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Abstract—The Burrows–Wheeler Transform (BWT) is an
invertible text transformation that permutes symbols of a text
according to the lexicographical order of its suffixes. BWT is
the main component of popular lossless compression programs
(such as bzip2) as well as recent powerful compressed indexes
(such as r-index [Gagie et al., J. ACM, 2020]), central in modern
bioinformatics. The compression ratio of BWT is quantified
by the number r of equal-letter runs. Despite the practical
significance of BWT, no non-trivial bound on the value of
r is known. This is in contrast to nearly all other known
compression methods, whose sizes have been shown to be either
always within a polylog n factor (where n is the length of text)
from z, the size of Lempel–Ziv (LZ77) parsing of the text, or
significantly larger in the worst case (by a nε factor for ε > 0).

In this paper, we show that r = O(z log2 n) holds for every
text. This result has numerous implications for text indexing
and data compression; for example: (1) it proves that many
results related to BWT automatically apply to methods based
on LZ77, e.g., it is possible to obtain functionality of the
suffix tree in O(z polylog n) space; (2) it shows that many text
processing tasks can be solved in the optimal time assuming the
text is compressible using LZ77 by a sufficiently large polylog n
factor; (3) it implies the first non-trivial relation between the
number of runs in the BWT of the text and its reverse.

In addition, we provide an O(z polylog n)-time algorithm
converting the LZ77 parsing into the run-length compressed
BWT. To achieve this, we develop a number of new data
structures and techniques of independent interest. In particular,
we introduce a notion of compressed string synchronizing
sets (generalizing the recently introduced powerful technique
of string synchronizing sets [STOC 2019]) and show how to
efficiently construct them. Next, we propose a new variant of
wavelet trees for sequences of long strings, establish a non-
trivial bound on their size, and describe efficient construction
algorithms. Finally, we describe new indexes that can be con-
structed directly from the LZ77-compressed text and efficiently
support pattern matching queries on substrings of the text.

Keywords-data compression, compressed indexing, Burrows–
Wheeler Transform, Lempel–Ziv compression

I. INTRODUCTION

Lossless data compression aims to exploit redundancy in

the input data to represent it in a small space. Despite the

abundance of compression methods, nearly every existing

tool falls into one of the few general frameworks, among

which the three most popular are: Lempel–Ziv compression

A full version of this paper is available at arxiv.org/abs/1910.10631.
Proofs of the claims marked with ♠ are presented only in the full version.

(where the nominal and most commonly used is the LZ77

variant [66]), statistical compression (this includes, for

example, context mixing [43], prediction by partial matching

(PPM) [16], and dynamic Markov coding [17]), and Burrows–

Wheeler transform (BWT) [13]. As seen in the Large

Text Compression Benchmark [42], these three frameworks

underlie most existing compressors.

One of the features that best differentiates these algorithms

is whether they better remove the redundancy caused by

skewed symbols frequencies or by repeated fragments. The

idea in LZ77 (which underlies, for example, 7-zip [54]

and gzip [26] compressors) is to partition the input text

into long substrings, each having an earlier occurrence in

the text. Every substring is then encoded as a pointer to the

previous occurrence using a pair of integers. This method

natively handles long repeated substrings and can achieve

an exponential compression ratio given sufficiently repetitive

input. Statistical compressors, on the other hand, are based on

representing (predicting) symbols in the input based on their

frequencies. This is formally captured by the notion of the

kth order empirical entropy Hk(T ) [18]. For any sufficiently

long text T , symbol frequencies (taking context into account)

in any power of T (the concatenation of several copies of T )

do not change significantly [38, Lemma 2.6]. Therefore,

|T t|Hk(T
t) ≈ t · |T |Hk(T ) for any t > 1, i.e., entropy is not

sensitive to long repetitions, and hence statistical compressors

are outperformed by LZ77, when k is large, i.e., when the

goal is to capture long repetitions [20], [25], [34], [38], [62].

The above analysis raises the question about the nature of

compressibility of the Burrows–Wheeler transform. The com-

pression of BWT-based compressors, such as bzip2 [60],

is quantified by the number r of equal-letter blocks in the

BWT. The clear picture described above no longer applies

to the measure r. On one hand, Manzini [47] proved that r
can be upper-bounded in terms of the kth order empirical

entropy of the input string. On the other hand, already in

2008, Sirén et al. [62] observed that BWT achieves excellent

compression (superior to statistical methods) on highly

repetitive collections and provided probabilistic analysis

exhibiting cases when r is small. Yet, after more than a

decade, no upper bound on r in terms of z was discovered.

This lack of understanding is particularly frustrating due to

numerous applications of BWT in the field of bioinformatics
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and compressed computation. One of the most successful

applications of BWT is in compressed indexing, which aims

to store a compressed string, simultaneously supporting

various queries (such as random access, pattern matching,

or even suffix array queries) on the uncompressed version.

While classical (uncompressed) indexes, such as suffix

trees [65] and suffix arrays [45], have been successful in many

applications, they are not suitable for storing and searching

big highly repetitive databases. Such datasets are virtually

impossible to search without preprocessing: Github databases,

for example, take more than 20 terabytes, and the recently

finished 100000 Human Genome Project [1] produced 75

terabytes of DNA [49]. These databases are, however, highly

compressible: Github averages 20 versions per project [49],

and two human genomes are 99.9% similar [59]. This

area has witnessed a remarkable surge of interest in recent

years [5], [9], [10], [11], [15], [21], [23], [32], [50], [58], [61].

BWT-based indexes, such as r-index [25], are among the most

powerful [23], and their space usage is up to O(polylogn)
factors away from the value r. For a comprehensive overview

of this field, we refer the reader to a survey by Navarro [49].

In addition to text indexing, BWT has many applications

in compressed computation. For example, BWT is the main

component of the popular read aligners such as Bowtie [39],

BWA [40], and Soap2 [41]. Modern textbooks spend dozens

of pages describing applications of BWT [2], [44], [48],

[51]. The richness of these applications has even spawned a

dedicated seminar [22]. Given the importance and practical

significance of BWT, one of the biggest open problems

that emerged in the field of lossless data compression and

compressed computation asks:

What is the upper bound on the output size of the
Burrows–Wheeler transform?

With the exception of BWT, essentially every other

known compression method has been proven [24], [34] to

produce output whose size is always within a polylog n
factor from z, the output size of the LZ77 algorithm (e.g.,

grammar compression [14], collage systems [35], or macro

schemes [63]), or larger by a polynomial factor (nε for some

ε > 0) in the worst case (e.g., LZ78 [67], compressed word

graphs (CDAWGs) [12]).1 BWT is known to never compress

much better than LZ77, i.e., z = O(r log n) [24]. The

opposite relation (that r = O(z polylog n)) was generally

conjectured to be false. For example, after presenting how to

support suffix array and suffix tree queries in O(r polylog n)
space, Gagie et al. [23] speculate that “(...) it seems unlikely
that one can provide suffix array or tree functionality within
space related to g, z, or γ, since these measures are not
related to the structure of the suffix array: this is likely to
be a specific advantage of measure r”.

