
Collapsing the Hierarchy of Compressed
Data Structures: Suffix Arrays in Optimal

Compressed Space

Dominik Kempa
Department of Computer Science

Stony Brook University
Stony Brook, NY, USA

kempa@cs.stonybrook.edu

Tomasz Kociumaka
Max Planck Institute for Informatics

Saarland Informatics Campus
Saarbrücken, Germany

tomasz.kociumaka@mpi-inf.mpg.de

Abstract—The last two decades have witnessed a dramatic
increase in the amount of highly repetitive datasets consisting of
sequential data (strings, texts). Processing these massive amounts
of data using conventional data structures is infeasible. This
fueled the development of compressed text indexes, which efficiently
answer various queries on a given text, typically in polylogarithmic
time, while occupying space proportional to the compressed
representation of the text. There exist numerous structures
supporting queries ranging from simple “local” queries, such as
random access, through more complex ones, including longest
common extension (LCE) queries, to the most powerful queries,
such as the suffix array (SA) functionality. Alongside the rich
repertoire of queries followed a detailed study of the trade-off
between the size and functionality of compressed indexes (see:
Navarro; ACM Comput. Surv. 2021). It is widely accepted that this
hierarchy of structures tells a simple story: the more powerful the
queries, the more space is needed. On the one hand, random access,
the most basic query, can be supported using O(δ log n log σ

δ log n
)

space (where n is the length of the text, σ is the alphabet size,
and δ is the text’s substring complexity), which is known to be
the asymptotically smallest space sufficient to represent any string
with parameters n, σ, and δ (Kociumaka, Navarro, and Prezza;
IEEE Trans. Inf. Theory 2023). The other end of the hierarchy
is occupied by indexes supporting the suffix array queries. The
currently smallest one takes O(r log n

r
) space, where r ≥ δ is

the number of runs in the Burrows–Wheeler Transform of the
text (Gagie, Navarro, and Prezza; J. ACM 2020).

We present a new compressed index, referred to as δ-
SA, that supports the powerful SA functionality and needs
only O(δ log n log σ

δ log n
) space. This collapses the hierarchy of

compressed data structures into a single point: The space required
to represent the text is simultaneously sufficient to efficiently
support the full SA functionality. Since suffix array queries
are the most widely utilized queries in string processing and
data compression, our result immediately improves the space
complexity of dozens of algorithms, which can now be executed in
δ-optimal compressed space. The δ-SA supports both suffix array
and inverse suffix array queries in O(log4+ε n) time (where
ε > 0 is any predefined constant).

Our second main result is an O(δ polylogn)-time construc-
tion of the δ-SA from the Lempel–Ziv (LZ77) parsing of the text.
This is the first algorithm that builds an SA index in compressed
time, i.e., time nearly linear in the compressed input size. For

This work has been partially supported by the Simons Foundation Junior
Faculty Fellowship.

A full version of this paper is available at arxiv.org/abs/2308.03635.

highly repetitive texts, this is up to exponentially faster than the
previously best algorithm, which builds an O(r log n

r
)-size index

in O(
√
δn polylogn) time.

To obtain our results, we develop numerous new techniques
of independent interest. This includes deterministic restricted
recompression, δ-compressed string synchronizing sets, and their
construction in compressed time. We also improve many other
auxiliary data structures; e.g., we show the first O(δ log n log σ

δ log n
)-

size index for LCE queries along with its efficient construction
from the LZ77 parsing.

Index Terms—data compression, text indexing, compressed
indexing, suffix array

I. INTRODUCTION

The last few decades witnessed explosive growth in the

amount of data humanity generates and needs to process.

Many rapidly expanding datasets consist of sequential (textual)

data, such as source code in version control systems [1],

results of web crawls [2], versioned document collections

(such as Wikipedia) [3], and, perhaps most notably, biological

sequences [4], [5]. The sizes of these datasets already reach

petabytes [6] and are predicted to still get orders of magnitudes

larger [7]. One of the key characteristics of this data, and

what turns searching such datasets into the ultimate needle-

in-a-haystack scenario, is that none of it can be discarded: in

computational biology, the presence or lack of disease can

depend on a single mutation [4], [7], whereas in source code

repositories, a bug could be a result of a single typo.

What comes to the rescue is that these datasets are extremely

redundant, e.g., genomic databases are known to be up

to 99.9% repetitive [4]. Researchers have therefore turned

their attention to techniques from lossless data compression.

Compressing alone is not enough, however, as this renders the

text unreadable. The solution lies in incorporating techniques

from data compression directly into the design of compressed
algorithms and compressed data structures:

• To date, compressed algorithms have been developed for

numerous problems, ranging from exact [8]–[12] and

approximate string matching [11], [13], [14], via comput-

ing edit distance [11], [15]–[17], to fundamental linear

1877

2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)

DOI 10.1109/FOCS57990.2023.00114

20
23

 IE
EE

 6
4t

h
A

nn
ua

l S
ym

po
si

um
 o

n
Fo

un
da

tio
ns

 o
f C

om
pu

te
r S

ci
en

ce
 (F

O
C

S)
 |

97
9-

8-
35

03
-1

89
4-

4/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
FO

C
S5

79
90

.2
02

3.
00

11
4

979-8-3503-1894-4/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 24,2023 at 12:29:24 UTC from IEEE Xplore. Restrictions apply.

algebra operations (such as inner product, matrix-vector

multiplication, and matrix multiplication) ubiquitous in

machine learning [18]–[20].

• Same can be said about data structures. One can keep

the data in compressed form and, at the price of a

moderate (typically polylogarithmic) increase in space

complexity, efficiently support various queries on the

original (uncompressed) text. The currently supported

queries range from the fundamental local queries like

random access [21]–[23], through less local rank and

select [23]–[25] or longest common extension (LCE)

queries [26]–[28], to the most powerful and complex

queries like pattern matching [29]–[35] and full suffix

array functionality [36]. The suffix array queries that,

given a rank i ∈ [1 . . n], ask for the starting position of

the ith lexicographically smallest suffix of the length-n
text, are known to be particularly powerful, as they form

the backbone of dozens of string processing and data

compression algorithms [37], [38].

As the field matured, numerous ways to classify and compare

different compressed structures emerged [39]–[41], resulting

in hierarchies of structures ordered according to their size

and functionality. As expected, structures supporting the most

basic queries (such as random access) occupy the low-space

regime [41], while the most powerful indexes supporting suffix

array functionality, such as [36], require the most space. The

natural question was thus raised: How much space is required

to efficiently support each functionality? Kociumaka, Navarro,

and Prezza [41] recently proved that, letting δ be the substring
complexity of the text, n be its length, and σ be the size of the

alphabet, a text can be represented in O(δ log n log σ
δ logn) space,

and this bound is asymptotically tight as a function of δ, n,

and σ. Simultaneously, they showed that it is possible to support

random access and pattern-matching queries in the same space

(see also [35] for improvements of pattern matching query

time). Given this situation, we thus ask:

What is the space required to efficiently support the most
powerful queries, such as the suffix array functionality?

a) Our Results: In this paper, we establish the following

two main results:

1) We develop the first data structure, referred to as δ-SA,

that uses only O(δ log n log σ
δ logn) space and supports efficient

suffix array queries (more precisely, it answers SA and in-

verse SA queries in O(log4+ε n) time, where ε > 0 is any

given constant). This collapses the existing rich hierarchy

of compressed data structures (see [3], [36], [39]–[41])

into a single point: In view of our result, O(δ log n log σ
δ logn)

is the fundamental space complexity for compressed text

indexing since, on the one hand, such space is required
to represent the string [41] (and this bound holds for all

combinations of n, σ, and δ) and, on the other hand, it

is already sufficient to support the powerful SA queries.

Since the suffix array queries constitute the fundamental

building block of string processing algorithms [37], [38],

our result immediately implies that dozens of algorithms

can be executed in this δ-optimal space.

2) We present an algorithm that constructs the δ-SA in

O(δ polylog n) time from the Lempel–Ziv (LZ77) parsing

of text [42]. This is the first construction of an SA index

running in compressed time, i.e., in time nearly-linear in

the compressed input size. The relevance of this result lies

in the fact that LZ77 can be very efficiently approximated

(using, e.g., [43]) and then converted (in compressed time)

into the canonical greedy form (see Proposition II.3). At

the same time, LZ77 is already strong enough to compress

any string into the δ-optimal size O(δ log n log σ
δ logn) [41].

This makes LZ77 the perfect input in any pipeline of algo-

rithms running in compressed time. The only similar prior

construction is the O(δ polylog n)-time construction of

run-length-encoded Burrows–Wheeler Transform (BWT)

from the LZ77 parsing [3]. The similarity lies in the fact

that RLBWT is one of the components of the r-index

of Gagie, Navarro, and Prezza [36], some versions of

which are also capable of answering SA queries. Our

construction, however, is much stronger than that of [3]:

• Our algorithm builds a fully functional SA index

(the δ-SA), whereas the construction from [3] builds

only the run-length-encoded BWT [44], which is just

a single component of the index of [36]. To date,

the fastest algorithm building the complete index

of [36] based on the run-length-encoded BWT required

O(
√
rn polylog n) = O(

√
δn polylog n) time [45].

