + 1)th phrase starts at position i + `i,
unless `i = 0, in which case the next phrase starts at
position i+ 1. For the example string T = zzzzzipzip,
the LZ77 factorization produces:

(z, 0), (1, 4), (i, 0), (p, 0), (5, 3).

We denote the number of phrases in the LZ77 parsing of
T by z. The following theorem shows that LZ77 parsing
can be encoded in O(n log σ) bits.

Theorem 7.1. (e.g. [27]) The number of phrases z in
the LZ77 parsing of a text of n symbols over an alphabet
of size σ is O(n/ logσ n).

The LPF pairs can be computed using next and
previous smaller values (NSV/PSV) defined as

NSVlex[i] = min{j ∈ [i+ 1..n] | SA[j] < SA[i]}
PSVlex[i] = max{j ∈ [1..i− 1] | SA[j] < SA[i]}.

If the set on the right hand side is empty, we set the
value to 0. We further define

NSVtext[i] = SA[NSVlex[ISA[i]]]

PSVtext[i] = SA[PSVlex[ISA[i]]].

If NSVlex[ISA[i]] = 0 (PSVlex[ISA[i]] = 0) we set
NSVtext[i] = 0 (PSVtext[i] = 0).
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The usefulness of the NSV/PSV values is summa-
rized by the following lemma.

Lemma 7.1. ([11]) For i ∈ [1..n], let insv = NSVtext[i],
ipsv = PSVtext[i], `nsv = lcp(i, insv) and `psv =
lcp(i, ipsv). Then

LPF[i] =

 (insv, `nsv) if `nsv > `psv
(ipsv, `psv) if `psv = max(`nsv, `psv) > 0
(T [i], 0) if `nsv = `psv = 0.

7.2 Algorithm overview. The general approach of
our algorithm follows the lazy LZ77 factorization algo-
rithms of [31]. Namely, we opt out from computing all
LPF values and instead compute LPF[j] only when there
is an LZ factor starting at position j.

Suppose we have already computed the parsing of
T [1..j − 1]. To compute the factor starting at position
j we first query i = ISA[j]. We then compute (using
a small-space data structure introduced next) values
insv = NSVlex[i] and ipsv = PSVlex[i]. By Lemma 7.1 it
then suffices to compute the lcp of T [j..n] and each of the
two suffixes starting at positions SA[ipsv] and SA[insv].

It is easy to see that the total length of computed lcps
will be O(n), since after each step we increase j by the
longest of the two lcps. To perform the lcp computation
efficiently we will employ the technique from Section 5
which allows comparing multiple symbols at a time. This
will allow us to spend O(z polylog n+ n/ log n) time in
the lcp computation. The problem is thus reduced to
being able to quickly answer NSVlex/PSVlex queries.

7.3 Computing NSV/PSV support for SA. As-
sume that we are given RLBWT of size O(r) for text
T [1..n]. We will show how to quickly build a small-space
data structure that, given any i ∈ [1..n] can compute
NSVlex[i] or PSVlex[i] in O(polylog n) time.

We split BWT[1..n] into blocks of size τ =
Θ(polylog n) and for each j ∈ [1..n/τ ] we compute the
minimum value in SA[(j−1)τ+1..jτ ] together with its
position. We then build a balanced binary tree over
the array of minimas and augment each internal node
with the minimum value in its subtree. This allows,
for any j ∈ [1..n/τ ], and any value x, to find the max-
imal (resp. minimal) j′ < j (resp. j′ > j) such that
SA[(j′−1)τ+1..j′τ ] contains a value smaller than x. At
query time we first scan the SA positions preceding or
following the query position i ∈ [1..n] inside the block
containing i. If there is no value smaller than SA[i],
we use the RMQ to find the closest block with a value
smaller than SA[i]. To finish the query it then suffices to
scan the SA values inside that block. It takes O(log3 n)
time to compute SA value (Theorem 5.1), hence answer-
ing a single NSVlex/PSVlex query will take O(τ log3 n).

To compute the minimum for each of the size-τ
blocks of SA we observe that, up to a shift by a constant,
there is only rτ different blocks. More specifically,
consider a block SA[(j−1)τ+1..jτ ]. Let k be the smallest
integer such that for some t ∈ [(j−1)τ + 1..jτ ], LFk[t]
is the beginning of a run in BWT. It is easy to see
that, due to Lemma 2.1, SA[(j−1)τ+1..jτ ] = k +
SA[LFk[jτ ]−τ+1..LFk[jτ ]], in particular, the equality
holds for the minimum element. Thus, it suffices to
precompute the minimum value and its position for each
of the rτ size-τ blocks intersecting a boundary of a BWT-
run. This takes O(rτ log3 n) time and O(rτ) working
space. The resulting values need O(rτ) space.

