
Lempel-Ziv Decoding in External Memory

Djamal Belazzougui1, Juha Kärkkäinen2(B), Dominik Kempa2,
and Simon J. Puglisi2

1 CERIST, Algiers, Algeria
dbelazzougui@cerist.dz

2 Department of Computer Science, Helsinki Institute for Information
Technology HIIT, University of Helsinki, Helsinki, Finland

{juha.karkkainen,dominik.kempa,simon.puglisi}@cs.helsinki.fi

Abstract. Simple and fast decoding is one of the main advantages of
LZ77-type text encoding used in many popular file compressors such as
gzip and 7zip. With the recent introduction of external memory algo-
rithms for Lempel–Ziv factorization there is a need for external memory
LZ77 decoding but the standard algorithm makes random accesses to the
text and cannot be trivially modified for external memory computation.
We describe the first external memory algorithms for LZ77 decoding,
prove that their I/O complexity is optimal, and demonstrate that they
are very fast in practice, only about three times slower than in-memory
decoding (when reading input and writing output is included in the time).

1 Introduction

The Lempel–Ziv (LZ) factorization [18] is a partitioning of a text string into a
minimal number of phrases consisting of substrings with an earlier occurrence in
the string and of single characters. In LZ77 encoding [20] the repeated phrases are
replaced by a pointer to an earlier occurrence (called the source of the phrase).
It is a fundamental tool for data compression [6,7,15,17] and today it lies at the
heart of popular file compressors (e.g. gzip and 7zip), and information retrieval
systems (see, e.g., [6,10]). Recently the factorization has become the basis for
several compressed full-text self-indexes [5,8,9,16]. Outside of compression, LZ
factorization is a widely used algorithmic tool in string processing: the factoriza-
tion lays bare the repetitive structure of a string, and this can be used to design
efficient algorithms [2,12–14].

One of the main advantages of LZ77 encoding as a compression technique
is a fast and simple decoding: simply replace each pointer to a source by a
copy of the source. However, this requires a random access to the earlier part of
the text. Thus the recent introduction of external memory algorithms for LZ77
factorization [11] raises the question: Is fast LZ77 decoding possible when the text
length exceeds the RAM size? In this paper we answer the question positively
by describing the first external memory algorithms for LZ77 decoding.

This research is partially supported by Academy of Finland through grant 258308
and grant 250345 (CoECGR).

c© Springer International Publishing Switzerland 2016
A.V. Goldberg and A.S. Kulikov (Eds.): SEA 2016, LNCS 9685, pp. 63–74, 2016.
DOI: 10.1007/978-3-319-38851-9 5

64 D. Belazzougui et al.

In LZ77 compression, the need for external memory algorithms can be
avoided by using an encoding window of limited size. However, a longer encod-
ing window can improve the compression ratio [6]. Even with a limited window
size, decompression on a machine with a small RAM may require an external
memory algorithm if the compression was done on a machine with a large RAM.
Furthermore, in applications such as text indexing and string processing limiting
the window size is not allowed. While most of these applications do not require
decoding, a fast decoding algorithm is still useful for checking the correctness of
the factorization.

Our Contribution. We show that in the standard external memory model of
computation [19] the I/O complexity of decoding an LZ77-like encoding of a
string of length n over an alphabet of size σ is Θ

(
n

B logσ n logM/B
n

B logσ n

)
, where

M is the RAM size and B is the disk block size in units of Θ(log n) bits. The
lower bound is shown by a reduction from permuting and the upper bound by
describing two algorithms with this I/O complexity.

The first algorithm uses the powerful tools of external memory sorting and
priority queues while the second one relies on plain disk I/O only. Both algo-
rithms are relatively simple and easy to implement. Our implementation uses
the STXXL library [4] for sorting and priority queues.