• The δ-SA uses the δ-optimal space, while the index

of [36] uses more space, i.e., O(r log n
r), where r ≥ δ

is the number of runs in the BWT [44].

• Our algorithm is deterministic, whereas [3] only pro-

vides a Las-Vegas randomized procedure.

On the way to our main results, we also achieve several

auxiliary goals of independent interest. In particular, we

describe the first data structure efficiently answering longest

common extension (LCE) queries using the δ-optimal space of

O(δ log n log σ
δ logn). Moreover, we show how to deterministically

construct it from the LZ77 parsing in O(δ polylog n) time

(Theorem III.3). We also obtain the first analogous construction

of a data structure that supports random-access queries in

O(δ log n log σ
δ logn) space (Theorem III.2); the previous such

indexes [35], [41] only had Ω(n)-time randomized construction

algorithms.

One of the biggest technical hurdles to obtaining the above

results is to simultaneously achieve

(a) δ-optimal space,

(b) polylogarithmic worst-case query time, and

(c) construction in compressed time (preferably deterministic)

for every component of the structure. Satisfying any two out of

three would already constitute an improvement compared to the

state-of-the-art SA indexes and their construction algorithms [3],

[36]. We nevertheless show that simultaneously satisfying all

three is possible.

1878

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 24,2023 at 12:29:24 UTC from IEEE Xplore. Restrictions apply.

Our main new techniques to achieve this are:

(1) deterministic restricted recompression, and

(2) δ-compressed string synchronizing sets.

Restricted recompression is a technique proposed in [46]

that, as shown in [41], allows constructing an RLSLP (i.e., a

run-length grammar) representing the text in δ-optimal space

O(δ log n log σ
δ logn). The analysis in [41], however, is probabilistic,

and hence yields only a Las-Vegas randomized algorithm that

takes O(n) expected time. In this paper, we improve it not

only by proposing an explicit construction, resulting in the

first O(n)-time deterministic algorithm, but we also show

how to achieve O(δ polylog n)-time construction from the

LZ77 parsing. The second main new technical contribution

is developing δ-compressed string synchronizing sets. String

synchronizing sets [47] are a powerful symmetry-breaking

mechanism with numerous applications, including algorithms

for longest common substrings computation [48], indexing

packed strings [47], [49], [50], dynamic suffix array [51], con-

verting between compressed representations [3], and quantum

string algorithms [52], [53]. For a given parameter τ ∈ [1 . . n],
this technique selects O(n/τ) synchronizing positions so that

positions with matching contexts are treated consistently and

(except for highly periodic regions of the text) there is at

least one synchronizing position among any τ consecutive

positions. In [3], LZ77-compressed synchronizing sets (i.e.,

synchronizing sets represented by synchronizing positions

located close to LZ77 phrase boundaries [42]) were used to

obtain an O(δ polylog n)-time algorithm for converting the

LZ77 parsing into the run-length compressed BWT [44]. That

technique, however, cannot be utilized here due to three major

obstacles: First, [3] uses Ω(z log n) space (where z ≥ δ is

the size of the LZ77 parsing), and hence does not meet the

δ-optimal space bound requirement. Second, the algorithm

in [3] is able to infer some suffix ordering only for a batch

of suffixes. In other words, it is an offline solution to the

problem stated in this paper. Obtaining an online solution

(i.e., a data structure) requires a different approach. Finally,

the synchronizing set construction used in [3] is Las-Vegas

randomized and hence does not satisfy our goal of achieving

deterministic construction. To overcome the first obstacle,

rather than storing the synchronizing positions around the

LZ77 phrase boundaries, we store them in what we call a

cover: the set of positions in the text covered by the leftmost

occurrences of substrings of some fixed length. This lets

us bound the number of stored synchronizing positions in

terms of the substring complexity δ. The bulk of our paper is

devoted to overcoming the second obstacle. We show how to

combine weighted range counting and selection queries [54]

with the “range refinement” technique inspired by dynamic

suffix arrays [51], which gradually shrinks the range of SA
to contain only suffixes prefixed with a desired length-2k

string, to obtain the SA functionality. This requires substantial

modifications compared to [51] since dynamic suffix arrays

are not compressed (they use Θ(n polylog n) space). Finally,

to address the third challenge, we utilize a novel construction

of synchronizing sets using restricted recompression, binding

our last problem to the first technique. This is similar to [51],

except that here we avoid the O(log∗ n) space increase since

our structure is static. Instead, we carefully design a potential

function that guides the recompression algorithm so that the

outcome is deterministically as good as it would have been in

expectation if we used randomization. We give a more detailed

overview of our techniques in Section III. Our final result

is summarized as follows.1 Recall that SA[i] is the starting

positions of the ith lexicographically smallest suffix of T ,

whereas SA−1[i] is the lexicographic rank of T [i . . n] among

the suffixes of T ; see Section II for formal definitions.

Theorem I.1 (δ-SA). Given the LZ77 parsing of T ∈ [0 . . σ)n

and any constant ε ∈ (0, 1), we can in O(δ log7 n) time
construct a data structure of size O(δ log n log σ

δ logn) (where δ is the
substring complexity of T) that, given any position i ∈ [1 . . n],
returns the values SA[i] and SA−1[i] in O(log4+ε n) time. The
construction algorithm is deterministic, and the running times
are worst-case.

b) Related Work: In this paper, we focus on algorithms

and data structures working for highly repetitive strings T ,

which can be defined as those for which either of the values:

z(T) (the size of the LZ77 parsing [42]), γ∗(T) (the size of the

smallest string attractor [39]), g∗(T) (the size of the smallest

context-free grammar [55]–[57]), r(T) (the number of runs

in the BWT [44]), or δ(T) (the substring complexity [41])

are significantly smaller than n (the list of such measures

goes on [58]–[60]; see [40] for a survey). We can use either

of them, since a series of papers [3], [39], [41], [56], [57],

[61], [62] demonstrates that the ratio between any two of

these values is O(polylogn) for every text T of length n.

The redundancy captured by these measures is present in

modern massive datasets. A lot of the earlier work on small-

space data structures, however, focused on reducing the sizes

of structures relative to the size of text, i.e., O(n log σ) bits

(assuming T ∈ [0 . . σ)n) or, a step further, on achieving some

variant of the kth order entropy bound O(nHk(T))+o(n log σ),
i.e., removing the “statistical” redundancy caused by skewed

frequencies of individual symbols or short substrings of length

k = o(logσ n). Some of the most popular structures in this

setting include those answering rank and select queries, such

as wavelet trees [63], or those with pattern matching and suffix

array or suffix tree functionality, such as the FM-index [64], the

compressed suffix array (CSA) [65], or the compressed suffix

tree (CST) [66]. Many of these structures have subsequently

been implemented and are now available via libraries, such

as sdsl [67]. The construction of these indexes has also

received a lot of attention, and nowadays, most of them

can be constructed very efficiently [68]–[71]. Recently, new

O(n log σ)-bit indexes with CSA and CST capabilities have

been proposed that also admit o(n)-time construction [50] if

log σ = o(
√
log n). We refer to [72]–[75] for further details.

1We did not aim to optimize the polylogn factor in the construction
algorithm. In particular, we utilized existing procedures whose running time
has not been optimized either.

1879

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 24,2023 at 12:29:24 UTC from IEEE Xplore. Restrictions apply.

II. PRELIMINARIES

a) Basic definitions: A string is a finite sequence of

characters from a given alphabet Σ. The length of a string

S ∈ Σ∗ is denoted |S|. For i ∈ [1 . . |S|],2 the ith char-

acter of S is denoted S[i]. A substring of S is a string

of the form S[i . . j) = S[i]S[i+ 1] · · ·S[j − 1] for some

1 ≤ i ≤ j ≤ |S| + 1. Substrings the form S[1 . . j) and

S[i . . |S|] are called prefixes and suffixes, respectively. We

use S to denote the reverse of S, i.e., S[|S|] · · ·S[2]S[1]. We

denote the concatenation of two strings U and V , that is,

U [1] · · ·U [|U |]V [1] · · ·V [|V |], by UV or U · V . Furthermore,

Sk =
⊙k

i=1 S is the concatenation of k ∈ Z≥0 copies of S;

note that S0 = ε is the empty string. A nonempty string S ∈ Σ+

is said to be primitive if it cannot be written as S = Uk,

where k ≥ 2. An integer p ∈ [1 . . |S|] is a period of S if

S[i] = S[i+p] holds for every i ∈ [1 . . |S|−p]. We denote the

shortest period of S as per(S). For every S ∈ Σ+, we define

the infinite power S∞ so that S∞[i] = S[1+ (i− 1) mod |S|]
for i ∈ Z. In particular, S = S∞[1 . . |S|]. The rotation opera-

tion rot(·), given a string S ∈ Σ+, moves the last character

of S to the front so that rot(S) = S[|S|] · S[1 . . |S| − 1].
The inverse operation rot−1(·) moves the first character of

S to the back so that rot−1(S) = S[2 . . |S|] · S[1]. For an

integer s ∈ Z, the operation rots(·) denotes the |s|-time

composition of rot(·) (if s ≥ 0) or rot−1(·) (if s ≤ 0).