It thus remains to compute the “LF-distance” for
each of the n/τ blocks of SA, i.e., the smallest k such
that for at least one position t inside the block, LFk[t] is
the beginning of a BWT-run. To achieve this we utilize
the technique used in Section 6. There we presented a
data structure of size O(r+n/ log2 n+n/τ2) that can be
built in O(n/ log n + r log5 n + (n log3 n)/τ2) time and
O(n/ log2 n+ r log2 n+n/τ2) working space, and is able
to compute the LF-shortcut for any block [s..t] in SA in
O(τ2 log n) time.

Theorem 7.2. Given RLBWT of size r for text T [1..n],
we can build a data structure of size O(r+n/ log2 n) that
can answer PSVlex/NSVlex queries in O(log9 n) time.
The data structure can be built in O(n/ log n+ r log9 n)
time and O(n/ log2 n+ r log6 n) working space.

Proof. We start by augmenting the RLBWT with
SA/ISA support. This takes (Theorem 5.1) O(n/ log n+
r log5 n) time and O(n/ log2 n+ r log2 n) working space.
The resulting data structure takes O(r+n/ log2 n) space
and answers SA/ISA queries in O(log3 n) time.

To achieve the O(n/ log n) term in the construction
time for the structure from Section 6 we set τ2 = log4 n.
Then, computing the LF-shortcut for any block in SA
takes O(log5 n) time. Since we have n/τ blocks to query,
we set τ = log6 n to obtain O(n/ log n) total query
time. Answering a single NSVlex/PSVlex query then
takes O(τ log3 n) = O(log9 n).

The RMQ data structure built on top of the minimas
of the blocks of SA takes O(n/τ) = O(n/ log6 n) space,
hence the space of the final data structure is dominated
by SA/ISA support taking O(r + n/ log2 n) words.

The construction time is split between precomputing
the minimas in each of the rτ blocks crossing boundaries
of BWT-runs in O(rτ log3 n) = O(r log9 n) time, and
other steps introducing term O(n/ log n).

The working space is maximized when building
the SA/ISA support and during the precomputation
of minimas in each of the rτ blocks, for a total of
O(n/ log2 n+ r log6 n). �
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7.4 Algorithm summary

Theorem 7.3. Given RLBWT of size r of T [1..n], the
LZ77 factorization of T can be computed in O(n/ log n+
r log9 n+z log9 n) time and O(n/ log2 n+z+r log8 n) =
O(n/ logσ n+r log8 n) working space, where z is the size
of the LZ77 parsing of T .

Proof. We start by augmenting the RLBWT with the
SA/ISA support from Section 5.1 using τ1 = log2 n.
This, by Theorem 5.1, takes O

(
n/ log n+ r log5 n

)
time

and O(n/ log2 n+ r log2 n) working space. The resulting
structure needs O(r + n/ log2 n) space and answers
SA/ISA queries in O(log3 n) time.

Next, we initialize the data structure supporting
the PSVlex/NSVlex queries from Section 7.3. By The-
orem 7.2 the resulting data structure needs O(r +
n/ log2 n) space and answers queries in O(log9 n) time.
The data structure can be built in O(n/ log n+ r log9 n)
time and O(n/ log2 n + r log6 n) working space. Over
the course of the whole algorithm, we ask O(z) queries
hence in total we spend O(z log9 n) time.

Lastly, we compute τ3-runs and their names using
the technique introduced in Section 5.2 for τ3 = log4 n.
This takes O(τ2

3 r log(τ3r)) = O(r log9 n) time and
O(τ2

3 r) = O(r log8 n) working space (see the proof of
Theorem 5.2). The names need O(τ3r) = O(r log4 n)
space. The names allow, given any j1, j2 ∈ [1..n], to com-
pute ` = lcp(j1, j2) in O

(
log3 n(1 + `/τ3) + τ3 log n

)
=

O
(
log5 n+ `/ log n

)
time. Thus, over the course of the

whole algorithm we will spend O(z log5 n+n/ log n) time
computing lcp values. �

By combining with Theorem 5.2 we obtain the
following result.

Theorem 7.4. Given string T [1..n] over alphabet [1..σ]
of size σ ≤ n encoded in O(n/ logσ n) words, we can
compute the LZ77 factorization of T in O(n/ logσ n +
r log9 n + z log9 n) time and O(n/ logσ n + r log8 n)
working space, where r is the number of runs in the
BWT of T and z is the size of the LZ77 parsing of T .