Our experiments show that both algorithms scale well for large data but the
second algorithm is much faster in all cases. This shows that, while external
memory sorting and priority queues are extremely useful tools, they do have a
significant overhead when their full power is not needed. The faster algorithm
(using a very modest amount of RAM) is only 3–4 times slower than an in-
memory algorithm that has enough RAM to perform the decoding in RAM (but
has to read the input from disk and write the output to disk).

Our algorithms do not need a huge amount of disk space in addition to the
input (factorization) and output (text), but we also describe and implement a
version, which can reduce the additional disk space to less than 3 % of total disk
space usage essentially with no effect on runtime.

2 Basic Definitions

Strings. Throughout we consider a string X = X[1..n] = X[1]X[2] . . .X[n] of |X| =
n symbols drawn from the alphabet [0..σ − 1] for σ = nO(1). For 1 ≤ i ≤ j ≤ n
we write X[i..j] to denote the substring X[i]X[i + 1] . . .X[j] of X. By X[i..j) we
denote X[i..j − 1].

LZ77. The longest previous factor (LPF) at position i in string X is a pair
LPF[i] = (pi, �i) such that pi < i, X[pi..pi +�i) = X[i..i+�i), and �i is maximized.
In other words, X[i..i + �i) is the longest prefix of X[i..n] which also occurs at
some position pi < i in X. There may be more than one potential value of pi,
and we do not care which one is used.

Lempel-Ziv Decoding in External Memory 65

The LZ77 factorization (or LZ77 parsing) of a string X is a greedy, left-to-right
parsing of X into longest previous factors. More precisely, if the jth LZ factor
(or phrase) in the parsing is to start at position i, then LZ[j] = LPF[i] = (pi, �i)
(to represent the jth phrase), and then the (j + 1)th phrase starts at position
i + �i. The exception is the case �i = 0, which happens iff X[i] is the leftmost
occurrence of a symbol in X. In this case LZ[j] = (X[i], 0) (to represent X[i..i])
and the next phrase starts at position i + 1. This is called a literal phrase and
the other phrases are called repeat phrases. For a repeat phrases, the substring
X[pi..pi + �i) is called the source of the phrase X[i..i+ �i). We denote the number
of phrases in the LZ77 parsing of X by z.

LZ77-type Factorization. There are many variations of LZ77 parsing. For exam-
ple, the original LZ77 encoding [20] had only one type of phrase, a (potentially
empty) repeat phrase always followed by a literal character. Many compressors
use parsing strategies that differ from the greedy strategy described above to
optimize compression ratio after entropy compression or to speed up compres-
sion or decompression. The algorithms described in this paper can be easily
adapted for most of them. For purposes of presentation and analysis we make
two assumptions about the parsing:

– All phrases are either literal or repeat phrases as described above.
– The total number of repeat phrases, denoted by zrep, is O(n/ logσ n).

We call this an LZ77-type factorization. The second assumption holds for the
greedy factorization [18] and can always be achieved by replacing too short repeat
phrases with literal phrases. We also assume that the repeat phrases are encoded
using O(log n) bits and the literal phrases using O(log σ) bits. Then the size of
the whole encoding is never more than O(n log σ) bits.

3 On I/O Complexity of LZ Decoding

Given an LZ77-type factorization of a string encoded as described above, the
task of LZ77 decoding is to recover the original string. In this section, we obtain
a lower bound on the I/O complexity of LZ decoding by a reduction from per-
muting.

We do the analysis using the standard external memory model [19] with
RAM size M and disk block size B, both measured in units of Θ(log n) bits. We
are primarily interested in the I/O complexity, i.e., the number of disk blocks
moved between RAM and disk.

Given a sequence x̄ = x1, x2, . . . , xn of n objects of size Θ(log n) bits each
and a permutation π[1..n] of [1..n], the task of permuting is to obtain the
permuted sequence ȳ = y1, y2, . . . , yn = xπ[1], xπ[2], . . . , xπ[n]. Under the mild
assumption that B log(M/B) = Ω(log(n/B)), the I/O complexity of permuting
is Θ

(
n
B logM/B

n
B

)
, the same as the I/O complexity of sorting [1].