1The choice for LZ77 as a representative in this class follows from the
fact that most of the other methods are NP-hard to optimize [14], [27], while
LZ77 admits a simple linear-time compression algorithm (see, e.g., [30]).

Our Contribution: We prove that r = O(z log2 n) holds
for all strings, resolving the BWT conjecture in the more

surprising way than anticipated, and solving an open problem

by Prezza [57] and Gagie et al. [23], [24]. This result alone

has multiple implications for indexing and compression:

1) It is possible to support suffix array and suffix tree

functionality in O(z polylog n) space [25].

2) It was shown in [32] that many string processing tasks

(including BWT and LZ77 construction) can be solved

in O(n/ logσ n+ r polylog n) time (where σ is the al-

phabet size), i.e., if the text is sufficiently compressible

by BWT (formally, when n/r = Ω(polylogn)), these
tasks can be solved in optimal time (which is unlikely to

be possible for general texts [33]). Our result loosens

this assumption to n/z = Ω(polylog n).
3) Until now, methods based on the Burrows–Wheeler

transform were thought to be neither statistical nor

dictionary (LZ-like) compression algorithms [62], [23].

Our result challenges the notion that the BWT is its own

compression type: In view of our bound, BWT is much

closer to LZ compressors than was previously thought.

Our slightly stronger bound r = O(δ log2 n), where δ ≤ z
is a symmetric (insensitive to string reversal) repetitiveness

measure recently introduced in [37], further shows that:

4) The number r̄ of BWT runs in the reverse of the

text satisfies r̄ = O(r log2 n), which is the first non-

trivial bound in terms of r. This result is of practical

importance due to many algorithms whose runtime

depends on r̄ [6], [7], [8], [52], [53], [55], [56].

After proving r = O(z log2 n) and r = O(δ log2 n), by a

tighter analysis, we obtain r = O(z log zmax(1, log n
z log z ))

and r = O(δ log δmax(1, n
δ log δ )), and we prove that the

latter is asymptotically tight for the full spectrum of values

of n and δ. As a side-result, we obtain a tight upper bound

O(n log δ) on the sum of irreducible LCP values. This

improves upon the previously known bound O(n log r) [29].

We then describe anO(z log8 n)-time algorithm converting

the LZ77 parsing into run-length compressed BWT (the

polylog n factor has not been optimized). This offers up to

exponential speedup over the previously fastest space-efficient

algorithms, which need Ω(n log z) time [55], [53]. To achieve

this, we develop new data structures and techniques of

independent interest. In particular, we introduce a notion

of compressed string synchronizing sets, generalizing the

powerful technique introduced in [33]. We also describe a new

variant of wavelet trees [28], designed to work for sequences

of long strings. Finally (♠), we describe new indexes that

can be built directly from the LZ77-compressed text and

support fast pattern matching queries on text substrings.

Organization of the Paper: Section II introduces the

basic notation. We present our upper and lower bounds in

Sections III and IV. Finally, in Section V, we outline our

algorithm converting LZ77 to run-length compressed BWT.
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II. PRELIMINARIES

For any string S we write S[i . . j], where 1 ≤ i, j ≤ |S|,
to denote a substring of S. If i > j, we assume S[i . . j] to
be the empty string ε. By S we denote the reverse of S.

An integer p ∈ [1 . . |S|] is a period of a string S if

S[i] = S[i+ p] for i ∈ [1 . . |S| − p]. The classic periodicity
lemma [19] states that if a string S has periods p, q such that

p+ q − gcd(p, q) ≤ |S|, then gcd(p, q) is also its period.

The shortest period of S is denoted as per(S). A string S
is called periodic if per(S) ≤ 1

2 |S|. The following fact is a

folklore consequence of the periodicity lemma.

Fact II.1 (see [4, Fact 1]). Any two distinct periodic strings
of the same length differ on at least two positions.

Throughout we consider a string (text) T [1 . . n] of n ≥ 1
symbols from an ordered alphabet Σ of size σ. We assume

T [n] = $, where $ ∈ Σ is the lexicographically smallest

symbol in Σ, and that $ does not occur anywhere else in T .

The suffix array [45] of T is an array SA[1 . . n] con-

taining a permutation of the integers [1 . . n] such that

T [SA[1] . . n] ≺ T [SA[2] . . n] ≺ · · · ≺ T [SA[n] . . n], where

≺ denotes the lexicographical order. The closely related

Burrows–Wheeler transform [13] BWT[1 . . n] of T is defined

by BWT[i] = T [SA[i]− 1] if SA[i] > 1 and BWT[i] = T [n]
otherwise. The BWT is invertible; given BWT[1 . . n], the
text T can be restored in O(n) time. For any string S =
c�11 c�22 · · · c�hh , where ci ∈ Σ and �i > 0 for i ∈ [1 . . h], and
ci �= ci+1 for i ∈ [1 . . h), we define the run-length encoding
of S as a sequence RL(S) = ((c1, λ1), . . . , (ch, λh)), where

λi = �1 + . . . + �i for i ∈ [1 . . h]. Throughout, we let

r = |RL(BWT)| denote the number of runs in the BWT, e.g.,

for the string T = bbabaababababaababa$ in Fig. 1,

we have BWT = a1b6a1b2a6b1a2$1, and hence r = 8.

By lcp(S1, S2) we denote the length of the longest

common prefix of strings S1 and S2. We let LCE(j1, j2) =
lcp(T [j1 . . n], T [j2 . . n]), where j1, j2 ∈ [1 . . n]. The LCP
array (see [45], [31]), LCP[1 . . n], is defined as LCP[i] =
LCE(SA[i], SA[i − 1]) for i ∈ [2 . . n] and LCP[1] = 0.
We say that the value LCP[i] is reducible if BWT[i] =
BWT[i − 1] and irreducible otherwise (including i = 1).
Note that there are r irreducible LCP values.

Theorem II.2 (Kärkkäinen et al. [29]). The sum of all
irreducible LCP values is at most n log r.

The LZ77 factorization [66] uses the notion of the longest
previous factor (LPF). The LPF at position i ∈ [1 . . n] in T
is a pair (pi, �i) such that pi < i and �i = LCE(pi, i) > 0 is

maximized. In other words, T [i . . i+ �i − 1] is the longest

prefix of T [i . . n] which also occurs at some position pi < i
in T . If T [i] is the leftmost occurrence of a symbol in T , then

such a pair does not exist. In this case, we define pi = T [i]
and �i = 0. If there is more than one possibility for pi, we

choose one arbitrarily.

