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Abstract. One of the most important data structures for string process-
ing, the suffix array, needs to be augmented with the longest-common-
prefix (LCP) array in numerous applications. We describe the first
external memory algorithm for constructing the LCP array given the
suffix array as input. The only previous way to compute the LCP array
for data that is bigger than the RAM is to use a suffix array construc-
tion algorithm with complex modifications to produce the LCP array as
a by-product. Compared to the best prior method, our algorithm needs
much less disk space (by more than a factor of three) and is significantly
faster. Furthermore, our algorithm can be combined with any suffix array
construction algorithm including a better one developed in the future.

1 Introduction

The suffix array [16,8], a lexicographically sorted array of the suffixes of a text,
is the most important data structure in modern string processing. It is the basis
of powerful text indexes such as enhanced suffix arrays [1] and many compressed
full-text indexes [18]. Modern text books spend dozens of pages in describing
applications of suffix arrays, see e.g. [20]. In many of those applications, the suf-
fix array needs to be augmented with the longest-common-prefix (LCP) array,
which stores the lengths of the longest common prefixes between lexicographi-
cally adjacent suffixes (see e.g. [1,20]).

The construction of these data structures is a bottleneck in many of the appli-
cations. There are numerous suffix array construction algorithms (SACAs) [21]
including linear time internal memory SACAs [13,19] as well as external mem-
ory SACAs with the optimal I/O complexity [4,3]. There are also simple, linear
time internal memory LCP array construction algorithms (LACAs) [14,11] that
take the suffix array and the text as input, but external memory LCP array
construction remains a problem. In this paper, we describe the first external
memory LACA.

Related Work. The first LACA by Kasai et al. [14] is simple and runs in linear
time but needs a lot a space (the text plus 3n integers). Several later algorithms
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aimed at reducing the space [15,17,22,11,7,2]. Some of the algorithms can even
be made semi-external, i.e., they keep most of the data structures on disk but
need to have at least the full text in RAM [22,11].

When the text size exceeds the RAM size, the only prior option for construct-
ing the LCP array is to use an external memory SACA modified to compute
the LCP array too during the construction [12,3] — we call these SLACAs —
but there are several drawbacks to this approach. First, they add a substantial
amount of complication to already complicated algorithms, and this complica-
tion is repeated for each SLACA, whereas a proper LACA can be combined with
any SACA without a modification. Second, while theoretically the complexity
of the algorithms does not change, adding the LCP computation increases the
running time significantly in practice. Third, the SLACAs need a lot of disk
space, so much in fact that the disk space is likely to be the biggest problem in
scaling the algorithms for bigger data. For a text of length n, the best SLACA
implementation, eSAIS [3], needs 54n bytes of disk space when computing the
suffix and LCP arrays compared to only 28n bytes of disk space when computing
only the suffix array.

Our Contribution. The new LACA, called LCPscan, is the first external mem-
ory LACA that is independent of any suffix array construction algorithm. The
algorithm combines elements from several internal memory LACAs such as the
original LACA [14], the @ algorithm [11] and the irreducible LCP algorithm [11],
adds some new twists such as a new method for identifying irreducible LCP val-
ues, and implements everything using external memory scanning and sorting.
The main new idea, however, is to divide the text into blocks that are small
enough to fit in RAM and then scan the rest of the text once for each block. A
similar approach has been recently applied to computing the Burrows—Wheeler
transform [6], the Lempel-Ziv factorization [10], and the suffix array [9]. This ap-

proach leads to a quadratic complexity in theory: O MIZ; atn logzg 5 ) time

and O(MB(I?)ZG w2 T 4 logg g) 1/0s. However, in practice the size of the text

would have to be more than about 100 times the size of the RAM, before the
quadratic part of the computation would start to dominate. Up to that point,
LCPscan is the fastest way to construct the LCP array in external memory as
shown by our experiments. Furthermore, LCPscan needs just 16n bytes of disk
space, which is less than a third of the disk usage of the best previous method [3].