Strings S, S′ are cyclically equivalent if S′ = rots(S) for

some s ∈ Z. By lcp(U, V) (resp. lcs(U, V)) we denote the

length of the longest common prefix (resp. suffix) of U and V .

For any string S ∈ Σ∗ and any j1, j2 ∈ [1 . . |S|], we denote

LCES(j1, j2) = lcp(S[j1 . . |S|], S[j2 . . |S|]).
We use � to denote the order on Σ, extended to the lexico-

graphic order on Σ∗ so that U, V ∈ Σ∗ satisfy U � V if and

only if either (a) U is a prefix of V , or (b) U [1 . . i) = V [1 . . i)
and U [i] ≺ V [i] holds for some i ∈ [1 . .min(|U |, |V |)].
Definition II.1. For any strings T ∈ Σn, P ∈ Σ∗, and integer

� ≥ 0, we define

Occ�(P, T) = {j′ ∈ [1 . . n] :

lcp(P, T [j′ . . n]) ≥ min(|P |, �)},
RangeBeg�(P, T) = |{j′ ∈ [1 . . n] : T [j′ . . n] ≺ P and

j′ /∈ Occ�(P, T)}|,
RangeEnd�(P, T) = RangeBeg�(P, T) + |Occ�(P, T)|.

When � = |P |, we simply write Occ(P, T), RangeBeg(P, T),
and RangeEnd(P, T), omitting the subscript. By Occ�(j, T),
RangeBeg�(j, T), and RangeEnd�(j, T) we also mean, re-

spectively, Occ�(T [j . . n], T), RangeBeg�(T [j . . n], T), and

RangeEnd�(T [j . . n], T).

Remark II.2. Note that the above generalizes the notation for

ranges used in [50] (where the parameter � was not used) and

from [51] (where only patterns of the form P = T [j . . n]
were considered). Here, we obtain both the earlier notations

as special cases.

2For i, j ∈ Z, denote [i . . j] = {k ∈ Z : i ≤ k ≤ j}, [i . . j) = {k ∈ Z :
i ≤ k < j}, and (i . . j] = {k ∈ Z : i < k ≤ j}.

a
aababa
aababababaababa
aba
abaababa
abaababababaababa
ababa
ababaababa
abababaababa
ababababaababa
ba
baababa
baababababaababa
baba
babaababa
babaababababaababa
bababaababa
babababaababa
bbabaababababaababa

T [SA[i] . . n]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

i
19
14
5
17
12
3
15
10
8
6
18
13
4
16
11
2
9
7
1

SA[i]

Fig. 1. A list of all sorted suffixes of T = bbabaababababaababa along
with the suffix array.

b) Suffix array: For any T ∈ Σn (where n ≥ 1), the

suffix array SAT [1 . . n] of T is a permutation of [1 . . n] such

that T [SAT [1] . . n] ≺ T [SAT [2] . . n] ≺ · · · ≺ T [SAT [n] . . n],
i.e., SAT [i] is the starting position of the lexicographically

ith suffix of T ; see Fig. 1 for an example. The inverse suffix
array ISAT [1 . . n] (also denoted SA−1

T [1 . . n]) is the inverse

permutation of SAT , i.e., ISAT [j] = i holds if and only if

SAT [i] = j. Intuitively, ISAT [j] stores the lexicographic rank
of T [j . . n] among the suffixes of T . Note that if T �= ε, then

Occ�(P, T) =

{SAT [i] : i ∈ (RangeBeg�(P, T) . .RangeEnd�(P, T)]}
holds for every P ∈ Σ∗ and � ≥ 0. Whenever T is clear from

the context, we drop the subscript in SAT and ISAT .

c) Substring complexity: For a string T ∈ Σn and

� ∈ Z>0, we denote the number of length-� substrings by

d�(T) = |{T [i . . i + �) : i ∈ [1 . . n − � + 1]}|; note that

d�(T) = 0 if � > n. The substring complexity of T is defined

as δ(T) = maxn�=1
1
�d�(T) [41]. On the one hand, as shown

in [41], the measure δ is an asymptotic lower bound for nearly

all known compression algorithms and repetitiveness measures,

including LZ77 [42], run-length-compressed BWT [44], gram-

mar compression [57], and string attractors [39]. On the other

hand, [41] also shows that, if Σ = [0 . . σ), then it is possible

to represent T using O(δ(T) log n log σ
δ(T) logn) space (or more

precisely, O(δ(T) log n log σ
δ(T) logn log n) bits), and this bound is

asymptotically tight as a function of n, σ, and δ(T). In other

words, there is no combination of values n, σ, and δ such that

every string T ∈ [0 . . σ)n with substring complexity δ(T) ≤ δ
can be encoded using o(δ log n log σ

δ logn log n) bits.

d) Lempel–Ziv compression: A fragment T [i . . i+ �) of

T is a previous factor if it has an earlier occurrence in T ,

i.e., LCET (i, i
′) ≥ � holds for some i′ ∈ [1 . . i). An LZ77-

like factorization of T is a factorization T = F1 · · ·Ff into

non-empty phrases such that each phrase Fj with |Fj | > 1 is

a previous factor. In the underlying LZ77-like representation,

1880

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 24,2023 at 12:29:24 UTC from IEEE Xplore. Restrictions apply.

every phrase Fj = T [i . . i + �) that is a previous factor is

encoded as (i′, �), where i′ ∈ [1 . . i) satisfies LCET (i, i
′) ≥ �

(and is chosen arbitrarily in case of multiple possibilities); if

Fj = T [i] is not a previous factor, we encode it as (T [i], 0).
The LZ77 factorization [42] (or the LZ77 parsing) of a

string T is then just an LZ77-like factorization constructed

by greedily parsing T from left to right into the longest

possible phrases. More precisely, the jth phrase Fj is the

longest previous factor starting at position 1 + |F1 · · ·Fj−1|;
if no previous factor starts there, then Fj consists of a single

character. This greedy construction yields the smallest LZ77-

like factorization of T [76, Theorem 1]. We denote the

number of phrases in the LZ77 parsing of T by z(T). For

example, the text T = bbabaababababaababa of Fig. 1

has LZ77 factorization b · b · a · ba · aba · bababa · ababa
with z(T) = 7 phrases, and its LZ77 representation is

(b, 0), (1, 1), (a, 0), (2, 2), (3, 3), (7, 6), (10, 5).

Proposition II.3. Given a string T of length n, represented
using an LZ77-like parsing consisting of f phrases, the LZ77
parsing of T can be constructed in O(f log4 n) time.

Proof. We use [77, Theorem 6.11] to build a data structure

that, for any pattern P represented by its arbitrary occurrence

in T , returns the leftmost occurrence of P in T . Then, we

process T from left to right constructing the LZ77 parsing of T .

Suppose that we have already parsed a prefix T [1 . . i). We

binary search for the maximum length � such that the leftmost

occurrence of T [i . . i+�) is T [i′ . . i′+�) for some i′ ∈ [1 . . i).
By definition of the LZ77 parsing, the next phrase is either

T [i] (if � = 0) or T [i . . i + �) (otherwise). The construction

time of [77, Theorem 6.11] is O(f log4 n), whereas the query

time is O(log3 n). For each phrase of the LZ77 parsing, we

make O(log n) queries, which take O(log4 n) time in total.

Since z(T) ≤ f , the overall running time is O(f log4 n).

e) String Synchronizing Sets:

Definition II.4 (τ -synchronizing set [47]). Let T ∈ Σn be

a string and let τ ∈ [1 . . 	n
2
] be a parameter. A set S ⊆

[1 . . n − 2τ + 1] is called a τ -synchronizing set of T if it

satisfies the following consistency and density conditions:

1) If T [i . . i+2τ) = T [i′ . . i′+2τ), then i ∈ S holds if and

only if i′ ∈ S (for i, i′ ∈ [1 . . n− 2τ + 1]),
2) S ∩ [i . . i + τ) = ∅ if and only if i ∈ R(τ, T) (for i ∈

[1 . . n− 3τ + 2]), where

R(τ, T) := {i ∈ [1 . . n−3τ+2] : per(T [i . . i+3τ−2]) ≤ 1
3τ}.

Remark II.5. In most applications, we want to minimize |S|.
Note, however, that the density condition imposes a lower

bound |S| = Ω(nτ) for strings of length n ≥ 3τ −1 that do not

contain substrings of length 3τ − 1 with period at most 1
3τ .

Thus, we cannot hope to achieve an upper bound improving

in the worst case upon the following one.

Theorem II.6 ([47, Proposition 8.10], [46, Theorem 1.12]).
For every string T of length n and parameter τ ∈ [1 . . 	n

2
],
there exists a τ -synchronizing set S of size |S| = O (

n
τ

)
.