$
a$
aababa$
aababababaababa$
aba$
abaababa$
abaababababaababa$
ababa$
ababaababa$
abababaababa$
ababababaababa$
ba$
baababa$
baababababaababa$
baba$
babaababa$
babaababababaababa$
bababaababa$
babababaababa$
bbabaababababaababa$

T [SA[i] . . n]

a1
b2
b3
b4
b5
b6
b7
a8
b9
b10
a11
a12
a13
a14
a15
a16
b17
a18
a19
$20

BWT[i]i

20
19
14
5
17
12
3
15
10
8
6
18
13
4
16
11
2
9
7
1

SA[i]

0
0
1
6
1
3
8
3
5
5
7
0
2
7
2
4
9
4
6
1

LCP[i]

Figure 1. A list of lexicographically sorted suffixes of the string T =
bbabaababababaababa$ along with the BWT, SA, and LCP tables.
The irreducible LCP values are bold and underlined.

The LZ77 factorization (or the LZ77 parsing) of a string

T is then just a greedy, left-to-right parsing of T into longest

previous factors. More precisely, if the jth LZ factor (called

the jth phrase) in the parsing is to start at position i, then
we output (pi, �i) (to represent the jth phrase), and then the

(j + 1)th phrase starts at position i+max(�i, 1). We denote

the number of phrases in the LZ77 parsing by z.
The text bbabaababababaababa$ of Fig. 1 has LZ77

factorization b · b · a · ba · aba · bababa · ababa · $ with

z = 8 phrases, so its LZ77 representation is

(b, 0), (1, 1), (a, 0), (2, 2), (3, 3), (7, 6), (10, 5), ($, 0).

The following relation between z and r is known.

Theorem II.3 (Gagie et al. [24]). Every string of length n
satisfies z = O(r log n).

III. UPPER BOUNDS

A. Basic Upper Bound

To illustrate the main idea of our proof technique, we first

show the upper bound in its simplest form r = O(z log2 n).
The following lemma stands at the heart of our proof.

Lemma III.1. For every � ∈ [1 . . n], the number of
irreducible LCP values in [� . . 2�) is O(z log n).

Proof: Let T∞ be an infinite string defined so that

T∞[i] = T [1 + (i − 1) mod n] for i ∈ Z; in particular,

T∞[1 . . n] = T [1 . . n]. Note that T∞[SA[1] . .] ≺ · · · ≺
T∞[SA[n] . .] and BWT[i] = T∞[SA[i]− 1] for i ∈ [1 . . n].

Denote Sm = {S ∈ Σm : S is a substring of T∞} for

m ≥ 1. Observe that |Sm| ≤ mz since every length-m
substring of T∞ has an occurrence crossing or beginning at

a phrase boundary of the LZ77 parsing of T . This includes
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$ a b

a a b $ a b

b b a b a a b $

a a a b $ b b a b a

Figure 2. The trie T of reversed length-4 substrings of T∞ for T =
bbabaababababaababa$ of Fig. 1. Light edges are thin and dotted.

substrings overlapping two copies of T , which cross the

boundary between the last and the first phrase.

The idea of the proof is as follows. With each irreducible

value LCP[i] ∈ [� . . 2�), we associate a cost � which is

charged to individual characters of strings in S3�. We then

show that each of the strings in S3� is charged at most 2 logn
times. The number of irreducible LCP values in [� . . 2�)
equals 1

� times the total cost, which is at most

|S3�| · 2 log n ≤ 6�z log n.

To devise the announced assignment of cost to characters

of strings in S3�, consider the trie T of all reversed strings in

S� (see Fig. 2 for an example). By vX denote the node of T
whose path from the root of T is labelled by a string X .

Let LCP[i] ∈ [� . . 2�) be an irreducible LCP value; note

that i > 1 due to LCP[i] > 0. Let j0 = SA[i − 1] and

j1 = SA[i] so that LCP[i] = LCE(j0, j1). Since LCP[i] is
irreducible, we have T∞[j0−1] = BWT[i−1] �= BWT[i] =
T∞[j1−1]. For k ∈ [1 . . �], the kth unit of the cost associated

with LCP[i] is charged to the kth character (T∞[jt−1]) of the
string T∞[jt−k . . jt−k+3�) ∈ S3�, where t ∈ {0, 1} is such
that the subtree of T rooted at v

T∞[jt−1. .jt−k+�)
contains

less leaves than the subtree rooted at v
T∞[j1−t−1. .j1−t−k+�)

(we choose t = 0 in case of ties).

Note that at most log n characters of each S ∈ S3� can

be charged during the above procedure: whenever S[k], k ∈
[1 . . �], is charged, the subtree of T rooted at v

S[k+1. .�]
has

at least twice as many leaves as the subtree rooted at v
S[k. .�]

,

and this can happen for at most log |S�| ≤ log n positions k.

It remains to show that, for every S ∈ S3�, a single position

S[k], k ∈ [1 . . �], can be charged at most twice. First, observe

that characters charged for a single irreducible value LCP[i]
are at different positions (of strings in S3�). Hence, to analyze

the total charge assigned to S[k], we only need to bound the

number of possible candidate positions i. Let [b . . e] be the set

of indices i′ such that T∞[SA[i′] . .] starts with S[k+1 . . 3�].
In the above procedure, if a character S[k] is charged a unit

of cost corresponding to LCP[i], then S[k+1 . . 3�] is a prefix

of either T∞[SA[i − 1] . .] = T∞[j0 . .] or T∞[SA[i] . .] =
T∞[j1 . .]. Hence, {i− 1, i} ∩ [b . . e] �= ∅. At the same time,

LCE(SA[i − 1], SA[i]) < 2� and all strings T∞[SA[i′] . .]

with i′ ∈ [b . . e] share a common prefix S[k + 1 . . 3�] of

length 3�− k ≥ 2�. Consequently, i = b or i = e+ 1.

Theorem III.2. All length-n strings satisfy r = O(z log2 n).

Proof: Recall that r is the total number of irreducible

LCP values. Thus, the claim follows by applying Lemma III.1

for �i = 2i with i ∈ [0 . . �log n�], and observing that the

number of LCP values 0 is σ ≤ z.

B. Tighter Upper Bound

To obtain a tighter bound, we refine the ideas from

Section III-A, starting with a counterpart of Lemma III.1.

Lemma III.3. For every � ∈ [1 . . n], the number of
irreducible LCP values in [� . . 2�) is O(z log z).

Proof: The proof follows closely that of Lemma III.1.