2 Preliminaries

Strings. Throughout we consider a string X = X[0..n) = X[0]X[1]...X[n — 1] of
|X| = n symbols drawn from the alphabet [0..0). Here and elsewhere we use [i..j)
as a shorthand for [i..j — 1]. For ¢ € [0..n], we write X[i..n) to denote the suffiz of
X of length n — 4, that is X[i..n) = X[i]X[i + 1] ... X[n — 1]. We will often refer to
suffix X[i..n) simply as “suffix ¢”. Similarly, we write X[0..7) to denote the prefiz
of X of length i. X[i..j) is the substring X[i]X[i + 1]...X[j — 1] of X that starts
at position ¢ and ends at position j — 1.
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Suffiz Array. The suffix array [16] SA of X is an array SA[0..n] which contains
a permutation of the integers [0..n] such that X[SA[0]..n) < X[SA[1]..n) < --- <
X[SA[n]..n). In other words, SA[j] = i iff X[i.n) is the (j + 1)'! suffix of X
in ascending lexicographical order. The inverse suffiz array ISA is the inverse
permutation of SA, that is ISA[i] = j iff SA[j] = i. Conceptually, ISA[7] tells us
the position of suffix 7 in SA. Another representation of the permutation is the &
array [11] @[0..n) defined by @[SA[j]] = SA[j — 1] for j € [1..n]. In other words,
the suffix @[i] is the immediate lexicographical predecessor of the suffix .

LCP Array. Let lcp(i, j) denote the length of the longest-common-prefix (LCP)
of suffix ¢ and suffix j. For example, in the string X = cccecateat, 1cp(0,3) =2 =
|cc|, and lep(4, 7) = 3 = |cat|. The longest-common-prefiz array [14], LCP[1..n], is
defined such that LCP[i] = lcp(SA[i], SA[i — 1]) for i € [1..n]. The permuted LCP
array [11] PLCP[0..n) is the LCP array permuted from the lexicographical order
into the text order, i.e., PLCP[SA[j]] = LCPJj] for j € [1..n]. Then PLCP[i] =
lep(é, @[i]) for all i € [0..n). The following result is the basis of all efficient LACAs.

Lemma 1. Leti,j € [0..n). If i < j, then i + PLCP[i] < j + PLCP[j]. Symmet-
rically, if @[i] < D[j], then ®[i] + PLCP[i] < &[j] + PLCP[j].

Proof. Asshown in [14,11], i+PLCP[i] < (i4+1)+PLCP[i+1] for all i € [0..n—2],
an iterative application of which results the first part of the claim. The second
part follows by symmetry. O

3 Basic Algorithm

In this section, we describe the basic LCPscan algorithm for computing the LCP
array of a string X given X and the suffix array SA of X. In the next two sec-
tions, we describe further optimizations and analyze the theoretical and practical
properties of the algorithm.

The basic approach of the algorithm is similar to the original linear time
LACA by Kasai et al. [14] and to the ¢ algorithm introduced in [11]. The main
steps in the computation are:

1. Compute ISA and @ from SA.
2. Compute PLCP from X and &.
3. Compute LCP from ISA and PLCP.

The first and the third step are easy to implement in external memory using
sorting. In step 1, we scan the suffix array creating a triple (¢, SA[i], SA[i — 1])
for each i € [1..n]. When the triples are sorted by the middle component, the se-
quence of first components forms ISA[0..n) and the sequence of third components
forms @[0..n). In the third step, we similarly sort the pairs (ISA[i], PLCP[i]),
i € [0..n), by the first component obtaining LCP[1..n] as the sequence of the
second components.

In the middle step, we partition the text into O(n/m) blocks of size at most
m and process them one at a time. The block size m is chosen so that one block
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of text fits in RAM together with a constant number of disk buffers. For each
block X][s..e), 0 < s < e < n, we want to compute PLCP[s..e) from [s..e) and
X. Only the block X[s..e) is kept in RAM and the rest of X is scanned once.
During the computation, we maintain triples (i, j, ¢), where 7 € [s..e), j = P]i]
and ¢ € [0..Icp(4, j)]. Each triple starts with £ = 0 and ends with ¢ = lcp(3, )
allowing us to set PLCP[i] = ¢. The main idea is to process the triples in the
order of the second component so that we can complete all the lcp computations
during a single scan of X.