Since z = O(r log n) [18], the above algorithm
achieves O(n/ logσ n) runtime and working space when
n/r ∈ Ω(polylog n).

8 Construction of Lyndon factorization

In this section, we show another application of our
techniques. Namely, we show that we can obtain a fast
and space-efficient construction of Lyndon factorization
for highly repetitive strings.

8.1 Definitions. A string S is called a Lyndon word
if S is lexicographically smaller than all its non-empty

proper suffixes. The Lyndon factorization (also called
Standard factorization) of a string T is its unique (see
[10]) factorization T = fe11 · · · femm such that each fi is a
Lyndon word, ei ≥ 1, and fi � fi+1 for all 1 ≤ i < m.
We call each fi a Lyndon factor of T , and each Fi = feii a
Lyndon run of T . The size of the Lyndon factorization is
m, the number of distinct Lyndon factors, or equivalently,
the number of Lyndon runs.

Each Lyndon run can be encoded as a triple of
integers storing the boundaries of some occurrence of fi
in T and the exponent ei. Since, for any string, it holds
m < 2z [28] and z = O(n/ logσ n) [27], where z is the
number of phrases in the LZ77 parsing, it follows that
Lyndon factorization can be stored in O(n log σ) bits.

8.2 Algorithm overview. Our algorithm utilizes
many of the algorithms from the long line of research
on algorithms operating on compressed representations
such as grammars or LZ77 parsing:

• Furuya et al. [15] have shown that given an SLP (i.e.,
a grammar in Chomsky normal form generating a
single string) of size g generating string T of length
n, the Lyndon factorization of T can be computed in
O(P (g, n)+Q(g, n) g log log n) time and O(g log n+
S(g, n)) space, where P (g, n), S(g, n), Q(g, n) are
respectively the pre-processing time, space, and
query time of a data structure for longest common
extensions (LCE) queries on SLPs. The LCE query,
given two positions i and j in the string T , returns
lcp(i, j), i.e., the length of the longest common prefix
of suffixes T [i..n] and T [j..n].

• On the other hand, Nishimoto et al. [50, Thm 3]
have shown how, given an SLP of size g generating
string T of length n, to construct an LCE data
structure in O(g log log g log n log∗ n) = O(g log3 n)
time and O(g log∗ n + z log n log∗ n) = O(g log2 n)
space, where z is the size of LZ77 parsing of
T . The resulting data structure answers a query
LCE(i, j) in O(log n+log ` log∗ n) = O(log2 n) time,
where ` = lcp(i, j). Thus, they achieve P (g, n) =
O(g log3 n), S(g, n) = O(g log2 n), and Q(g, n) =
O(log2 n). More recently, I [25, Thm 2] im-
proved (using different techniques) this to P (g, n) =
O(g log(n/g)), S(g, n) = O(g + z log(n/z)), and
Q(g, n) = O(log n).

• Finally, Rytter [53, Thm 2] have shown how, given
the LZ77 parsing of string T of length n, to convert
it into an SLP of size g = O(z log n) in O(z log n)
time and O(z log n) working space.

The above pipeline leads to a fast and space-
efficient algorithm for Lyndon factorization, assuming
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the compressed representation (such as SLP or LZ77)
of text is given a priori. It still, however, needs Ω(n)
time if we take into account the time to compute LZ77
or a small grammar using the previously fastest known
algorithms. Section 7 completes this line of research
by providing fast and space-efficient construction of the
initial component (LZ77 parsing).

Theorem 8.1. Given string T [1..n] over alphabet [1..σ]
of size σ ≤ n encoded in O(n/ logσ n) words of space,
we can compute the Lyndon factorization of T in
O(n/ logσ n+ r log9 n+ z log9 n) time and O(n/ logσ n+
r log8 n+ z log2 n) working space.

Proof. We start by computing the LZ77 parsing using
Theorem 7.4. This takes O(n/ logσ n+r log9 n+z log9 n)
time and O(n/ logσ n + r log8 n) space. The resulting
parsing, by Theorem 7.1, takes O(n/ logσ n) space.

We then use the Rytter’s [53] conversion from LZ77
to SLP of size g = O(z log n) that takes O(z log n)
time and O(z log n) working space. The resulting
SLP is then turned into an LCE data structure of
I [25]; this takes O(g log(n/g)) = O(z log2 n) time and
O(g + z log(n/z)) = O(z log n) working space. The
resulting LCE data structure takes O(z log n) space.
Finally, we plug this data structure into the algorithm of
Furuya [15] which gives us the Lyndon factorization in
O(z log3 n) time and O(z log2 n) working space. Thus,
the whole pipeline is dominated (in time and space) by
the construction of LZ77 parsing. �

Similarly as in Section 7, since z = O(r log n) [18],
the above algorithm achieves O(n/ logσ n) runtime and
working space when n/r ∈ Ω(polylog n).