However, with each irreducible value LCP[i] ∈ [� . . 2�), we

associate cost 
 12�� rather �. We then show that each of the

strings in S3� is charged at most 2 · (3 + log z) times (rather

than 2 logn times). Then, the number of irreducible LCP

values in the range [� . . 2�) does not exceed 2
� times the total

cost, which is bounded by

|S3�| · 2 · (3 + log z) ≤ 6�z(3 + log z).

Recall the trie T of all reversed length-� strings in S�.
For a node v of T , by size(v) we denote the number of

leaves in the subtree of T rooted in v. An edge connecting

v �= root(T ) to its parent in T is called light if v has a

sibling v′ satisfying size(v′) ≥ size(v) (see Fig. 2). In the

proof of Lemma III.1, we observed that the characters S[k]
of S ∈ S3� that can be charged correspond to light edges on

the root-to-leaf path in T spelling S[1 . . �]: whenever S[k]
with k ∈ [1 . . �] is charged, the edge connecting v

S[k. .�]
to

its parent v
S[k+1. .�]

is light. We then noted that there are at

most log |S�| ≤ log n light edges on each root-to-leaf path

in T . Here, we perform the same assignment of cost to the

characters of strings in S3� as in Lemma III.1, but only for

units k ∈ [1 . . 
 12��]. This implies that only characters S[k]
of S ∈ S3� with k ≤ 
 12�� are charged. It remains to show

that any root-to-leaf path in T contains at most 3+log z light

edges between a node at depth at least � 12�� and its child.

Consider a light edge from a node v to its parent u at depth

at least � 12��. Let v′ be a sibling of v satisfying size(v′) ≥
size(v), and let Sv, Sv′ be the labels of the paths from the

root to v and v′. These labels differ on the last position only

so, by Fact II.1, they cannot be both periodic. Let ṽ ∈ {v, v′}
be such that Sṽ is not periodic, and let m̃ = size(ṽ).

Consider the set S of length-� strings corresponding to the

leaves in the subtree rooted at ṽ (i.e., labels of the root-to-leaf

paths passing through ṽ). Define S := {P : P ∈ S} and

note that S ⊆ S� because T is the trie of reversed strings

from S�. Let e1 < · · · < em̃ denote the ending positions

of the leftmost occurrences in T∞[1 . .) of strings in S . By

definition, we have an occurrence of Sṽ ending in T∞ at
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every position ei, i ∈ [1 . . m̃]. Now, per(Sṽ) >
1
2 |Sṽ| ≥ 1

4�
implies that ei+1 − ei > 1

4� for every i ∈ [1 . . m̃ − 1]
(since otherwise the two close occurrences of Sṽ would yield

per(Sṽ) = per(Sṽ) ≤ 1
4�). Consequently, at least 1

4 |S| =
1
4m̃ length-� substrings of T∞[1 . .) have disjoint leftmost

occurrences. Since each leftmost occurrence crosses or begins

at a phrase boundary of the LZ77 parsing of T , we conclude

that z ≥ 1
4m̃, and therefore size(v) ≤ size(ṽ) = m̃ ≤ 4z.

The reasoning above shows that once a root-to-leaf path

encounters a light edge connecting a node u at depth at least

� 12�� to its child v, we have size(v) ≤ 4z. The number of

remaining light edges on the path is at most log(size(v)) ≤
2 + log z by the classic bound applied to the subtree of T
rooted at v.

Theorem III.4. Every string of length n satisfies r =
O(z log zmax(1, log n

z log z )).

Proof: To obtain tighter bounds on the number of

irreducible LCP values in [� . . 2�), we consider three cases:

1) � ≤ log z. We repeat the proof of Lemma III.1, except

that we observe that the number of light edges on

each root-to-leaf path in T is bounded by �. Thus, the
number of irreducible LCP values in [� . . 2�) is O(z�).

2) log z < � ≤ n
z . We use the bound of Lemma III.3.

3) n
z < �. We repeat the proof of Lemma III.3, except

that we observe that |S3�| ≤ n. Thus, the number of

irreducible LCP values in [� . . 2�) is O(n log z
� ).

The above upper bounds for � = 2i, i ∈ [0 . . �log n�], yield

r ≤ σ +

�logn�∑
i=0

∣∣∣{j ∈ [2 . . n] : LCP[j]∈ [2i. .2i+1),
BWT[j] �=BWT[j−1]

}∣∣∣ =
= O

(
σ+

�log log z�∑
i=0

z2i +

�log n
z �∑

i=�log log z�+1

z log z +

�logn�∑
i=�log n

z �+1

n log z
2i

)

= O
(
σ+ z log z+ z log zmax

(
0, log n

z log z

)
+ z log z

)
= O

(
z log zmax

(
1, log n

z log z

))
.

C. Upper Bound in Terms of δ

Let δ = maxnm=1
1
m |Sm| denote the substring complexity

of T [37]. Note that letting δ = sup∞m=1
1
m |Sm| is equivalent,

because |Sm| ≤ n holds for m ≥ 1, which implies 1
m |Sm| ≤

1 ≤ |S1| for m ≥ n. We start by noting that δ ≤ z because

|Sm| ≤ mz holds for every m ≥ 1, as observed in the proof

of Lemma III.1. Furthermore, |Sm| ≤ mδ holds by definition

of δ, so we can replace z with δ in the proof of Lemma III.1.

To adapt the proof Lemma III.3, we need the following

fact that generalizes the observation that T∞[1 . .) contains

at most 2z� positions covered by the leftmost occurrence

of a substring from S�. This is easy to see since the LZ77

parsing yields a set of positions (phrase boundaries) in T . The

substring complexity δ does not provide such information.

As shown below, this property nevertheless generalizes to δ.
Its proof is a straightforward modification of the argument

used in [37, Lemma 10]. For completeness, below we write

down the proof, with technical details tailored to our notation

(e.g., S� defined in terms of T∞ rather than T ).

Lemma III.5 (based on [37]). For any positive integer �,
the total number of positions in T∞[1 . .) covered by the
leftmost occurrences of strings from S� is at most 3δ�.

Proof: Let C denote the set of positions in T∞[1 . .)
covered by the leftmost occurrences of strings from S�, and
let C ′ = C\[1 . . �). For any i ∈ C ′ denote Si = T∞[i−�+1
. . i+ �], and let S = {Si : i ∈ C ′} ⊆ S2�. We will show that

|S| = |C ′|. Let i ∈ C ′. Observe first that, due to i ≥ �, the
fragment Si is entirely contained in T∞[1 . .). Furthermore,

by definition, Si contains the leftmost occurrence of some

S ∈ S�. Thus, this occurrence of Si in T∞[1 . .) must also

be the leftmost one in T∞[1 . .). Consequently, the substrings

Si for i ∈ C ′ are distinct.