Moreover, if T ∈ [0 . . σ)n, where σ = nO(1), then such S
can be deterministically constructed in O(n) time.

f) Model of computation: We use the standard word

RAM model of computation [78] with w-bit machine words,

where w ≥ log n, and all standard bit-wise and arithmetic

operations taking O(1) time. Unless explicitly stated otherwise,

we measure the space complexity in machine words.

III. TECHNICAL OVERVIEW

Let T ∈ Σn, where Σ = [0 . . σ). Assume that T [n] is a

symbol that does not occur in T [1 . . n). Moreover, let ε ∈ (0, 1)
be a constant. In this section, we give an overview of the δ-SA,

which is a compressed text index that

(a) takes O(δ(T) log n log σ
δ(T) logn) space,

(b) answers SA and ISA queries on T in O(log4+ε n) time,

(c) and can be constructed from the LZ77 parsing of T in

O(δ(T) log7 n) time.

A. SA and ISA Queries

a) The Basic Idea: First, we observe that the uniqueness

of T [n] implies that

Occ�(j, T) = {j′ ∈ [1 . . n] : T∞[j′ . . j′+�) = T∞[j . . j+�)}
holds for every j ∈ [1 . . n] and � ≥ 0 (cf. Definition II.1). The

main idea of the query algorithms is as follows:

• To calculate ISA[j] given j ∈ [1 . . n], we compute the fol-

lowing three values for subsequent k ∈ [4 . . �log n�]: the

ranks b = RangeBeg2k(j, T) and e = RangeEnd2k(j, T)
such that Occ2k(j, T) = {SA[i] : i ∈ (b . . e]} (as

discussed in Section II) as well as an arbitrary position

j′ ∈ Occ2k(j, T) satisfying j′ = minOcc2k+1(j′, T).
For k = 4, these values are computed from scratch;

subsequently, we rely on the output of the preceding

step. After completing the final step, we return ISA[j] :=
RangeEnd�(j, T), where � = 2�logn� ≥ n. This is the

correct answer because Occ�(j, T) = Occn(j, T) = {j}.

• To calculate SA[i] given i ∈ [1 . . n], we proceed similarly,

that is, we compute, for k ∈ [4 . . �log n�], the ranks b =
RangeBeg2k(SA[i], T) and e = RangeEnd2k(SA[i], T)
as well as an arbitrary position j′ ∈ Occ2k(SA[i], T)
satisfying j′ = minOcc2k+1(j′, T). After completing

the final step, we return the position j′ satisfying j′ ∈
Occ�(SA[i], T) for � = 2�logn� ≥ n. This is the correct

answer because Occ�(SA[i], T) = Occn(SA[i], T) =
{SA[i]}. Note that the individual steps of computing SA[i]
are different from those for ISA[j] since we are given the

rank i rather than the position SA[i].

This basic framework is similar to the one in [51]. The

major difference, however, lies in the implementation of the

“refinement” procedure: While the data structure of [51] uses

Θ̃(n) space3, here we can only store Õ(δ(T)) words. Since

3The ˜O(·) notation hides factors polylogarithmic in the (uncompressed) input

size n. In other words, for any function f , we have ˜O(f) = O(f polylogn).
Similarly, ˜Ω(f) = Ω(f/ polylogn) and ˜Θ(f) = ˜O(f) ∩ ˜Ω(f).

1881

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 24,2023 at 12:29:24 UTC from IEEE Xplore. Restrictions apply.

this space allowance can be up to exponentially smaller, a

much more complex approach is required.

To implement the initial step in both queries, it suffices to

store all length-16 substrings of T∞ in the lexicographic order,

each augmented with the endpoints of the corresponding SA
range and the position of the leftmost occurrence in T∞[1 . .).
Since T∞ contains fewer than d16(T) + 16 ≤ 16δ(T) + 16 ≤
32δ(T) length-16 substrings, the resulting arrays need O(δ(T))
space. They are also easy to obtain from the LZ77 parsing:

It suffices to consider all length-16 substrings overlapping

phrase boundaries; for each of them, the leftmost occurrence

and the number of occurrences can be determined using

existing compressed text indexes [77, Theorems 6.11 and 6.21]

(note that we use these indexes solely within our construction

procedure; they are not included in the δ-SA). The key difficulty

is thus the refinement procedure.

Definition III.1. For any � ≥ 1 and P ∈ Σ+, we define

Posbeg� (P, T) = {j′ ∈ Occ�(P, T) :

T [j′ . . n] ≺ P and j′ /∈ Occ2�(P, T)},
Posend� (P, T) = {j′ ∈ Occ�(P, T) :

T [j′ . . n] � P and j′ /∈ Occ2�(P, T)}.

We denote δbeg� (P, T) := |Posbeg� (P, T)| and δend� (P, T) :=
|Posend� (P, T)|. For any position j ∈ [1 . . n], we then let

Posbeg� (j, T) := Posbeg� (T [j . . n], T) and Posend� (j, T) :=

Posend� (T [j . . n], T). The values δbeg� (j, T) and δend� (j, T) are

defined analogously.

Let us fix k ∈ [4 . . �log n�) and denote � = 2k. Observe

that every P satisfies

RangeBeg2�(P, T) = RangeBeg�(P, T) + δbeg� (P, T),

RangeEnd2�(P, T) = RangeEnd�(P, T)− δend� (P, T).

In particular, every position j ∈ [1 . . n] satisfies

RangeBeg2�(j, T) = RangeBeg�(j, T) + δbeg� (j, T) and

RangeEnd2�(j, T) = RangeEnd�(j, T) − δend� (j, T). Thus,

to refine the suffix array range, it suffices to compute any

two values among δbeg� (j, T), δend� (j, T), |Occ2�(j, T)| (dur-

ing an ISA query) or among δbeg� (SA[i], T), δend� (SA[i], T),
|Occ2�(SA[i], T)| (during an SA query).

Denote τ = 	 �
3
 and let R be a shorthand for

R(τ, T) = {i ∈ [1 . . n−3τ+2] : per(T [i . . i+3τ−2]) ≤ 1
3τ}.

The refinement step during the computation of ISA[j] (resp.

SA[i]) works differently depending on whether j ∈ R (resp.

SA[i] ∈ R), in which case we call j (resp. SA[i]) periodic.

Otherwise, the position is called nonperiodic. To distinguish

these two cases, we store the set R∩C, where C is a 14τ -cover

of T , i.e., a subset of [1 . . n] including all positions covered

by the leftmost occurrences of length-14τ substrings of T .

As R ∩ C might be large, we store its interval representation
I(R ∩ C), that is, we express R ∩ C as a union of disjoint

integer intervals.

Observation 1: There exists a 14τ -cover C such that |I(C)| =
O(δ(T)) and I(C) admits a fast construction algorithm
from the LZ77 parsing of T . Let C be the union of

(n − 28τ . . n] as well as intervals [x . . x + 28τ) over

all x ∈ [1 . . n − 28τ] such that x ≡ 1 (mod 14τ) and

x = minOcc28τ (x, T). The set C is a 14τ -cover since

the leftmost occurrence of every length-14τ substring of

T can be extended into an interval [x . . x + 28τ) for x
as above. Note that C is a subset of positions covered

by the leftmost occurrences of all length-28τ substring

of T . By [41], we thus have |C| ≤ 84τδ(T). On the

other hand, C is a union of length-28τ intervals. Thus,

|I(C)| = O(|C|/τ) = O(δ(T)). To construct I(C), it

suffices to check at most two positions around each LZ77

phrase boundary. Using an index for finding leftmost

occurrences [77, Theorem 6.11], we can thus build I(C)
in O(z(T) polylog n) = O(δ(T) polylog n) time.

Observation 2: The above C satisfies |I(R∩C)| = O(δ(T)) and
I(R∩C) also admits fast construction. First, we observe

that any two maximal blocks of consecutive positions in

R are separated by a gap of size Ω(τ). This implies that,

using the above C, the interval representation of C ∩ R
is of size O(δ(T)). Above, we noted that I(C) can be

constructed from the LZ77 parsing in O(δ(T) polylog n)
time. It remains to observe that, given I(C), constructing

I(R ∩ C) reduces to computing the shortest periods via

so-called 2-period queries. Consequently, by utilizing an

existing index for 2-period queries [77, Theorem 6.7], we

can construct I(R ∩ C) in O(δ(T) polylog n) time.

Observation 3: Using I(R ∩ C), we can efficiently check if
j ∈ R (resp. SA[i] ∈ R). Recall that, at the beginning of

the refinement step, we have some j′ ∈ Occ�(j, T) (resp.

j′ ∈ Occ�(SA[i], T)). By 3τ − 1 ≤ � and the definition

of R, we thus have j ∈ R (resp. SA[i] ∈ R) if and only if

j′ ∈ R. Moreover, since j′ satisfies j′ = minOcc2�(j
′, T),

and any 14τ -cover is also a 2�-cover, it thus follows

that j′ ∈ C. Thus, j′ ∈ C ∩ R if and only if j′ ∈ R.

Consequently, to check if j′ ∈ R, it suffices to test whether

j′ belongs to any interval contained in I(R∩C). Provided

that the intervals in I(R∩C) are ordered left-to-right, this

takes O(log |I(R ∩ C)|) = O(log n) time.