A small complication in the computation is dealing with the block boundaries.
The triple (¢, 7, ¢) is first created when processing the block that contains i but
its computation may be finished when processing a different block, the one that
contains i+lcp(7, 7). We keep a set Ry, to hold triples that cross a block boundary
y. Thus, the processing of a block X[s..e) has Ry as an extra input and R, as an
extra output. Furthermore, the main output is not necessarily PLCP(s..e) but
PLCPIs'..¢/) for some s’ < s and ¢’ < e. The full algorithm for processing a
block is given in Fig. 1.

ProcessBlock(s, e, X, P[s. e) Rs)

1: Q+ RsU{(s, @[z] 0):i¢€[s..e)}

2: sort Q by the second component

31 Jprev < 8, lprev < 0

4: L+ R.«0

5. for (i,7,€) € Q do

6: R maX(Z,Zprev + jprev - .7)

T whilei+¢<eand j+{¢<nand X[i+{=X[j+¢do £+ {+1
8: ifi+¢>eand j+ ¢ <nthen R. < R.U{(4,5,0)}

9: else L+ LU {(3,£)}

10: Jprev < 7, Lprev £

11: sort L by the first component

12: € + min({e} U{i: (,5,¢) € Re})
13: s + min({e'} U {i: (i,€) € L})
14: PLCP[s..e’) + {¢: (3,0) € L}

15: return PLCP[s'..¢'), Re

Fig. 1. Process a text block X[s..e)

A subtle point in the algorithm is line 6, where we may set £ = {yrev + Jprev —J-
First, this is safe because jprev + fprev < j + lcp(i, j) by Lemma 1. Second, this
ensures that j + £ never decreases during the algorithm and thus the accesses
to X[j + £] are purely sequential. The other access to the text, X[i + £], can be
non-sequential, but we always have that i + ¢ € [s..e). Everything else in the
algorithm can be done by scanning and sorting and can thus be implemented

efficiently in external memory.
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4 Irreducible LCP Values

For highly repetitive texts, the longest common prefixes can be very long and
cross several block boundaries, and conversely, a single block boundary may be
crossed by LCPs starting from several blocks. Thus the sets Rs; and R, in the
algorithm can grow big and the sum of their sizes over the whole algorithm could
be as large as ©(n?/m). To prevent this, we will employ the irreducible LCP
technique introduced in [11].

An LCP value PLCPJi] is said to be reducible if X[i — 1] = X[®[i] — 1]. Other-
wise, in particular when ¢ = 0 or @[i] = 0, PLCP[{] is irreducible. The following
key properties of (ir)reducible LCP values were proved in [11].

Lemma 2 ([11]). If PLCPJi] is reducible, then PLCP[i] = PLCP[i — 1] — 1.
Lemma 3 ([11]). The sum of all irreducible lcp values is < 2nlogn.

We will modify the procedure in Fig. 1 to compute only the irreducible LCP
values in the main loop. The first lemma above shows that the reducible values
are easy to obtain afterwards. The second lemma above ensures that the total
number of boundary crossings of irreducible LCP values is O(n + (nlogn)/m),
which is O(n) under the reasonable assumption that m = £2(logn).

In the procedure ProcessBlock, we need to discard a triple (i, j, £) if PLCPJ]
is reducible, i.e., if X[i — 1] = X[®[i] — 1], which could be done in the main loop
when the text scan reaches X[j — 1]. However, we can do it already earlier using
the following alternative characterization of the irreducible LCP values.

Lemma 4. PLCP[i] is a reducible value iff i > 0 and P[i — 1] = P[i] — 1 and
PLCP[i — 1] > 0.

Proof. Ifi > 0 and ®[i — 1] = §[i] — 1 and PLCP[i — 1] = lcp(i — 1, @[ — 1]) > 0,
then X[i — 1] = X[®[i — 1]] = X[P[¢] — 1] and thus PLCPJ4] is reducible. PLCP];]
is irreducible if ¢ = 0 (by definition) or if @i — 1] = ¢[i] — 1 and PLCP[i —1] =0
(since then X[i — 1] # X[®[i — 1]] = X[®@[i] — 1]). The only thing left to prove is
that if PLCPJé] is reducible then @i — 1] = &[i] — 1.