We show now that permuting can be reduced to LZ decoding. Let X be the
string obtained from the sequence x̄ by encoding each xi as a string of length

66 D. Belazzougui et al.

h = Θ(logσ n) over the alphabet [0..σ). Let Y be the string obtained in the same
way from the sequence ȳ. Form an LZ77-type factorization of XY by encoding
the first half using literal phrases and the second half using repeat phrases so
that the substring representing yi is encoded by the phrase (hπ[i] + 1 − h, h).
This LZ factorization is easy to construct in O(n/B) I/Os given x̄ and π. By
decoding the factorization we obtain XY and thus ȳ.

Theorem 1. The I/O complexity of decoding an LZ77-type factorization of a
string of length n over an alphabet of size σ is

Ω

(
n

B logσ n
logM/B

n

B logσ n

)
.

Proof. The result follows by the above reduction from permuting a sequence of
Θ(n/ logσ n) objects. ��

For comparison, the worst case I/O complexity of naive LZ decoding is
O(n/ logσ n).

4 LZ Decoding Using EM Sorting and Priority Queue

Our first algorithm for LZ decoding relies on the powerful tools of external
memory sorting and external memory priority queues.

We divide the string X into �n/b� segments of size exactly b (except the last
segment can be smaller). The segments must be small enough to fit in RAM
and big enough to fill at least one disk block. If a phrase or its source overlaps
a segment boundary, the phrase is split so that all phrases and their sources
are completely inside one segment. The number of phrases increases by at most
O(zrep + n/b) because of the splitting.

After splitting, the phrases are divided into three sequences. The sequence
Rfar contains repeat phrases with the source more than b positions before the
phrase (called far repeat phrases) and the sequence Rnear the other repeat phrases
(called near repeat phrases). The sequence L contains all the literal phrases. The
repeat phrases are represented by triples (p, q, �), where p is the starting position
of the source, q is the starting position of the phrase and � is the length. The
literal phrases are represented by pairs (q, c), where q is the phrase position and
c is the character. The sequence Rfar of far repeat phrases is sorted by the source
position. The other two sequences are not sorted, i.e., they remain ordered by
the phrase position.

During the computation, we maintain an external memory priority queue Q
that stores already recovered far repeat phrases. Each such phrase is represented
by a triple (q, �, s), where q and � are as above and s is the phrase as a literal
string. The triples are extracted from the queue in the ascending order of q.
The maximum length of phrases stored in the queue is bounded by a parameter
�max. Longer phrases are split into multiple phrases before inserting them into
the queue.

Lempel-Ziv Decoding in External Memory 67

The string X is recovered one segment at a time in left-to-right order and
each segment is recovered one phrase at a time in left-to-right order. A segment
recovery is done in a (RAM) array Y[0..b) of size b. At any moment in time,
for some i ∈ [0..b], Y[0..i) contains the already recovered prefix of the current
segment and Y[i..b) contains the last b − i characters of the preceding segment.
The next phrase starting at Y[i] is recovered in one of three ways depending on
its type:

– A literal phrase is obtained as the next phrase in the sequence L.
– A near repeat phrase is obtained as the next phrase in the sequence Rnear.

The source of the phrase either starts in Y[0..i) or is contained in Y[i..b), and
is easily recovered in both cases.

– A far repeat phrase is obtained from the priority queue with the full literal
representation.

Once a segment has been fully recovered, we read all the phrases in the
sequence Rfar having the source within the current segment. Since Rfar is ordered
by the source position, this involves a single sequential scan of Rfar over the whole
algorithm. Each such phrase is inserted into the priority queue Q with its literal
representation (splitting the phrase into multiple phrases if necessary).

Theorem 2. A string of length n over an alphabet of size σ can be recovered
from its LZ77 factorization in O

(
n

B logσ n logM/B
n

B logσ n

)
I/Os.