The above is a simplified analysis, and reaching O(δ(T))
space for each k ∈ [4 . . �log n�) is still not enough to achieve

the δ-optimal bound of O(δ(T) log n log σ
δ(T) logn) for the entire

structure. In our complete analysis, we prove a tighter upper

bound: |I(R ∩ C)| = O(1�d38�(T) + 1).

b) The Nonperiodic Positions: Assume j ∈ [1 . . n] \ R
(resp. SA[i] ∈ [1 . . n] \ R). We first focus on computing

ISA[j]. Recall that we are given b = RangeBeg�(j, T), e =
RangeEnd�(j, T), and some j′ ∈ Occ�(j, T) satisfying j′ =
minOcc2�(j

′, T) as input. The refinement step for nonperiodic

positions first computes the position j′′ = minOcc2�(j, T)
(this condition implies j′′ = minOcc4�(j

′′, T)), and then the

values δbeg� (j, T) and |Occ2�(j, T)|. By the discussion follow-

1882

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 24,2023 at 12:29:24 UTC from IEEE Xplore. Restrictions apply.

ing Definition III.1, this is sufficient to infer RangeBeg2�(j, T)
and RangeEnd2�(j, T).

Let S be a τ -synchronizing set of T (Definition II.4). Observe

that, by 3τ ≤ � < n, the uniqueness of T [n] in T yields

per(T [n − 3τ + 2 . . n]) > 1
3τ . Thus, n − 3τ + 2 �∈ R, and

hence the density condition (Definition II.4(2)) implies S∩ [n−
3τ +2 . . n− 2τ +2) �= ∅. Consequently, max S ≥ n− 3τ +2,

and, for every p ∈ [1 . . n− 3τ +2], we can define succS(p) =
min{s ∈ S : s ≥ p}. If j > n−3τ−2, the uniqueness of T [n]
in T implies Occ�(j, T) = {j}. Thus, we henceforth assume

j ∈ [1 . . n− 3τ + 2] \ R.

Observation 1: The set Occ2�(j, T) can be characterized using
S and range queries. First, note that the assumption

j ∈ [1 . . n − 3τ + 2] \ R and the density condition

(Definition II.4(2)) yield succS(j) − j < τ . On the

other hand, by 3τ − 1 ≤ 2� and the consistency

condition (Definition II.4(1)), every p ∈ Occ2�(j, T)
satisfies succS(p) − p = succS(j) − j. Thus, letting

x1 = T∞[j . . succS(j)), and y1 = T∞[succS(j) . . j+2�),
the set Occ2�(j, T) consists of all positions of the form

s−|x1|, where s ∈ S and s is preceded by x1 and followed

by y1 in T∞. In other words,

Occ2�(j, T) =

{s−|x1| : s ∈ S and T∞[s−|x1| . . s+|y1|) = x1 ·y1}.
If we further denote c = maxΣ, x2 = x1c

∞, and y2 =
y1c

∞, we have

Occ2�(j, T) = {s− |x1| : s ∈ S,

x1 � T∞[s− 7τ . . s) ≺ x2, and

y1 � T∞[s . . s+ 7τ) ≺ y2}
due to |x1|, |y1| ≤ 7τ . Thus, letting

P = {(T∞[s− 7τ . . s), T∞[s . . s+ 7τ), s) : s ∈ S}
be a set of labeled points, the set Occ2�(j, T) shifted by

|x1| forward consists of the labels of the points in the

range [x1 . . x2)× [y1 . . y2).

By the above, computing minOcc2�(j, T) reduces to an

orthogonal range minimum query, returning the minimum label

of a point occurring in the rectangle [x1 . . x2) × [y1 . . y2).
Implementing such queries, however, is challenging. First, the

coordinates of points in P are substrings of T∞. Comparing

them reduces to LCE and random access queries, and hence it

suffices to only store labels of points in P , i.e., the set S. The

smallest prior structure for LCE queries [27], however, does not

match our space bound. To avoid this issue, we develop the first

structure that uses δ-optimal space O(δ(T) log n log σ
δ(T) logn). In

addition, we describe its O(δ(T) polylog n)-time deterministic

construction from the LZ77 parsing [42] (see Theorem III.3).

We also describe the first deterministic construction of the

δ-optimal-space structure for random access queries (Theo-

rem III.2). We elaborate more on these indexes in Section III-B.

The challenge thus reduces to storing and querying S. The

plain representation is too large since it is not possible to reduce

|S| below Θ(nτ) in the worst case (see Remark II.5). We thus

need to store S in a compressed form. Our starting point is

the technique introduced in [3], which compresses S by only

keeping elements of S that are within distance Θ(τ) from LZ77

phrase boundaries. These LZ77-compressed τ -synchronizing
sets, however, do not meet the δ-optimal space bound and

come only with Las-Vegas randomized construction [3]. To

solve the space issue, we again employ a 14τ -cover C of T .

Denote Scomp = S ∩ C and

Pcomp = {(T∞[s− 7τ . . s), T∞[s . . s+7τ), s) : s ∈ Scomp}.
Observation 2: We can compute x1, x2, y1, and y2 using Scomp.

Observe that, since |x1| + |y1| = 2� and all strings in

question occur near j, the difficulty lies in computing

|x1|. Recall that we are given some j′ ∈ Occ�(j, T)
satisfying j′ = minOcc2�(j

′, T) as input. By 3τ − 1 ≤ �,
the consistency of S (Definition II.4(1)) yields |x1| =
succS(j)− j = succS(j

′)− j′. On the other hand, since

j′ = minOcc2�(j
′, T) and C is also a 2�-cover, it follows

that [j′ . . j′ + 2�) ∩ [1 . . n] ⊆ C. Thus succS(j)− j < τ
implies succS(j

′) ∈ Scomp. Consequently, it suffices to

store the sorted set Scomp. Given j′, we can then quickly

determine

succScomp
(j′)−j′ = succS(j

′)−j′ = succS(j)−j = |x1|.
Observation 3: Orthogonal range minimum queries on Pcomp

and P are equivalent. Let x1, x2, y1, y2 ∈ Σ∗ and let

scomp (resp. s) denote the output of the range minimum

query in [x1 . . x2)×[y1 . . y2) on Pcomp (resp. P). Observe

that Scomp ⊆ S implies s ≤ scomp. To show the opposite

inequality, define smin ≤ s so that

smin = min{i ∈ [1 . . n] :

T∞[i− 7τ . . i+ 7τ) = T∞[s− 7τ . . s+ 7τ)}.
Then, either smin ∈ [1 . . 7τ] ∪ (n − 7τ . . n] or

smin − 7τ = minOcc14τ (smin − 7τ, T). In both cases,

smin ∈ C. Moreover, by the consistency of S (Defini-

tion II.4(1)), smin ∈ S. Thus, smin ∈ Scomp. Finally,

T∞[smin − 7τ . . smin + 7τ) = T∞[s − 7τ . . s + 7τ)
implies that (T∞[smin − 7τ . . smin), T

∞[smin . . smin +
7τ)) ∈ [x1 . . x2) × [y1 . . y2) holds if and only if

(T∞[s− 7τ . . s), T∞[s . . s+7τ)) ∈ [x1 . . x2)×[y1 . . y2).
Thus, scomp ≤ smin ≤ s.

By the above, it suffices to use Pcomp during the compu-

tation of minOcc2�(j, T). The computation of δbeg� (j, T) and

|Occ2�(j, T)| uses similar ideas, except range minimum queries

are replaced with range counting. For this, we augment each

point with a weight storing the frequency of the corresponding

substring. The correctness of this follows by the local consis-

tency of S. To avoid double counting, we also need to ensure

that no two points in Pcomp coincide. To simultaneously still

allow range minimum queries, we thus leave only points with

the smallest labels.

Let us now return to computing SA[i]. Observe that, to

compute minOcc2�(j, T), δ
beg
� (j, T), and |Occ2�(j, T)|, we

1883

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 24,2023 at 12:29:24 UTC from IEEE Xplore. Restrictions apply.

needed some occurrences of strings x1 and y1 satisfying |x1| =
succS(j) − j and T∞[j . . j + 2�) = x1y1. The input of the

refinement procedure in the computation of SA[i], however,

does not include any element of Occ2�(SA[i], T). Consequently,

our query procedure performs an additional step that retrieves

some position p ∈ Occ2�(SA[i], T). Such a position can be

obtained from Pcomp using the inverse of range counting,

i.e., range selection queries. The rest of the query execution

proceeds similarly to the computation of ISA[j] for j = SA[i],
except we can now use p instead of j since p ∈ Occ2�(SA[i], T)
implies that Occ2�(SA[i], T) = Occ2�(p, T).

The remaining challenge is ensuring that Scomp is small.

Unlike for the compressed version of R, where upper bounds

on |C| and |I(C)| already impose an upper bound on |I(R∩C)|,
the size of S∩C can be large if S is not constructed carefully. In

this paper, we develop a deterministic construction that ensures

that the total size of Scomp across all levels k ∈ [4 . . �log n�) of

the data structure is O(δ(T) log n log σ
δ(T) logn) (see Section III-B).

c) The Periodic Positions: Let us now assume j ∈ R (resp.