Assume by contradiction that PLCP][i] is reducible but @[i—1] # @[i]—1. Since
X[i —1] = X[®[i] — 1] and X[P[i]..n) < X[i..n), we have that X[P[i] —1..n) < X[i —
1..n). Since the suffix $[i — 1] is the immediate lexicographical predecessor of the
suffix i—1, we must have have X[®[i]—1..n) < X[P[i—1]..n) < X[i—1..n). But this
implies that X[®[i—1]] = X[i—1] and that X[®[i]..n) < X[P[i—1]+1..n) < X[i..n),
which contradicts the suffix @[i] being the immediate lexicographical predecessor
of the suffix i. O

Note that PLCP[i — 1] = 0 implies that the suffix ¢ — 1 is the lexicographically
smallest suffix starting with the character X[i — 1]. Thus there are at most o
such positions and they can be easily computed from the text and the suffix
array. We scan (if o is small) or sort (if o is large) the text to compute the
character frequencies, which then identify the positions of the relevant suffixes
in SA. The other reducible positions can be recognized on line 1 of ProcessBlock



LCP Array Construction in External Memory 417

while scanning @ and only the irreducible positions are added into Q. The only
other modification to Algorithm ProcessBlock is on line 14. Since L contains only
irreducible LCP values, the missing values in PLCP are filled using Lemma 2.

We are now ready to analyze the complexity of the algorithm in the standard
external memory model (see [23]) with RAM size M and disk block size B,
both measured in units of ©(logn)-bit words. We assume that M = {2(logn),
M = O(n) and 0 = O(n).

Theorem 1. Given a text of length n over an alphabet of size o and its suffix
array, the associated LCP array can be computed with the algorithm described

above in )
n n .
O(Mloggn+n10gg B) time
and )
n n n
(@] 1 1/0s.
(MB(logan)Q sy B) /0s

Proof. The text is divided into O(n/m) blocks, where m is chosen so that m
characters fit in RAM. The size of the RAM is M logn bits and we can fit
m = O(M log, n) characters into that space. For each block, we scan the text
once with each scan requiring O(n) time and O(n/(Blog, n)) 1/0s. This gives
the first terms in the complexities.

Everything else in the algorithm involves scanning and sorting (tuples of)
integers and the total number of integers involved in these scans and sorts is
O(n). This gives the second terms in the complexities. |

5 Practical Improvements

In this section, we describe some practical improvements and analyze the prac-
tical properties of LCPscan. In the analysis we assume that the implementation
uses one byte for each character and five bytes for each integer.

As championed by the STXXL library [5], pipelining is an important tech-
nique for external memory algorithms. That is, instead of writing the output of
one stage to disk and then reading it from the disk in the next stage, we execute
the two stages simultaneously so that the input of the first stage is fed directly
to the next stage. For example, when in the first step of the algorithm we obtain
@ as the third components of the sorted triples, we do not write the ¢ values
directly to disk. Instead, we identify the reducible positions and discard the cor-
responding entries of @ already at this stage. For each irreducible position i, we
form the pair (¢, ®[i]) and feed these pairs to a sorter. The sorter uses the block
number [i/m] as the primary key and the value @[i] as the secondary key. This
accomplishes most of the work on lines 1 and 2 in procedure ProcessBlock. The
beginning of the actual ProcessBlock procedure will then just read the sorted
(i, 9[i]) pairs, add the third components (0) and merge with Ry to obtain the
(i,4,¢) triples, which are then immediately processed in the loop on lines 5-10.
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Using pipelining throughout and assuming that n elements in the algorithm can
be sorted in one pass of multiway mergesort,’ the total I/O volume of LCPscan
is 71n + 40r + [n/m]n bytes, where r is the number of irreducible LCP values.