Proof. We set �max = Θ(logσ n) and b = Θ(B logσ n). Then the objects stored in
the priority queue need O(log n + �max log σ) = O(log n) bits each and the total
number of repeat phrases after all splitting is O(zrep+n/ logσ n) = O(n/ logσ n).

Thus sorting the phrases needs O
(

n
B logσ n logM/B

n
B logσ n

)
I/Os. This is also

the I/O complexity of all the external memory priority queue operations [3]. All
other processing is sequential and needs O

(
n

B logσ n

)
I/Os. ��

We have implemented the algorithm using the STXXL library [4] for external
memory sorting and priority queues.

5 LZ Decoding Without Sorting or Priority Queue

The practical performance of the algorithm in the previous section is often
bounded by in-memory computation rather than I/O, at least on a machine
with relatively fast disks. In this section, we describe an algorithm that reduces
computation based on the observation that we do not really need the full power
of external memory sorting and priority queues.

To get rid of sorting, we replace the sorted sequence Rfar with �n/b� unsorted
sequences R1,R2, . . . , where Ri contains all phrases with the source in the ith
segment. In other words, sorting Rfar is replaced with distributing the phrases

68 D. Belazzougui et al.

into R1,R2, If n/b is less than M/B, the distribution can be done in one
pass, since we only need one RAM buffer of size B for each segment. Otherwise,
we group M/B consecutive segments into a supersegment, distribute the phrases
first into supersegments, and then into segments by scanning the supersegment
sequences. If necessary, further layers can be added to the segment hierarchy.
This operation generates the same amount of I/O as sorting but requires less
computation because the segment sequences do not need to be sorted.

In the same way, the priority queue is replaced with �n/b� simple queues.
The queue Qi contains a triple (q, �, s) for each far repeat phrase whose phrase
position is within the ith segment. The order of the phrases in the queue is
arbitrary. Instead of inserting a recovered far repeat phrase into the priority
queue Q it is appended into the appropriate queue Qi. This requires a RAM
buffer of size B for each queue but as above a multi-round distribution can be
used if the number of segments is too large. This approach might not reduce the
I/O compared to the use of a priority queue but it does reduce computation.
Moreover, the simple queue allows the strings s to be of variable sizes and of
unlimited length; thus there is no need to split the phrases except at segment
boundaries.

Since the queues Qi are not ordered by the phrase position, we can no more
recover a segment in a strict left-to-right order, which requires a modification
of the segment recovery procedure. The sequence Rnear of near repeat phrases
is divided into two: Rprev contains the phrases with the source in the preceding
segment and Rsame the ones with the source in the same segment.

As before, the recovery of a segment Xj starts with the previous segment in
the array Y[0..b) and consists of the following steps:

1. Recover the phrases in Rprev (that are in this segment). Note that each source
is in the part of the previous segment that is still untouched.

2. Recover the literal phrases by reading them from L.
3. Recover the far repeat phrases by reading them from Qj (with the full literal

representation).
4. Recover the phrases in Rsame. Note that each source is in the part of the

current segment that has been fully recovered.

After the recovery of the segment, we read all the phrases in Rj and insert them
into the queues Qk with their full literal representations.

We want to minimize the number of segments. Thus we choose the segment
size to occupy at least half of the available RAM and more if the RAM buffers
for the queues Qk do not require all of the other half. It is easy to see that this
algorithm does not generate asymptotically more I/Os than the algorithm of
the previous section. Thus the I/O complexity is O

(
n

B logσ n logM/B
n

B logσ n

)
.

We have implemented the algorithm using standard file I/O (without the help
of STXXL).

Lempel-Ziv Decoding in External Memory 69

6 Reducing Disk Space Usage

The algorithm described in the previous section can adapt to a small RAM by
using short segments, and if necessary, multiple rounds of distribution. However,
reducing the segment size does not affect the disk space usage and the algorithm
will fail if it does not have enough disk space to store all the external memory
data. In this section, we describe how the disk space usage can be reduced.