9 Solutions to textbook problems

Lastly, we show how to utilize the techniques presented
in this paper to efficiently solve some “textbook” string
problems on highly repetitive inputs. Their solution
usually consists of computing SA or LCP and performing
some simple scan/traversal (e.g., computing the longest
repeating substring amounts to finding the maximal
value in the LCP array and hence by Theorem 5.3 it
can be solved efficiently for highly repetitive input), but
in some cases requires explicitly applying some of the
observations from previous sections. Next, we show two
examples of such problems.

9.1 Number of distinct substrings. The number
d of distinct substrings of a string T of length n is given
by the formula

d =
n(n+ 1)

2
−

n∑
i=1

LCP[i].

Suppose we are given a (sorted) list
(i1, `1), . . . , (ir, `r) of irreducible lcp values (i.e.,
PLCP[ik] = `k) of string T . Since all other lcp values
can be derived from this list using Lemma 2.2, we can
rewrite the above formula (letting ir+1 = n+ 1) as:

d =
n(n+ 1)

2
−

r∑
k=1

f(`k, ik+1 − ik),

where

f(v, d) =

{
v(v+1)

2 if v < d

d(v − d) + d(d+1)
2 otherwise

Thus, by Theorem 5.3 we immediately obtain the
following result.

Theorem 9.1. Given string T [1..n] over alphabet [1..σ]
of size σ ≤ n encoded in O(n/ logσ n) words, we can
compute the number d of distinct substrings of T in
O(n/ logσ n+r log11 n) time and O(n/ logσ n+r log10 n)
space, where r is the number of runs in the BWT of T .

9.2 Longest substring occurring k times. Sup-
pose that we want to find the length ` of the longest
substring of T that occurs in T at least 2 ≤ k = O(1)
times. This amounts to computing

` =
n−k+2
max
i=1

k−2
min
j=0

LCP[i+ j].

For k = 2 the above formula can be evaluated by
only looking at irreducible lcp values, i.e., using the
definition from the previous section, ` = maxri=1 `i. For
k > 2, this does not work, since we have to inspect
blocks of LCP values of size k − 1 in “lex-order”. We
instead utilize observations from previous sections. More
precisely, recall from Section 7 that for any τ , up to a
shift by a constant, there is only rτ different blocks of
size τ in SA, i.e., for any block block SA[i..i+τ−1] there
exists k such that SA[i..i+τ−1] = k+SA[j..j+τ−1] and
BWT[j..j+τ−1] contains a BWT-run boundary.

We now observe that an analogous property holds
for the LCP array: for any block LCP[i..i+τ−1] there
exists k (the same as above) such that LCP[i..i+τ−1] =
LCP[j..j+τ−1]−k and BWT[j..j+τ−1] contains bound-
ary of some BWT-run. This implies that we only need to
precompute and store the minimum value inside blocks
of LCP of length k − 1 that are not further than τ po-
sitions from the closest BWT-run boundary. All other
blocks of LCP can be handled using the above obser-
vation and the structure from Section 6 for computing
the LF-shortcut for any block of BWT. More precisely,
after a suitable overlap (by at least k) of blocks of size
τ = Ω(polylog n), we can get the answer for all such
blocks in O(n/polylog n+ r polylog n) time.
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Theorem 9.2. Given string T [1..n] over alphabet [1..σ]
of size σ≤n encoded in O(n/ logσ n) words, we can find
the length of the longest substring occurring ≥ k=O(1)
times in T in O(n/ logσ n+ r polylog n) time and space.

10 Concluding remarks

An important avenue for future work is to reduce
the exponent in the O(r polylog n)-term of our bounds
and to determine whether the presented algorithms
can be efficiently implemented in practice. An-
other interesting problem is to settle whether the
O(log n/ log log n) bound obtained in Section 6 is op-
timal within O(r polylog n) space.
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[28] J. Kärkkäinen, D. Kempa, Y. Nakashima, S. J. Puglisi,
and A. M. Shur. On the size of Lempel-Ziv and Lyndon
factorizations. In Proc. 34th Symposium on Theoretical
Aspects of Computer Science (STACS 2017), pages 45:1–
45:13, 2017.
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[31] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Lazy
Lempel-Ziv factorization algorithms. ACM J. Exp.
Algor., 21(1):2.4:1–2.4:19, 2016.
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