We have thus shown that |C ′| = |S| ≤ |S2�|. Since |S2�| ≤
2δ� holds by definition of δ, we obtain |C| < |C ′| + � ≤
|S2�|+ � ≤ (2δ + 1)� ≤ 3δ�.

Lemma III.6. For every � ∈ [1 . . n], the number of
irreducible LCP values in [� . . 2�) is O(δ log δ).

Proof: Compared to the proof of Lemma III.3, we use

the bound |S3�| ≤ 3�δ. The only other modification needed

is that for every light edge connecting a node u at depth at

least � 12�� to its child v, we need to prove size(v) = O(δ).

Let m̃ ≥ size(v) be defined as in the proof of Lemma III.3.

Recall that we have identified at least m̃
4 strings in S�

whose leftmost occurrences in T∞[1 . .) are disjoint. By

Lemma III.5, there are at most 3δ such substrings. Thus,

size(v) ≤ m̃ ≤ 12δ.

By replacing the thresholds log z and n
z with log δ and n

δ ,

respectively, in the proof of Theorem III.4, we immediately

obtain a bound in terms of δ.

Theorem III.7. Every string of length n satisfies r =
O(δ log δmax(1, log n

δ log δ )).

Note that the trivial upper bound r = O(n) is tighter if

δ log δ > n. In Section IV, we show that a combination of

these two upper bounds is asymptotically optimal. For this,

we construct tight examples in which the values δ cover the

whole spectrum between O(1) and Ω(n).

By combining the Theorem III.7 with known properties of

the substring complexity δ, we obtain the first bound relating

the number of BWT runs in the string and its reverse. No

such bounds (even polynomial in n) were known before.

Corollary III.8. If r and r̄ denote the number of runs in
the BWT of a length-n text and its reverse, respectively, then
r̄ = O(r log rmax(1, n

r log r )).
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Proof: Since the value of δ is the same for the text

and its reverse, we obtain r̄ = O(δ log δmax(1, log n
δ log δ )).

Combining [34, Theorem 3.9] and [37, Lemma 2] gives δ ≤ r.
Consequently, we obtain r̄ = O(r log rmax(1, n

r log r )).

Our technique also lets us strengthen the bound of

Theorem II.2 on the sum of irreducible LCP values.

Theorem III.9 (♠). The sum of all irreducible LCP values
is O(n log δ).

Due to δ ≤ r, the presented upper bound is always (asymp-

totically) at least as strong as the bound of Theorem II.2;

furthermore, it can be strictly stronger since log δ = o(log r)
is possible when δ = logo(1) n. In Section IV, we construct

strings proving tightness of the new bound.

IV. LOWER BOUNDS

In this section, we present examples showing asymptotic

tightness of the upper bounds in Section III-C. We give two

constructions, corresponding to the bound of Theorem III.7

and the trivial bound r = O(n), respectively.
For � ≥ 1, let bin�(x) ∈ {0, 1}� be the binary representa-

tion of x ∈ [0 . . 2�).

Lemma IV.1 (♠). For all integers � ≥ 2 and K ≥ 1, the
length n, the substring complexity δ, and the number of runs
r in the BWT of a string T�,K ∈ {$, 0, 1, 2}+, defined with

T�,K =

⎛⎝K−1⊙
k=0

2�−1⊙
i=0

(
22

k� · bin�(i)
)⎞⎠ · $,

satisfy n = Θ(2K+��), δ = Θ(2�), and r = Ω(2��K).

Lemma IV.2 (♠). For all integers � ≥ 2 and Δ ∈
Ω(2�) ∩ O(2��), the length n, the substring complexity
δ, and the number of runs r in the BWT of a string
T ′�,Δ ∈ {$1, . . . , $Δ, 0, 1, 2}+, defined with

T ′�,Δ =

⎛⎝2�−1⊙
i=0

(
2� · bin�(i)

)⎞⎠ · $1$2 · · · $Δ,

satisfy n = Θ(2��), δ = Θ(Δ), and r = Ω(2��).

Combining Lemmas IV.1 and IV.2, we obtain the following

Theorem IV.3 (♠). For every N ≥ 1 and Δ ∈ [1 . . N ],
there is a string T whose length n, substring complexity
δ, and number of runs r in the BWT satisfy n = Θ(N),
δ = Θ(Δ), and r = Θ(min(n, δ log δmax(1, log n

δ log δ ))).

The same strings show that our upper bound O(n log δ)
on the sum of irreducible LCP values is also tight.

Theorem IV.4 (♠). For every N ≥ 1 and Δ ∈ [1 . . N ],
there is a string T whose length n, substring complexity δ,
and sum rΣ of irreducible LCP values satisfy n = Θ(N),
δ = Θ(Δ), and rΣ = Θ(n log δ).

V. CONVERTING LZ77 TO RUN LENGTH BWT

In this section, we outline an algorithm that, given the

LZ77 parsing of a text T ∈ Σn, computes its run-length

compressed BWT in O(z polylog n) time. We start with an

overview that explains the key concepts. Then, we present two

new data structures utilized in our algorithm: the compressed

string synchronizing set (Section V-A) and the compressed

wavelet tree (Section V-B). The conversion algorithm is then

presented in Section V-C.

For any substring Y of T∞, we define lpos(Y ) = min{i ∈
[1 . . n] : T∞[i . . i+ |Y |) = Y }. If Y is a substring of T

∞
,

we define lpos(Y ) by replacing T∞ in the definition with T
∞
.

We say that Y is left-maximal if there exist distinct symbols

a, b ∈ Σ such that the strings aY and bY are also substrings

of T∞. The following definition, assuming Σ∩N = ∅, plays
a key role in our construction.

Definition V.1 (BWT modulo �). Let T ∈ Σn, � ≥ 1, and
Yi = T∞[SA[i] . . SA[i] + �) for i ∈ [1 . . n]. We define the
string BWT� ∈ (Σ ∪ N)n, called the BWT modulo � (of T ),
as follows. For i ∈ [1 . . n],

BWT�[i] =

{
lpos(Yi) if Yi is left-maximal,

BWT[i] otherwise.

The algorithm runs in k = 
log n� rounds. For q ∈ [0 . . k),
the input to the qth round is RL(BWT�), where � = 2q , and
the output is RL(BWT2�). At the end of the algorithm, we

have RL(BWT2k) = RL(BWT) because X ∈ S2k is never

left-maximal for 2k ≥ n.
Informally, in round q, we are given a (run-length com-

pressed) subsequence of BWT that can be determined based

on sorting the suffixes only up to their prefixes of length 2q .
BWT�[b . . e] ∈ Σ+ implies BWT�+1[b . . e] ∈ Σ+ (because

a prefix of a left-maximal substring is left-maximal). Hence,

these subsequences need not be modified until the end of the

algorithm (except possibly merging their runs with adjacent

runs). For the remaining positions, BWT� identifies the

(leftmost occurrences of) substrings to be inspected in the qth
round with the aim of replacing their corresponding runs in

BWT� with previously unknown BWT symbols (as defined

in BWT2�).