The idea is to divide the LZ factorization into parts and to process one part at
a time recovering the corresponding part of the text. The first part is processed
with the algorithm of the previous section as if it was the full string. To process
the later parts, a slightly modified algorithm is needed because, although all the
phrases are in the current part, the sources can be in the earlier parts. Thus
we will have the Rj queues for all the segments in the current and earlier parts
but the Qj queues only for the current part. The algorithm processes first all
segments in the previous parts performing the following steps for each segment
Xj :

– Read Xj from disk to RAM.
– Read Rj and for each phrase in Rj create the triple (q, �, s) and write it to

the appropriate queue Qk.

Then the segments of the current part are processed as described in the previous
section.

For each part, the algorithm reads all segments in the preceding parts. The
number of additional I/Os needed for this is O(np/(B logσ n)), where p is the
number of parts. In other respects, the performance of the algorithm remains
essentially the same.

We have implemented this partwise processing algorithm using greedy on-
line partitioning. That is, we make each part as large as possible so that the
peak disk usage does not exceed a given disk space budget. An estimated peak
disk usage is maintained while reading the input. The implementation needs at
least enough disk space to store the input (the factorization) and the output
(the recovered string) but the disk space needed in addition to that can usually
be reduced to a small fraction of the total with just a few parts.

7 Experimental Results

Setup. We performed experiments on a machine equipped with two six-core
1.9 GHz Intel Xeon E5-2420 CPUs with 15 MiB L3 cache and 120 GiB of DDR3
RAM. The machine had 7.2 TiB of disk space striped with RAID0 across four
identical local disks achieving a (combined) transfer rate of about 480 MiB/s.
The STXXL block size as well as the size of buffers in the algorithm based on
plain disk I/O was set to 1 MiB.

The OS was Linux (Ubuntu 12.04, 64bit) running kernel 3.13.0. All programs
were compiled using g++ version 4.7.3 with -O3 -DNDEBUG options. The machine
had no other significant CPU tasks running and only a single thread of execution

70 D. Belazzougui et al.

Table 1. Statistics of data used in the experiments. All files are of size 256 GiB. The
value of n/z (the average length of a phrase in the LZ77 factorization) is included as
a measure of repetitiveness.

Name σ n/z

hg.reads 6 52.81

wiki 213 84.26

kernel 229 7767.05

random255 255 4.10

was used for computation. All reported runtimes are wallclock (real) times. In
the experiments with a limited amount of RAM, the machine was rebooted with
a kernel boot flag so that the unused RAM is unavailable even for the OS.

Datasets. For the experiments we used the following files varying in the number
of repetitions and alphabet size (see Table 1 for some statistics):
– hg.reads: a collection of DNA reads (short fragments produced by a sequenc-

ing machine) from 40 human genomes1 filtered from symbols other than
{A, C, G, T, N} and newline;

– wiki: a concatenation of three different English Wikipedia dumps2 in XML
format dated: 2014-07-07, 2014-12-08, and 2015-07-02;

– kernel: a concatenation of ∼16.8 million source files from 510 versions of Linux
kernel3;

– random255: a randomly generated sequence of bytes.

Experiments. In the first experiment we compare the implementation of the new
LZ77 decoding algorithm not using external-memory sorting or priority queue
to a straightforward internal-memory LZ77 decoding algorithm that scans the
input parsing from disk and decodes the text from left to right. All copying of
text from sources to phrases happens in RAM.

We use the latter algorithm as a baseline since it represents a realistic upper
bound on the speed of LZ77 decoding. It needs enough RAM to accommodate
the output text as a whole, and thus we were only able to process prefixes of test
files up to size of about 120 GiB. In the runtime we include the time it takes to
read the parsing from disk (we stream the parsing using a small buffer) and to
write the output text to disk. The new algorithm, being fully external-memory
algorithm, can handle full test instances. The RAM usage of the new algorithm
was limited to 3.5 GiB.