The peak disk usage of the algorithm occurs during the stage described above,
where we read the sorted (i,SAli],SA[i — 1]) triples and output ISA and the
irreducible (i, @[i]) pairs. All that data requires 20n + 107 bytes of disk space,
which is 30n bytes in the worst case. We also have the suffix array and the text
on disk occupying a further 6n bytes for a total of 36n bytes.

To reduce the disk usage, we divide the text into four superblocks of sizes
0.31n, 0.27n, 0.23n and 0.19n, and run the algorithm separately for each su-
perblock. That is, in step 1, we scan SA forming the triple (¢, SA[i], SA[i — 1])
only when SA[i] belongs to the current superblock. The output of the superblock
computation is a subsequence of LCP containing only the entries LCP[i] such
that SA[i] belongs to the current superblock. Once all superblocks have been
processed, the LCP subsequences are merged using SA to determine the merg-
ing order. In the rest of the algorithm, processing a superblock instead of the full
text changes little as each superblock is a contiguous segment in the main data
structures @, ISA and PLCP. With the superblock division, the peak disk usage
is reduced to 16n bytes. For example, when processing the third superblock,
we need 6n bytes for the text and the suffix array, 0.23 x 30n = 6.9n bytes
for the (¢, SA[i], SA[i — 1]) triples, (i, ®@[i]) pairs and ISA for the superblock, and
(0.31 4+ 0.27) x 5n = 2.9n bytes for the LCP subsequences for the first two su-
perblocks, which sums up to 15.8n bytes. The full 16n bytes is needed when
merging the LCP subsequences into the final LCP array.

With the division into superblocks, the extra scans of the suffix array and the
merging of the LCP subsequences add 30n bytes to the I/O volume for a total of
101n+40r+[n/m]n bytes. We are willing to accept the slightly increased running
time because the lack of disk space is likely to be a more serious limitation than
time.

6 Experimental Results

We have implemented LCPscan as described above using the STXXL library [5]
for external memory sorting. As there are no previous external memory LA-
CAs, we compare it to eSAIS [3], the fastest external memory SLACA in pre-
vious studies. eSAIS can compute either SA and LCP arrays or only SA, and
it is the difference between the two modes that we compare LCPscan against.
This reveals if the combination of eSAIS as SACA plus LCPscan is better than
eSAIS as SLACA. Combining LCPscan with another SACA such as the re-
cent SAscan [9] might be an even better combination, but we want to focus
on the LCP computation alone. The C++ implementations are available at
http://www.cs.helsinki.fi/group/pads/.

! Considering the amount of RAM on modern computers, one pass of merging is a
reasonable assumption in practice.
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Table 1. Statistics of data used in the experiments. In addition to basic parameters,
we show the percentage of irreducible LCP values among all LCP values (expression
1007 /n, where r denotes the number of irreducible LCPs) and the average length of
the irreducible LCP value (X, /r, where X, is the sum of all irreducible LCPs).

Name n/23° o 100r/n Xe/r
countries 64 210 0.14 1294.0
wiki 120 213 17.9 27.1
dna 64 6 20.7 22.0
debruijn 64 2 99.2 34.0

Data Set. For the experiments we selected a range of testfiles varying in the
number and length of irreducible LCP values:

— countries: a concatenation of all versions (edit history) of Wikipedia articles
about 78 largest countries in the XML format?. It contains a small number
of large irreducible LCP values,

— wiki: latest English, German and French Wikipedia dumps® in the XML
format concatenated and truncated to 120GiB. It represents a natural text,

— dna: a collection of DNA reads from a human genome? filtered from symbols
other than {A,C,G,T,N} and newline. The irreducible LCP values are very
short but relatively frequent (~ 30%),

— debruijn: a binary De Bruijn sequence of order k is an artificial sequence of
length 2% +k—1 than contains all possible binary k-length substrings. It con-
tains ©(n) irreducible LCPs of maximal possible total length ©(nlogn) [11].
It represents the worst case for LCPscan.

Table 1 gives detailed statistics about the data.

Experiments Setup. We performed experiments on 2 different machines referred
to as Platform S (small) and Platform L (large).