We call a block BWT[b . . e] uniform if all symbols in

BWT[b . . e] are equal, and non-uniform otherwise. The

following lemma ensures feasibility of the above construction.

Lemma V.2. For any � ≥ 1, it holds |RL(BWT�)| < 2r.

Proof: Denote RL(BWT�) = ((c1, λ1), . . . , (ch, λh)),
letting λ0 = 0. By definition of BWT�, if ci ∈ N, then the

block BWT(λi−1 . . λi] is non-uniform. Thus, there are at

most r − 1 runs of symbols from N in BWT�.

On the other hand, ci ∈ Σ and cj ∈ Σ, with i < j, cannot
both belong to the same run in BWT. If this was true, then

either ci+1 ∈ Σ (which implies ci+1 = ci, contradicting the

definition of RL(BWT�)), or ci+1 ∈ N, which is impossible
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since then BWT(λi . . λi+1] is non-uniform. Thus, there are

at most r runs of symbols from Σ in BWT�.

A. Compressed String Synchronizing Sets

Our algorithm builds on the notion of string synchronizing
sets, recently introduced in [33]. Synchronizing sets are one

of the most powerful techniques for sampling suffixes. As

demonstrated in [36], in the uncompressed setting, they

are the key in obtaining time-optimal solutions to many

problems, and their further applications are still being

discovered [3], [33]. In this section, we introduce a notion of

compressed string synchronizing sets. Our construction is the

first implementation of synchronizing sets in the compressed

setting and thus of independent interest.

We start with the definition of basic synchronizing sets.

Definition V.3 (τ -synchronizing set [33]). Let T be a string
of length n, and let τ ∈ [1 . . �n2 �]. A set S ⊆ [1 . . n−2τ+1]
is called a τ -synchronizing set of T if it satisfies the following
consistency and density conditions:

1) If T [i . . i + 2τ) = T [j . . j + 2τ), then i ∈ S holds if
and only if j ∈ S (for i, j ∈ [1 . . n− 2τ + 1]),

2) S∩[i . . i+τ) = ∅ if and only if per(T [i . . i+3τ−2]) ≤
1
3τ (for i ∈ [1 . . n− 3τ + 2]).

In most applications, we want to minimize |S|. Observe

that the Thue–Morse sequence TTM [64] does not contain

any cube (substring of the form W 3). Thus, by density

condition, any synchronizing set S of the length-n prefix

of TTM satisfies |S| = Ω
(
n
τ

)
unless n < 3τ . Therefore, in

general, we cannot hope to achieve an upper bound improving

in the worst case upon the following one.

Theorem V.4 ([33]). For any string T of length n and
parameter τ ∈ [1 . . �n2 �], there exists a τ -synchronizing
set S of size |S| = O

(
n
τ

)
. Moreover, such S can be

(deterministically) constructed from T in O(n) time.

Storing S for compressible strings presents the following

challenge: As shown in [46], a length-n prefix of TTM

satisfies z = O(log n) and yet, as discussed above, every

synchronizing set of TTM satisfies |S| = Ω
(
n
τ

)
. Thus,

although |S| can be smaller than n
τ , z � n does not imply

|S| � n, preventing us from keeping plain S when τ = o(nz ).
We thus exploit a different property of compressible strings:

their substrings Y satisfy lpos(Y ) ∈ ⋃z
j=1(ej − |Y | . . ej ],

where ej is the last position of the jth phrase in the LZ77

parsing of T . By consistency of S, it suffices to store⋃z
j=1 S∩(ej−2τ . . ej ]. To check if i ∈ S, we then locate i′ =

lpos(T [i . . i+2τ)) and check if i′ ∈ ⋃z
j=1 S∩ (ej−2τ . . ej ].

This motivates the following (more general) definition.

Definition V.5 (Compressed τ -synchronizing set). Let S be a
τ -synchronizing set of string T [1 . . n] for some τ ∈ [1 . . �n2 �],
and, for every j ∈ [1 . . z], let ej denote the last position of
the jth phrase in the LZ77 parsing of T . For k ∈ N≥2, we

define the compressed representation of S as

compk(S) :=
z⋃

j=1

S ∩
(
ej−kτ . . ej+kτ

]
.

Next, we prove that every text T has a synchronizing set

S with a small compressed representation, and we show how

to efficiently compute such S from the LZ77 parsing of T .

1) The Nonperiodic Case: We initially assume that

per(T [i . . i+τ)) > 1
3τ holds for all i ∈ [1 . . n− τ + 1].

Theorem V.6. Let T be a string of length n and let τ ∈
[1 . . �n2 �]. Assume that per(T [i . . i+ τ)) > 1

3τ holds for all
i ∈ [1 . . n− τ + 1]. Then, for every k ∈ N≥2, there exists a
τ -synchronizing set S of T with compk(S) ≤ 12kz.

Proof: Let h : Sτ → [0, 1] be a function mapping

strings to real values in [0, 1] independently and uniformly

at random. Note that h is collision-free almost surely (with

probability 1). Let us define id : [1 . . n − τ + 1] → [0, 1]
with id(i) = h(T [i . . i + τ)). Observe that (almost surely)

id is an identifier function, that is, id(i) = id(j) holds if and

only if T [i . . i+τ) = T [j . . j+τ). In [33, Lemma 8.2], it is

proved that then

S := {i ∈ [1 . . n−2τ+1] :

min {id(j) : j ∈ [i . . i+τ ]} ∈ {id(i), id(i+τ)}}

is a τ -synchronizing set of T . Moreover, E [|S|] = O
(
n
τ

)
.

To see this, observe that, for j, j′ ∈ [i . . i+τ ], id(j) = id(j′)
implies |j′ − j| > 1

3τ (otherwise, assuming j < j′,
we have per(T [j . . j′ + τ)) ≤ 1

3τ , which contradicts

per(T [j . . j + τ)) > 1
3τ ). Thus, T [i . . i + 2τ − 1] contains

d ≥ τ
3 distinct length-τ substrings. Since each has equal

chance of having the smallest id, we have P [i ∈ S] ≤ 2
d ≤ 6

τ ,

and consequently, by linearity of expectation, E [|S|] ≤ 6n
τ .

More generally, E [|S ∩ (i . . i+ �]|] ≤ 6�
τ , and therefore

E
[
|compk(S)|

]
= E

⎡⎣∣∣∣∣∣∣
z⋃

j=1

S ∩ (ej−kτ . . ej+kτ ]

∣∣∣∣∣∣
⎤⎦

≤
z∑

j=1

E
[
|S ∩ (ej−kτ . . ej+kτ ]|

]
≤ 12kz.