The results are presented in Fig. 1. In nearly all cases the new algorithm
is about three times slower than the baseline. This is due to the fact that in

1 http://www.1000genomes.org/.
2 http://dumps.wikimedia.org/.
3 http://www.kernel.org/.

https://www.vpn.helsinki.fi/,DanaInfo=www.1000genomes.org+
https://www.vpn.helsinki.fi/,DanaInfo=dumps.wikimedia.org+
https://www.vpn.helsinki.fi/,DanaInfo=www.kernel.org+

Lempel-Ziv Decoding in External Memory 71

Fig. 1. Comparison of the new external memory LZ77 decoding algorithm based on
plain disk I/O (“LZ77decode”) with the purely in-RAM decoding algorithm (“Base-
line”). The latter represents an upper bound on the speed of LZ77 decoding. The unit
of decoding speed is MiB of output text decoded per second.

the external memory algorithm each text symbol in a far repeat phrase is read
or written to disk three times: first, when written to a queue Qj as a part of
a recovered phrase, second, when read from Qj , and third, when we write the
decoded text to disk. In comparison, the baseline algorithm transfers each text
symbol between RAM and disk once: when the decoded text is written to disk.
Similarly, while the baseline algorithm usually needs one cache miss to copy the
phrase from the source, the external memory algorithm performs about three
cache misses per phrase: when adding the source of a phrase to Rj , when adding
a literal representation of a phrase into Qj , and when copying the symbols from
Qj into their correct position in the text. The exception of the above behavior
is the highly repetitive kernel testfile that contains many near repeat phrases,
which are processed as efficiently as phrases in the RAM decoding algorithm.

In the second experiment we compare our two algorithms described in Sects. 4
and 5 to each other. For the algorithm based on priority queue we set �max = 16.
The segment size in both algorithms was set to at least half of the available RAM
(and even more if it did not lead to multiple rounds of EM sorting/distribution),
except in the algorithm based on sorting we also need to allocate some RAM
for the internal operations of STXXL priority queue. In all instances we allocate
1 GiB for the priority queue (we did not observe a notable effect on performance
from using more space).

72 D. Belazzougui et al.

Fig. 2. Comparison of the new external memory LZ77 decoding algorithm based on
plain disk I/O (“LZ77decode”) to the algorithm implemented using external memory
sorting and priority queue (“LZ77decode-PQ”). The comparison also includes the algo-
rithm implementing naive approach to LZ77 decoding in external memory. The speed
is given in MiB of output text decoded per second.

In the comparison we also include a naive external-memory decoding algo-
rithm that works essentially the same as baseline RAM algorithm except we
do not require that RAM is big enough to hold the text. Whenever the algo-
rithm requests a symbol outside a window, that symbol is accessed from disk.
We do not explicitly maintain a window of recently decoded text in RAM, and
instead achieve a very similar effect by letting the operating system cache the
recently accessed disk pages. To better visualize the differences in performance,
all algorithms were allowed to use 32 GiB of RAM.

The results are given in Fig. 2. For highly repetitive input (kernel) there is
little difference between the new algorithms, as they both copy nearly all symbols
from the window of recently decoded text. The naive algorithm performs much
worse, but still finishes in reasonable time due to large average length of phrases
(see Table 1).

On the non-repetitive data (hg.reads), the algorithm using external-memory
sorting and priority queue clearly gets slower than the algorithm using plain disk
I/O as the size of input grows. The difference in constant factors is nearly three
for the largest test instance. The naive algorithm maintains acceptable speed
only up to a point where the decoded text is larger than available RAM. At this
point random accesses to disk dramatically slow down the algorithm.

Note also that the speed of our algorithm in Fig. 2 is significantly higher
than in Fig. 1. This is because the larger RAM (32 GiB vs. 3.5 GiB) allows larger
segments, and larger segments mean that more of the repeat phrases are near
repeat phrases which are faster to process than far repeat phrases.