SA[i] ∈ R). Compared to previous work using the “refinement”

framework [51], one of the key challenges is as follows. The

basic property of every p ∈ R (extending easily to blocks of

such positions), dictating the rest of the query algorithm, is its

type, defined as either −1 or +1 depending on whether the

symbol following the periodic substring is larger or smaller than

the symbol that would extend the period. Dealing with positions

of each type is straightforward if Θ̃(n) space is available: We

separately store all maximal blocks of positions in R of each

type [51]. In compressed space, however, we are much more

constrained. For example, j ∈ R and j′ ∈ Occ2�(j, T) may

have different types, so we cannot distinguish the type simply

based on the occurrence of a periodic fragment. This requires

numerous new and more general combinatorial properties,

allowing separate processing of elements of Occ2�(j, T) (resp.

Occ2�(SA[i], T)) depending on whether they are partially
periodic (meaning that the length of their periodic prefix is

less than 2�) or fully periodic (otherwise).

B. Deterministic Restricted Recompression

Restricted recompression [46] is a general technique for

constructing a run-length grammar (RLSLP) of a given text.

Utilizing this technique, Kociumaka, Navarro, and Prezza [41]

proved that every text T ∈ [0 . . σ)n can be represented

using an RLSLP of size O(δ(T) log n log σ
δ(T) logn) and height

O(log n). They also showed that O(δ(T) log n log σ
δ(T) logn) is the

asymptotically optimal space to represent a string, for all

combinations of n, σ, and δ(T). Consequently, random access

to T can be efficiently supported in the δ-optimal space. Finally,

they developed an O(n)-expected-time Las-Vegas randomized

construction of such RLSLP. At the heart of their construction

is the problem of approximating the directed max-cut of graphs

derived from partially compressed representations of T . In [41],

it is proved that a uniformly random partition at every level

of the grammar is sufficient to achieve the δ-optimal total

size in expectation. In this paper, we describe an explicit

partitioning technique resulting in the same bound on the size

of the RLSLP. The unique component of our construction is

the use of a cover hierarchy, allowing us to account for the

effects of partitioning at the current level of the grammar on the

properties of the grammar at all future levels. In addition, we

develop an O(δ(T) polylog n)-time deterministic construction

algorithm of our RLSLP from the LZ77 parsing of T [42].

Equipped with this RLSLP, one can answer random access

and LCE queries on T in O(log n) time.

Theorem III.2. For every text T ∈ [0 . . σ)n, there exists a
data structure of size O(δ(T) log n log σ

δ(T) logn) that given any
position i ∈ [1 . . n], returns T [i] in O(log n) time. Moreover,
it can be constructed in O(δ(T) log7 n) time given the LZ77-
parsing of T .

Theorem III.3. For every text T ∈ [0 . . σ)n, there exists
a data structure of size O(δ(T) log n log σ

δ(T) logn) answering
LCET and LCET queries in O(log n) time. Moreover, it
can be constructed in O(δ(T) log7 n) time given the LZ77-
parsing of T .

Furthermore, in O(δ(T) polylog n) time, we can derive from

the RLSLP a sequence of string synchronizing sets such that,

after pairwise intersection with the cover hierarchy guiding the

RLSLP construction, we obtain their representation of total

size O(δ(T) log n log σ
δ(T) logn).

REFERENCES

[1] G. Navarro, “Indexing highly repetitive string collections, part II:
Compressed indexes,” ACM Computing Surveys, vol. 54, no. 2, pp.
26:1–26:32, 2021. [Online]. Available: https://doi.org/10.1145/3432999

[2] P. Ferragina and G. Manzini, “On compressing the textual web,”
in 3rd International Conference on Web Search and Web Data
Mining, WSDM 2010, B. D. Davison, T. Suel, N. Craswell, and
B. Liu, Eds. ACM, 2010, pp. 391–400. [Online]. Available:
https://doi.org/10.1145/1718487.1718536

[3] D. Kempa and T. Kociumaka, “Resolution of the Burrows-
Wheeler Transform conjecture,” in 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020, S. Irani, Ed.
IEEE Computer Society, 2020, pp. 1002–1013. [Online]. Available:
https://doi.org/10.1109/FOCS46700.2020.00097

[4] M. Przeworski, R. R. Hudson, and A. D. Rienzo, “Adjusting the focus on
human variation,” Trends in Genetics, vol. 16, no. 7, pp. 296–302, 2000.
[Online]. Available: https://doi.org/10.1016/S0168-9525(00)02030-8

[5] B. Berger, N. M. Daniels, and Y. W. Yu, “Computational biology in the
21st century: Scaling with compressive algorithms,” Communications
of the ACM, vol. 59, no. 8, pp. 72–80, 2016. [Online]. Available:
https://doi.org/10.1145/2957324

[6] M. Hernaez, D. Pavlichin, T. Weissman, and I. Ochoa, “Genomic
data compression,” Annual Review of Biomedical Data Science,
vol. 2, no. 1, pp. 19–37, 2019. [Online]. Available: https:
//doi.org/10.1146/annurev-biodatasci-072018-021229

[7] National Human Genome Research Institute (NIH), “Genomic data
science,” 2022, accessed March 30, 2023. [Online]. Available: https:
//www.genome.gov/about-genomics/fact-sheets/Genomic-Data-Science

[8] P. Gawrychowski, “Pattern matching in Lempel-Ziv compressed strings:
Fast, simple, and deterministic,” in 19th Annual European Symposium
on Algorithms, ESA 2011, ser. LNCS, C. Demetrescu and M. M.
Halldórsson, Eds., vol. 6942. Springer, 2011, pp. 421–432. [Online].
Available: https://doi.org/10.1007/978-3-642-23719-5_36

[9] ——, “Optimal pattern matching in LZW compressed strings,” ACM
Transactions on Algorithms, vol. 9, no. 3, pp. 25:1–25:17, 2013.
[Online]. Available: https://doi.org/10.1145/2483699.2483705

[10] A. Jeż, “Faster fully compressed pattern matching by recompression,”
ACM Transactions on Algorithms, vol. 11, no. 3, pp. 20:1–20:43, 2015.
[Online]. Available: https://doi.org/10.1145/2631920

1884

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 24,2023 at 12:29:24 UTC from IEEE Xplore. Restrictions apply.

[11] A. Abboud, A. Backurs, K. Bringmann, and M. Künnemann,
“Fine-grained complexity of analyzing compressed data: Quantifying
improvements over decompress-and-solve,” in 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017,
C. Umans, Ed. IEEE Computer Society, 2017, pp. 192–203. [Online].
Available: https://doi.org/10.1109/FOCS.2017.26

[12] M. Ganardi and P. Gawrychowski, “Pattern matching on grammar-
compressed strings in linear time,” in 33rd Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, J. S. Naor and
N. Buchbinder, Eds. SIAM, 2022, pp. 2833–2846. [Online]. Available:
https://doi.org/10.1137/1.9781611977073.110

[13] K. Bringmann, M. Künnemann, and P. Wellnitz, “Few matches or almost
periodicity: Faster pattern matching with mismatches in compressed
texts,” in 30th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, T. M. Chan, Ed. SIAM, 2019, pp. 1126–1145. [Online].
Available: https://doi.org/10.1137/1.9781611975482.69

[14] P. Charalampopoulos, T. Kociumaka, and P. Wellnitz, “Faster approximate
pattern matching: A unified approach,” in 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020, S. Irani, Ed.
IEEE Computer Society, 2020, pp. 978–989. [Online]. Available:
https://doi.org/10.1109/FOCS46700.2020.00095

[15] D. Hermelin, G. M. Landau, S. Landau, and O. Weimann,
“Unified compression-based acceleration of edit-distance computation,”
Algorithmica, vol. 65, no. 2, pp. 339–353, 2013. [Online]. Available:
https://doi.org/10.1007/s00453-011-9590-6

[16] A. Tiskin, “Fast distance multiplication of unit-Monge matrices,”
Algorithmica, vol. 71, no. 4, pp. 859–888, 2015. [Online]. Available:
https://doi.org/10.1007/s00453-013-9830-z

[17] A. Ganesh, T. Kociumaka, A. Lincoln, and B. Saha, “How compression
and approximation affect efficiency in string distance measures,” in 33rd
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2022,
J. S. Naor and N. Buchbinder, Eds. SIAM, 2022, pp. 2867–2919.
[Online]. Available: https://doi.org/10.1137/1.9781611977073.112

[18] A. Abboud, A. Backurs, K. Bringmann, and M. Künnemann,
“Impossibility results for grammar-compressed linear algebra,” in
34th Conference on Neural Information Processing System, NeurIPS
2020, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, Eds., vol. 33. Curran Associates, Inc., 2020, pp. 8810–
8823. [Online]. Available: https://proceedings.neurips.cc/paper/2020/file/
645e6bfdd05d1a69c5e47b20f0a91d46-Paper.pdf