In particular, |compk(S)| ≤ 12kz holds for some h.

The above proof does not lead to an efficient algorithm for

constructing S as it relies on the random assignment of unique

names to all substrings in Sτ and, since |Sτ | = Θ(zτ) holds

in the worst case, we cannot hope to achieve O(z polylog n)
time this way. Next, we prove that assigning unique names

to all elements of Sτ is in fact not necessary.

Lemma V.7. Let T be a string of length n and let τ ∈
[1 . . �n2 �]. Assume that per(T [i . . i+ τ)) > 1

3τ holds for all
i ∈ [1 . . n − τ + 1]. For i ∈ [1 . . n − τ + 1], let id(i) :=
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h(T [i . . i+ τ)), where h : Sτ → [0, 1] assigns independent
and uniformly random values.

If κ = max(1, τ
3c lnn ) for c > 1, then, with probability

at least 1− n1−c, all positions i ∈ [1 . . n− 2τ + 1] satisfy
min{id(j) : j ∈ [i . . i+ τ ]} ≤ 1

κ .

Proof: Recall from the proof of Theorem V.6 that

T [i . . i+2τ − 1] contains d ≥ τ
3 distinct length-τ substrings.

Since the values of h are independent and uniformly

distributed, we have P
[
min{id(j) : j ∈ [i . . i+ τ ]} > 1

κ

]
=(

1− 1
κ

)d ≤ exp(− d
κ ) ≤ exp(− τ

3κ ). The probability above

is trivially 0 if κ = 1, so we can bound it by n−c if

κ = max(1, τ
3c lnn ). Taking the union bound across all

positions i, we derive the final claim.

If κ is set as in the above lemma for a sufficiently large

constant c, then, with high probability, each window contains

at least one substring with a “small” identifier ≤ 1
κ . The

“large” identifiers of other substrings are never used in the

construction of the synchronizing set S and hence need not

be specified. Consequently, to carry out the randomized

construction of S using Theorem V.6, rather than choosing

a random function h : Sτ → [0, 1], it suffices to select a

random subset Ssample ⊆ Sτ with rate 1
κ (each string in

Sτ is included in Ssample independently with probability 1
κ )

and then construct a uniformly random function hsample :
Ssample → [0, 1

κ ] (mapping strings in Ssample to real values

in [0, 1
κ ] independently and uniformly at random).

Clearly, the element-wise sampling of Sτ is equivalent

to sampling the set Pleft containing the starting positions

of the leftmost occurrences of strings in Sτ . Sampling

Pleft directly is still hard, though. The key observation is

that instead of Pleft (which is difficult to compute), we

can sample (at the same rate) elements of its superset

Pclose :=
⋃z

j=1(ej − τ . . ej ], which is readily available,

and yet still sufficiently small. Let P ′sample ⊆ Pclose be a

resulting sample. We then define the desired sample with

Psample := P ′sample ∩ Pleft. Crucially, however, we have

E
[
|P ′sample|

]
= 1

κ |Pclose| ≤ 3c lnn
τ · zτ = O(z log n).

To finish the construction, it suffices to pick a random

function hsample : Ssample → [0, 1
κ ] to obtain id(i) :=

hsample(T [i . . i + τ)) (letting id(i) = 1 if T [i . . i + τ) �∈
Ssample). Then, by Lemma V.7 and the discussion above,

using hsample is with high probability equivalent to using

a uniformly random function h : Sτ → [0, 1] during the

construction behind Theorem V.6. Moreover, we can also

detect failures (that min {id(j) : j ∈ [i . . i+ τ ]} = 1 for

some i), so the algorithm is Las-Vegas randomized.

Theorem V.8 (♠). Let T be a string of length n and let
τ ∈ [1 . . �n2 �]. Assume that per(T [i . . i+ τ)) > 1

3τ holds for
all i ∈ [1 . . n− τ +1]. There exists a Las-Vegas randomized
algorithm that, for any constant k ∈ N≥2, given the LZ77
parsing of T , constructs in O(z log5 n) time a compressed

representation compk(S) of a τ -synchronizing set S of T
satisfying compk(S) ≤ 24kz.

2) The General Case: Periodic fragments are handled

similarly as in [33]. This yields the following two results,

which constitute the main outcome of this section.

Theorem V.9 (♠). Let T be a string of length n and let τ ∈
[1 . . �n2 �]. For any k ∈ N≥2, there exists a τ -synchronizing
set S of T satisfying compk(S) ≤ 36kz.

Theorem V.10 (♠). Let T be a string of length n and
let τ ∈ [1 . . �n2 �]. There exists a Las-Vegas randomized
algorithm that, for any constant k∈N≥2, given the LZ77
parsing of T , constructs in O(z log5 n) time a compressed
representation compk(S) of a τ -synchronizing set S of T
satisfying |compk(S)| ≤ 72kz.

B. Compressed Wavelet Trees
Along with string synchronizing sets, wavelet trees [28],

originally invented for text indexing, play a central role

in our algorithm. Unlike virtually all prior applications of

wavelet trees, ours uses a sequence of very long strings (up to

Θ(n) symbols). This approach is feasible since all strings are

substrings of the text, which is stored in the LZ77-compressed

form. In this section, we describe this novel variant of wavelet

trees, dubbed here compressed wavelet trees. In particular,

we prove the upper bound on their size, describe an efficient

construction from the LZ77-compressed text, and show how

to augment them to support some fundamental queries.
Let Σ be an alphabet of size σ ≥ 1. Consider a string

W [1 . .m] over the alphabet Σ� so that W is a sequence

of m ≥ 0 strings of length � ≥ 0 over the alphabet Σ.

The wavelet tree of W is defined as follows. Let T be a

perfect σ-ary rooted tree of height � with edges labelled by

symbols of Σ such that, for every Y ∈ Σ�, there exists a root-

to-leaf path in T whose edges are labelled Y [1], . . . , Y [�].
We define the label of a node as the concatenation of the

edge labels on the path from the root. For X ∈ Σd, where

d ∈ [0 . . �], by vX we denote the node of T labelled X . We

let V (T ) = ⋃�
d=0{vX : X ∈ Σd} denote the node set of T .

With each node vX ∈ V (T ) we associate an increasing

sequence IX [1 . . h] of primary indices such that

{IX [i] : i ∈ [1 . . h]} = {j ∈ [1 . .m] : W [j][1 . . |X|] = X}.
Based on IX , we define BX ∈ Σ∗ such that, for i ∈ [1 . . h],

BX [i] = W [IX [i]][|X|+ 1],

if |X| < � and BX = ε if |X| = �. In other words, BX is

a string containing the symbol at position |X|+ 1 for each

string of W that is prefixed by X . Importantly, the symbols

in BX occur in the same order as these strings occur in W .
As typically done in the applications of wavelet trees, we

only explicitly store the strings BX . The values of primary

indices IX are retrieved using additional data structures,

based on the following observation.
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Lemma V.11 ([28]). Let X ∈ Σd, where d ∈ [0 . . �). For
every c ∈ Σ and j ∈ [1 . . |IXc|], we have IXc[j] = IX [i],
where BX [i] is the jth occurrence of c in BX .