In the third experiment we explore the effect of the technique described in
Sect. 6 aiming at reducing the peak disk space usage of the new algorithm. We
executed the algorithm on 32 GiB prefixes of two testfiles using 3.5 GiB of RAM
and with varying disk space budgets. As shown in Fig. 3, this technique allows
reducing the peak disk space usage to very little over what is necessary to store

Lempel-Ziv Decoding in External Memory 73

Fig. 3. The effect of disk space budget (see Sect. 6) on the speed of the new external-
memory LZ77 decoding algorithm using plain disk I/O. Both testfiles were limited to
32 GiB prefixes and the algorithm was allowed to use 3.5 GiB of RAM. The rightmost
data-point on each of the graphs represents a disk space budget sufficient to perform
the decoding in one part.

the input parsing and output text and does not have a significant effect on the
runtime of the algorithm, even on the incompressible random data.

8 Concluding Remarks

We have described the first algorithms for external memory LZ77 decoding. Our
experimental results show that LZ77 decoding is fast in external memory setting
too. The state-of-the-art external memory LZ factorization algorithms are more
than a magnitude slower than our fastest decoding algorithm, see [11].

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988). doi:10.1145/48529.48535

2. Badkobeh, G., Crochemore, M., Toopsuwan, C.: Computing the maximal-exponent
repeats of an overlap-free string in linear time. In: Calderón-Benavides, L.,
González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608,
pp. 61–72. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34109-0 8

3. Brodal, G.S., Katajainen, J.: Worst-case efficient external-memory priority queues.
In: Arnborg, S. (ed.) SWAT 1998. LNCS, vol. 1432, pp. 107–118. Springer,
Heidelberg (1998). doi:10.1007/BFb0054359

4. Dementiev, R., Kettner, L., Sanders, P.: STXXL: standard template library for
XXL data sets. Softw. Pract. Exper. 38(6), 589–637 (2008). doi:10.1002/spe.844

5. Ferrada, H., Gagie, T., Hirvola, T., Puglisi, S.J.: Hybrid indexes for repetitive
datasets. Phil. Trans. R. Soc. A 372 (2014). doi:10.1098/rsta.2013.0137

6. Ferragina, P., Manzini, G.: On compressing the textual web. In: Proceedings of
3rd International Conference on Web Search and Web Data Mining (WSDM), pp.
391–400. ACM (2010). doi:10.1145/1718487.1718536

https://www.vpn.helsinki.fi/10.1145/,DanaInfo=dx.doi.org+48529.48535
https://www.vpn.helsinki.fi/10.1007/,DanaInfo=dx.doi.org+978-3-642-34109-0_8
https://www.vpn.helsinki.fi/10.1007/,DanaInfo=dx.doi.org+BFb0054359
https://www.vpn.helsinki.fi/10.1002/,DanaInfo=dx.doi.org+spe.844
https://www.vpn.helsinki.fi/10.1098/,DanaInfo=dx.doi.org+rsta.2013.0137
https://www.vpn.helsinki.fi/10.1145/,DanaInfo=dx.doi.org+1718487.1718536

74 D. Belazzougui et al.

7. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A
faster grammar-based self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA
2012. LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-13089-2 23

8. Gagie, T., Gawrychowski, P., Puglisi, S.J.: Faster approximate pattern match-
ing in compressed repetitive texts. In: Asano, T., Nakano, S., Okamoto, Y.,
Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 653–662. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25591-5 67

9. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A
faster grammar-based self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA
2012. LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28332-1 21

10. Hoobin, C., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv factorization for efficient
storage and retrieval of web collections. Proc. VLDB 5(3), 265–273 (2011)

11. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lempel-Ziv parsing in external memory.
In: Proceedings of 2014 Data Compression Conference (DCC), pp. 153–162. IEEE
(2014). doi:10.1109/DCC.2014.78

12. Kolpakov, R., Bana, G., Kucherov, G.: MREPS: efficient and flexible detection
of tandem repeats in DNA. Nucleic Acids Res. 31(13), 3672–3678 (2003). doi:10.
1093/nar/gkg617

13. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proceedings of 40th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 596–604. IEEE Computer Society (1999). doi:10.1109/SFFCS.1999.
814634