[19] P. Ferragina, G. Manzini, T. Gagie, D. Köppl, G. Navarro,
M. Striani, and F. Tosoni, “Improving matrix-vector multiplication
via lossless grammar-compressed matrices,” Proceedings of the VLDB
Endowment, vol. 15, no. 10, pp. 2175–2187, 2022. [Online]. Available:
https://www.vldb.org/pvldb/vol15/p2175-tosoni.pdf

[20] A. P. Francisco, T. Gagie, D. Köppl, S. Ladra, and G. Navarro,
“Graph compression for adjacency-matrix multiplication,” SN Computer
Science, vol. 3, no. 3, p. 193, 2022. [Online]. Available: https:
//doi.org/10.1007/s42979-022-01084-2

[21] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and
O. Weimann, “Random access to grammar-compressed strings and
trees,” SIAM Journal on Computing, vol. 44, no. 3, pp. 513–539, 2015.
[Online]. Available: https://doi.org/10.1137/130936889

[22] M. Ganardi, A. Jeż, and M. Lohrey, “Balancing straight-line programs,”
Journal of the ACM, vol. 68, no. 4, pp. 27:1–27:40, 2021. [Online].
Available: https://doi.org/10.1145/3457389

[23] D. Belazzougui, M. Cáceres, T. Gagie, P. Gawrychowski, J. Kärkkäinen,
G. Navarro, A. O. Pereira, S. J. Puglisi, and Y. Tabei, “Block trees,”
Journal of Computer and System Sciences, vol. 117, pp. 1–22, 2021.
[Online]. Available: https://doi.org/10.1016/j.jcss.2020.11.002

[24] A. O. Pereira, G. Navarro, and N. R. Brisaboa, “Grammar
compressed sequences with rank/select support,” Journal of Discrete
Algorithms, vol. 43, pp. 54–71, 2017. [Online]. Available: https:
//doi.org/10.1016/j.jda.2016.10.001

[25] N. Prezza, “Optimal rank and select queries on dictionary-compressed
text,” in 30th Annual Symposium on Combinatorial Pattern Matching,
CPM 2019, ser. LIPIcs, N. Pisanti and S. P. Pissis, Eds., vol. 128.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2019, pp. 4:1–4:12.
[Online]. Available: https://doi.org/10.4230/LIPIcs.CPM.2019.4

[26] T. Nishimoto, T. I, S. Inenaga, H. Bannai, and M. Takeda, “Fully
dynamic data structure for LCE queries in compressed space,” in 41st
International Symposium on Mathematical Foundations of Computer
Science, MFCS 2016, ser. LIPIcs, P. Faliszewski, A. Muscholl,
and R. Niedermeier, Eds., vol. 58. Schloss Dagstuhl–Leibniz-

Zentrum für Informatik, 2016, pp. 72:1–72:15. [Online]. Available:
https://doi.org/10.4230/LIPIcs.MFCS.2016.72

[27] T. I, “Longest common extensions with recompression,” in 28th
Annual Symposium on Combinatorial Pattern Matching, CPM 2017, ser.
LIPIcs, J. Kärkkäinen, J. Radoszewski, and W. Rytter, Eds., vol. 78.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2017, pp. 18:1–18:15.
[Online]. Available: https://doi.org/10.4230/LIPIcs.CPM.2017.18

[28] P. Gawrychowski, A. Karczmarz, T. Kociumaka, J. Łącki, and
P. Sankowski, “Optimal dynamic strings,” in 29th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, A. Czumaj,
Ed. SIAM, 2018, pp. 1509–1528. [Online]. Available: https:
//doi.org/10.1137/1.9781611975031.99

[29] F. Claude and G. Navarro, “Self-indexed grammar-based compression,”
Fundamenta Informaticae, vol. 111, no. 3, pp. 313–337, 2011. [Online].
Available: https://doi.org/10.3233/FI-2011-565

[30] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J.
Puglisi, “A faster grammar-based self-index,” in 6th International
Conference on Language and Automata Theory and Applications,
LATA 2012, ser. LNCS, A. Dediu and C. Martín-Vide, Eds.,
vol. 7183. Springer, 2012, pp. 240–251. [Online]. Available:
https://doi.org/10.1007/978-3-642-28332-1_21

[31] ——, “LZ77-based self-indexing with faster pattern matching,” in 11th
Latin American Symposium on Theoretical Informatics, LATIN 2014, ser.
LNCS, A. Pardo and A. Viola, Eds., vol. 8392. Springer, 2014, pp. 731–
742. [Online]. Available: https://doi.org/10.1007/978-3-642-54423-1_63

[32] F. Claude, G. Navarro, and A. Pacheco, “Grammar-compressed
indexes with logarithmic search time,” Journal of Computer and
System Sciences, vol. 118, pp. 53–74, 2021. [Online]. Available:
https://doi.org/10.1016/j.jcss.2020.12.001

[33] D. Díaz-Domínguez, G. Navarro, and A. Pacheco, “An LMS-based
grammar self-index with local consistency properties,” in 28th
International Symposium on String Processing and Information
Retrieval SPIRE 2021, ser. LNCS, T. Lecroq and H. Touzet, Eds.,
vol. 12944. Springer, 2021, pp. 100–113. [Online]. Available:
https://doi.org/10.1007/978-3-030-86692-1_9

[34] A. R. Christiansen, M. B. Ettienne, T. Kociumaka, G. Navarro,
and N. Prezza, “Optimal-time dictionary-compressed indexes,” ACM
Transactions on Algorithms, vol. 17, no. 1, pp. 8:1–8:39, 2021. [Online].
Available: https://doi.org/10.1145/3426473

[35] T. Kociumaka, G. Navarro, and F. Olivares, “Near-optimal search
time in δ-optimal space,” in 15th Latin American Symposium on
Theoretical Informatics, LATIN 2022, ser. LNCS, A. Castañeda and
F. Rodríguez-Henríquez, Eds., vol. 13568. Springer, 2022, pp. 88–103.
[Online]. Available: https://doi.org/10.1007/978-3-031-20624-5_6

[36] T. Gagie, G. Navarro, and N. Prezza, “Fully functional suffix trees
and optimal text searching in BWT-runs bounded space,” Journal of
the ACM, vol. 67, no. 1, pp. 2:1–2:54, 2020. [Online]. Available:
https://doi.org/10.1145/3375890

[37] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge, UK: Cambridge
University Press, 1997. [Online]. Available: https://doi.org/10.1017/
cbo9780511574931

[38] D. Adjeroh, T. Bell, and A. Mukherjee, The Burrows-Wheeler
Transform: Data Compression, Suffix Arrays, and Pattern Matching.
Boston, MA, USA: Springer, 2008. [Online]. Available: https:
//doi.org/10.1007/978-0-387-78909-5

[39] D. Kempa and N. Prezza, “At the roots of dictionary compression:
String attractors,” in 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, I. Diakonikolas, D. Kempe, and
M. Henzinger, Eds. ACM, 2018, pp. 827–840. [Online]. Available:
https://doi.org/10.1145/3188745.3188814

[40] G. Navarro, “Indexing highly repetitive string collections, part I:
Repetitiveness measures,” ACM Computing Surveys, vol. 54, no. 2, pp.
29:1–29:31, 2021. [Online]. Available: https://doi.org/10.1145/3434399

[41] T. Kociumaka, G. Navarro, and N. Prezza, “Towards a definitive
compressibility measure for repetitive sequences,” IEEE Transactions
on Information Theory, vol. 69, no. 4, pp. 2074–2092, 2023. [Online].
Available: https://doi.org/10.1109/TIT.2022.3224382

[42] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression,” IEEE Transactions on Information Theory,
vol. 23, no. 3, pp. 337–343, 1977. [Online]. Available: https:
//doi.org/10.1109/TIT.1977.1055714

1885

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 24,2023 at 12:29:24 UTC from IEEE Xplore. Restrictions apply.