Platform S was equipped with a 3.16GHz Intel Core 2 Duo CPU with 6MiB
L2 cache and two 320GiB hard drives with a total of 480GiB of usable disk space.
For experiments, we artificially restricted the RAM size to 2GiB using the Linux
boot option mem, and the algorithms were allowed to use at most 1.5GiB.

Platform L was equipped with 1.9GHz Intel Xeon E5-2420 CPU with 15MiB
L2 cache and 7.2TiB of disk space striped with RAIDO across 4 local disks of size
1.8TiB. For experiments we restricted the RAM size to 4GiB, and the algorithms
were allowed to use at most 3.5GiB.

On both platforms we used a disk block of size 1IMiB. The OS was Linux
(Ubuntu 12.04, 64bit). All programs were compiled using g++ version 4.6.4
with -03 -DNDEBUG options. In all experiments we used only a single thread of
execution. All reported runtimes are wallclock (real) times.

2 http://www.mediawiki.org/wiki/Parameters_to_Special:Export
3 http://dumps.wikimedia.org/
4 http://www.1000genomes . org/
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Fig. 2. Experimental results on platform S: comparison of the runtime (left) and nor-
malized I/O volume (right) of LCPscan and eSAIS. For eSAIS, the values are the
difference between constructing both SA and LCP arrays and constructing SA only.
For the LCPscan I/O volume we show a detailed breakdown into: (bottom) I/Os that
involve sorting/scanning of @(n) elements, (middle) I/Os resulting from text scans of
which there are ©(n/m) and (top) I/Os that only involve processing irreducible values.
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Table 2. Summary of experiments on the 120GiB wiki test file. Disk space usage
includes input and output.

Algorithm Runtime I/0 volume Disk space usage
eSAIS (SA only) 5.0 days 30.5 TiB 3.4 TiB
LCPscan 1.6 days 17.0 TiB 2.3 TiB
eSAIS (SA) + LCPscan 6.6 days 47.5 TiB 3.4 TiB
eSAIS (SA+LCP) 9.9 days 60.3 TiB 7.2 TiB

Discussion. Fig. 2 shows the running times and I/O volumes for LCP array
construction on Platform S. In most cases, LCPscan is significantly faster than
eSAIS. The type of the file has a noticeable effect on the relative performance.
eSAIS probably benefits from the small alphabet size of some of the files. For
LCPscan the difference is due to r, the number of irreducible LCP values, which
can be seen clearly in the I/O volumes, where the I/O that depends on r is shown
separately. Also shown separately is the I/O volume resulting from the text scans
during the procedure ProcessBlock, which is the only quadratic component in
the I/O volume. Even for the largest 20GiB files, the text scanning volume is
only a small fraction of the total I/O volume. In fact, the text scanning volume
is almost exactly n/m bytes per byte, where m is the available RAM in bytes,
which is 1.5GiB in our case. The file size would have to be at least 100m before
the quadratic text scanning time would become the dominant component and
the asymptotic advantage of eSAIS would really start to show.

The disk space requirement of the implementations is 11n bytes for the input
and the output plus the peak disk space needed for the intermediate data struc-
tures, which is 10n bytes for LCPscan and 54n bytes for eSAIS; thus the totals
are 21n bytes and 65n bytes.® Because of the lack of disk space on Platform S,
LCPscan failed for 24GiB files while eSAIS failed already for 8GiB files.

For Platform L we ran experiments up to size 64GiB for all files except wiki,
for which we run experiments up to 120GiB. As can be seen in Fig. 3, the
results are quite similar to Platform S. With the disk space limitation of eSAIS
removed, the speed advantage of LCPscan is even clearer. Table 2 shows the key
performance statistics for the largest 120GiB file.

Despite its theoretical disadvantage, LCPscan can be considered to be
the more scalable algorithm in practice. For eSAIS to clearly dominate LCPscan,
the file size would need to be more than 100 times the size of the RAM and the
available disk space would need to be more than 6000 times the RAM size.

Acknowledgements. We thank Timo Bingmann for guiding us in the use of
STXXL and for other useful discussions.
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