14. Kolpakov, R., Kucherov, G.: Finding approximate repetitions under haam-
ming distance. Theor. Comput. Sci. 303(1), 135–156 (2003). doi:10.1016/
S0304-3975(02)00448-6

15. Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: Pro-
ceedings of 2010 Data Compression Conference (DCC), pp. 239–248 (2010). doi:10.
1109/DCC.2010.29

16. Kreft, S., Navarro, G.: Self-indexing based on LZ77. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 41–54. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-21458-5 6

17. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv compression of genomes
for large-scale storage and retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE
2010. LNCS, vol. 6393, pp. 201–206. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16321-0 20

18. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theor.
22(1), 75–81 (1976). doi:10.1109/TIT.1976.1055501

19. Vitter, J.S.: Algorithms and data structures for external memory. Found. Trends
Theoret. Comput. Sci. 2(4), 305–474 (2006). doi:10.1561/0400000014

20. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theor. 23(3), 337–343 (1977). doi:10.1109/TIT.1977.1055714

https://www.vpn.helsinki.fi/10.1007/,DanaInfo=dx.doi.org+978-3-642-13089-2_23
https://www.vpn.helsinki.fi/10.1007/,DanaInfo=dx.doi.org+978-3-642-13089-2_23
https://www.vpn.helsinki.fi/10.1007/,DanaInfo=dx.doi.org+978-3-642-25591-5_67
https://www.vpn.helsinki.fi/10.1007/,DanaInfo=dx.doi.org+978-3-642-28332-1_21
https://www.vpn.helsinki.fi/10.1007/,DanaInfo=dx.doi.org+978-3-642-28332-1_21
https://www.vpn.helsinki.fi/10.1109/,DanaInfo=dx.doi.org+DCC.2014.78
https://www.vpn.helsinki.fi/10.1093/nar/,DanaInfo=dx.doi.org+gkg617
https://www.vpn.helsinki.fi/10.1093/nar/,DanaInfo=dx.doi.org+gkg617
https://www.vpn.helsinki.fi/10.1109/,DanaInfo=dx.doi.org+SFFCS.1999.814634
https://www.vpn.helsinki.fi/10.1109/,DanaInfo=dx.doi.org+SFFCS.1999.814634
https://www.vpn.helsinki.fi/10.1016/,DanaInfo=dx.doi.org+S0304-3975(02)00448-6
https://www.vpn.helsinki.fi/10.1016/,DanaInfo=dx.doi.org+S0304-3975(02)00448-6
https://www.vpn.helsinki.fi/10.1109/,DanaInfo=dx.doi.org+DCC.2010.29
https://www.vpn.helsinki.fi/10.1109/,DanaInfo=dx.doi.org+DCC.2010.29
https://www.vpn.helsinki.fi/10.1007/,DanaInfo=dx.doi.org+978-3-642-21458-5_6
https://www.vpn.helsinki.fi/10.1007/,DanaInfo=dx.doi.org+978-3-642-21458-5_6
https://www.vpn.helsinki.fi/10.1007/,DanaInfo=dx.doi.org+978-3-642-16321-0_20
https://www.vpn.helsinki.fi/10.1007/,DanaInfo=dx.doi.org+978-3-642-16321-0_20
https://www.vpn.helsinki.fi/10.1109/,DanaInfo=dx.doi.org+TIT.1976.1055501
https://www.vpn.helsinki.fi/10.1561/,DanaInfo=dx.doi.org+0400000014
https://www.vpn.helsinki.fi/10.1109/,DanaInfo=dx.doi.org+TIT.1977.1055714

	Lempel-Ziv Decoding in External Memory
	1 Introduction
	2 Basic Definitions
	3 On I/O Complexity of LZ Decoding
	4 LZ Decoding Using EM Sorting and Priority Queue
	5 LZ Decoding Without Sorting or Priority Queue
	6 Reducing Disk Space Usage
	7 Experimental Results
	8 Concluding Remarks
	References