[43] D. Kosolobov, D. Valenzuela, G. Navarro, and S. J. Puglisi, “Lempel-Ziv-
like parsing in small space,” Algorithmica, vol. 82, no. 11, pp. 3195–3215,
2020. [Online]. Available: https://doi.org/10.1007/s00453-020-00722-6

[44] M. Burrows and D. J. Wheeler, “A block-sorting lossless data
compression algorithm,” Digital Equipment Corporation, Palo Alto,
California, Tech. Rep. 124, 1994. [Online]. Available: https:
//www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

[45] D. Gibney and S. V. Thankachan, “Compressibility-aware quantum
algorithms on strings,” 2023. [Online]. Available: https://arxiv.org/abs/
2302.07235

[46] T. Kociumaka, J. Radoszewski, W. Rytter, and T. Waleń, “Internal
pattern matching queries in a text and applications,” 2023. [Online].
Available: https://arxiv.org/abs/1311.6235v5

[47] D. Kempa and T. Kociumaka, “String synchronizing sets: Sublinear-time
BWT construction and optimal LCE data structure,” in 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, M. Charikar
and E. Cohen, Eds. ACM, 2019, pp. 756–767. [Online]. Available:
https://doi.org/10.1145/3313276.3316368

[48] P. Charalampopoulos, T. Kociumaka, S. P. Pissis, and J. Radoszewski,
“Faster algorithms for longest common substring,” in 29th Annual
European Symposium on Algorithms, ESA 2021, ser. LIPIcs, P. Mutzel,
R. Pagh, and G. Herman, Eds., vol. 204. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2021, pp. 30:1–30:17. [Online]. Available:
https://doi.org/10.4230/LIPIcs.ESA.2021.30

[49] P. Dinklage, J. Fischer, A. Herlez, T. Kociumaka, and F. Kurpicz,
“Practical performance of space efficient data structures for longest
common extensions,” in 28th Annual European Symposium on Algorithms,
ESA 2020, ser. LIPIcs, F. Grandoni, G. Herman, and P. Sanders, Eds., vol.
173. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp. 39:1–
39:20. [Online]. Available: https://doi.org/10.4230/LIPIcs.ESA.2020.39

[50] D. Kempa and T. Kociumaka, “Breaking the O(n)-barrier in the
construction of compressed suffix arrays and suffix trees,” in 34th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
N. Bansal and V. Nagarajan, Eds. SIAM, 2023, pp. 5122–5202.
[Online]. Available: https://doi.org/10.1137/1.9781611977554.ch187

[51] ——, “Dynamic suffix array with polylogarithmic queries and updates,”
in 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2022, S. Leonardi and A. Gupta, Eds. ACM, 2022, pp. 1657–1670.
[Online]. Available: https://doi.org/10.1145/3519935.3520061

[52] S. Akmal and C. Jin, “Near-optimal quantum algorithms for
string problems,” in 33rd Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2022, J. S. Naor and N. Buchbinder,
Eds. SIAM, 2022, pp. 2791–2832. [Online]. Available: https:
//doi.org/10.1137/1.9781611977073.109

[53] C. Jin and J. Nogler, “Quantum speed-ups for string synchronizing
sets, longest common substring, and k-mismatch matching,” in 34th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2023,
N. Bansal and V. Nagarajan, Eds. SIAM, 2023, pp. 5090–5121.
[Online]. Available: https://doi.org/10.1137/1.9781611977554.ch186

[54] B. Chazelle, “A functional approach to data structures and its use in
multidimensional searching,” SIAM Journal on Computing, vol. 17, no. 3,
pp. 427–462, 1988. [Online]. Available: https://doi.org/10.1137/0217026

[55] J. C. Kieffer and E. Yang, “Grammar-based codes: A new class of
universal lossless source codes,” IEEE Transactions on Information
Theory, vol. 46, no. 3, pp. 737–754, 2000. [Online]. Available:
https://doi.org/10.1109/18.841160

[56] W. Rytter, “Application of Lempel–Ziv factorization to the approximation
of grammar-based compression,” Theoretical Computer Science, vol.
302, no. 1–3, pp. 211–222, 2003. [Online]. Available: https:
//doi.org/10.1016/S0304-3975(02)00777-6

[57] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran,
A. Sahai, and A. Shelat, “The smallest grammar problem,” IEEE
Transactions on Information Theory, vol. 51, no. 7, pp. 2554–2576,
2005. [Online]. Available: https://doi.org/10.1109/TIT.2005.850116

[58] J. A. Storer and T. G. Szymanski, “Data compression via textual
substitution,” Journal of the ACM, vol. 29, no. 4, pp. 928–951, 1982.
[Online]. Available: https://doi.org/10.1145/322344.322346

[59] T. Kida, T. Matsumoto, Y. Shibata, M. Takeda, A. Shinohara,
and S. Arikawa, “Collage system: A unifying framework for
compressed pattern matching,” Theoretical Computer Science, vol. 298,
no. 1, pp. 253–272, 2003. [Online]. Available: https://doi.org/10.1016/
S0304-3975(02)00426-7

[60] S. Kreft and G. Navarro, “LZ77-like compression with fast
random access,” in 2010 Data Compression Conference. IEEE

Computer Society, 2010, pp. 239–248. [Online]. Available: https:
//doi.org/10.1109/DCC.2010.29

[61] T. Gagie, G. Navarro, and N. Prezza, “On the approximation ratio of
Lempel-Ziv parsing,” in 13th Latin American Symposium on Theoretical
Informatics, LATIN 2018, ser. LNCS, M. A. Bender, M. Farach-Colton,
and M. A. Mosteiro, Eds., vol. 10807. Springer, 2018, pp. 490–503.
[Online]. Available: https://doi.org/10.1007/978-3-319-77404-6_36

[62] D. Kempa and B. Saha, “An upper bound and linear-space
queries on the LZ-end parsing,” in 33rd Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, J. S. Naor and
N. Buchbinder, Eds. SIAM, 2022, pp. 2847–2866. [Online]. Available:
https://doi.org/10.1137/1.9781611977073.111

[63] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-compressed
text indexes,” in 14th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2003. ACM/SIAM, 2003, pp. 841–850. [Online].
Available: http://dl.acm.org/citation.cfm?id=644108.644250

[64] P. Ferragina and G. Manzini, “Indexing compressed text,” Journal
of the ACM, vol. 52, no. 4, pp. 552–581, 2005. [Online]. Available:
https://doi.org/10.1145/1082036.1082039

[65] R. Grossi and J. S. Vitter, “Compressed suffix arrays and suffix trees
with applications to text indexing and string matching,” SIAM Journal
on Computing, vol. 35, no. 2, pp. 378–407, 2005. [Online]. Available:
https://doi.org/10.1137/S0097539702402354

[66] K. Sadakane, “Succinct representations of LCP information and
improvements in the compressed suffix arrays,” in 13th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2002. ACM/SIAM,
2002, pp. 225–232. [Online]. Available: http://dl.acm.org/citation.cfm?
id=545381.545410

[67] S. Gog, T. Beller, A. Moffat, and M. Petri, “From theory to practice: Plug
and play with succinct data structures,” in 13th International Symposium
on Experimental Algorithms, SEA 2014, ser. LNCS, J. Gudmundsson
and J. Katajainen, Eds., vol. 8504. Springer, 2014, pp. 326–337.
[Online]. Available: https://doi.org/10.1007/978-3-319-07959-2_28

[68] W. Hon, K. Sadakane, and W. Sung, “Breaking a time-and-
space barrier in constructing full-text indices,” SIAM Journal on
Computing, vol. 38, no. 6, pp. 2162–2178, 2009. [Online]. Available:
https://doi.org/10.1137/070685373

[69] D. Belazzougui, “Linear time construction of compressed text indices
in compact space,” in 46th Annual ACM Symposium on Theory of
Computing, STOC 2014, D. B. Shmoys, Ed. ACM, 2014, pp. 148–193.
[Online]. Available: https://doi.org/10.1145/2591796.2591885

[70] J. I. Munro, G. Navarro, and Y. Nekrich, “Space-efficient construction
of compressed indexes in deterministic linear time,” in 28th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
P. N. Klein, Ed. SIAM, 2017, pp. 408–424. [Online]. Available:
https://doi.org/10.1137/1.9781611974782.26

[71] D. Kempa, “Optimal construction of compressed indexes for highly
repetitive texts,” in 30th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, T. M. Chan, Ed. SIAM, 2019, pp. 1344–1357.
[Online]. Available: https://doi.org/10.1137/1.9781611975482.82

[72] G. Navarro and V. Mäkinen, “Compressed full-text indexes,” ACM
Computing Surveys, vol. 39, no. 1, pp. 2:1–2:61, 2007. [Online].
Available: https://doi.org/10.1145/1216370.1216372

[73] G. Navarro, “Wavelet trees for all,” Journal of Discrete Algorithms,
vol. 25, pp. 2–20, 2014. [Online]. Available: https://doi.org/10.1016/j.jda.
2013.07.004

[74] D. Belazzougui and G. Navarro, “Alphabet-independent compressed
text indexing,” ACM Transactions on Algorithms, vol. 10, no. 4, pp.
23:1–23:19, 2014. [Online]. Available: https://doi.org/10.1145/2635816

[75] G. Navarro, Compact data structures: A practical approach.
Cambridge, UK: Cambridge University Press, 2016. [Online]. Available:
https://doi.org/10.1017/cbo9781316588284

[76] A. Lempel and J. Ziv, “On the complexity of finite sequences,” IEEE
Transactions on Information Theory, vol. 22, no. 1, pp. 75–81, 1976.
[Online]. Available: https://doi.org/10.1109/TIT.1976.1055501

[77] D. Kempa and T. Kociumaka, “Resolution of the Burrows-Wheeler
Transform conjecture,” 2020, full version of [3]. [Online]. Available:
https://arxiv.org/abs/1910.10631v3

[78] T. Hagerup, “Sorting and searching on the word RAM,” in 15th
Annual Symposium on Theoretical Aspects of Computer Science,
STACS 1998, ser. LNCS, M. Morvan, C. Meinel, and D. Krob,
Eds., vol. 1373. Springer, 1998, pp. 366–398. [Online]. Available:
https://doi.org/10.1007/BFb0028575

1886

Authorized licensed use limited to: Johns Hopkins University. Downloaded on December 24,2023 at 12:29:24 UTC from IEEE Xplore. Restrictions apply.