We define the compressed wavelet tree Tc of W as

the wavelet tree of W in which all strings BX have

been run-length compressed and, with the exception of

{vε} ∪ {vW [i]}mi=1, all nodes vX satisfying |RL(BX)| ≤ 1,
have been removed (the unary paths are collapsed into single

edges). The shape and edge labels of the resulting tree are

identical to the compact trie of strings W [1], . . . ,W [m].
We store edge labels of Tc as pointers to substrings in W .

We assume that values of � and m fit into a single machine

word so that each edge of Tc and each element of RL(BX)
can be encoded in O(1) space. Since |RL(BY )| ≥ 1 holds

for every internal node vY ∈ V (Tc), and unless |V (Tc)| = 1,
each leaf vZ in Tc can be injectively mapped to an element

of RL(BZ′) for the parent vZ′ of vZ , the space to store Tc
is dominated by the run-length compressed strings BX , i.e.,

Tc needs O(1 +
∑

vX∈V (Tc) |RL(BX)|) space.

Theorem V.12. Let W be a non-empty sequence of equal-
length strings and let Tc be its compressed wavelet tree. Then,∑

vX∈V (Tc) |RL(BX)| = O(1 + |RL(W )| log |RL(W )|).
Proof: Let m = |W |, k = |RL(W )| ≤ m, and k′ =

|{W [i] : i ∈ [1 . .m]}| ≤ k. Due to |V (Tc)| ≤ 2k′ = O(k),
we can focus on nodes vX ∈ V (Tc) such that |RL(BX)| ≥ 2.

The proof resembles that of Lemma III.1. With each X ∈
Σ∗ such that |RL(BX)| ≥ 2, we associate |RL(BX)| − 1
units of cost and charge them to individual elements of W .

We then show that each run in RL(W ) is in total charged

at most 2 log k′ units of cost. Consequently,∑
vX∈V (Tc)
|RL(BX)|≥2

|RL(BX)| ≤ 4k log k′ = O(k log k).

Consider X ∈ Σd with |RL(BX)| ≥ 2; note that d < �.
Let RL(BX) = ((c1, λ1), . . . , (ch, λh)). Observe that if we

let p0 = IX [λi] and p1 = IX [λi + 1] for some i ∈ [1 . . h),
then W [p0][d + 1] = ci �= ci+1 = W [p1][d + 1]. Moreover,

BX [λi] �= BX [λi + 1] implies W [p0 + 1] �= W [p0] and

W [p1 − 1] �= W [p1]. The ith unit of cost is charged to

W [pt], where t ∈ {0, 1} is chosen depending on the sizes

of subtrees of Tc rooted at the children of vX , so that the

subtree containing vW [pt] has at most as many leaves as the

subtree containing vW [p1−t].

Now, consider a run W [b . . b′] = Y δ in RL(W ). For a

single depth d, the run could be charged at most twice, with

at most one unit assigned to W [b] due to p1 = b and at

most one unit assigned to W [b′] due to p0 = b′, both for

X = Y [1 . . d]. Moreover, note that the subtree size on the

path from vY to the root vε of Tc doubles for every depth d
for which the run was charged. Thus, the total charge of the

run is at most 2 log k′ units.

Let W [1 . .m] be a sequence of substrings of T∞ of the

same length �. Observe that if we have access to T , then the

sequence W can be compactly encoded in O(1 + |RL(W )|)
space. Namely, it suffices to store the length � and the

sequence RL((lpos(W [i]))i∈[1. .m]). If W is a sequence

of substrings of T
∞
, we can similarly encode it using

RL((lpos(W [i]))i∈[1. .m]).
The key operation that we want to support on Tc, given

a pointer to vX ∈ V (Tc) and an integer q ∈ [1 . . |IX |], is
to compute the value IX [q]. The following theorem shows

that given the compact encoding of W and the LZ77 parsing

of T , the compressed wavelet tree of W supporting these

primary index queries can be constructed efficiently.

Theorem V.13 (♠). Given the LZ77 parsing of T [1 . . n]
and a sequence W [1 . .m] of m ≤ n same-length substrings
of T∞ (resp. T

∞
), represented as RL((lpos(W [i]))i∈[1. .m])

(resp. RL((lpos(W [i]))i∈[1. .m])), the compressed wavelet
tree of W , supporting primary index queries in O(log4 n)
time, can be constructed in O((z + |RL(W )|) log2 n) time.

C. The Algorithm
We are now ready to show how to construct the sequences

RL(BWT�), where � = 2q for q ∈ [0 . . 
log n�].
For small �, constructing RL(BWT�) reduces to sorting

and computing frequencies of length-Θ(�) substrings of T∞.

Proposition V.14 (♠). Let � = O(1). Given the LZ77 parsing
of T [1 . . n], the sequence RL(BWT�) can be constructed in
O(z log4 n) time.

Let q ≥ 4. We show how to compute RL(BWT2�), given
the LZ77 parsing of T and RL(BWT�). The main idea of

the algorithm is as follows.
Let S be a τ -synchronizing set of T , where τ = � �3�.

As noted earlier, BWT�[j] ∈ Σ implies BWT2�[j] ∈ Σ.

Let BWT�[y . . y
′] ∈ N

+ be a run in BWT�. By definition of

BWT�, the suffixes of T∞ starting at positions i ∈ SA[y . . y′]
share a common prefix of length � ≥ 3τ . Thus, assuming that

S ∩ [i . . i+ τ) �= ∅ holds for all i∈ SA[y . . y′] (the periodic

case is handled separately), by the consistency of S, all

text positions i∈ SA[y . . y′] share a common offset Δ with

i+Δ = min(S ∩ [i . . i+ τ)). This lets us deduce the order

of length-2� prefixes T [i . . i+2�) based on the order of

strings T [i+Δ . . i+2�) starting at synchronizing positions.

For this, from the sorted list of fragments T [s . . s+2�−Δ)
across s ∈ S, we extract, using a wavelet tree, those

preceded by T [i . . i+Δ) (a prefix common to T∞[i . .) for

i ∈ SA[y . . y′]). Importantly, the synchronizing positions s
sharing T [s− � . . s+2�) can be processed together; hence,

by Theorem V.9, it suffices to use O(z) distinct substrings.
We formalize these ideas as follows. Let

R =
{
i ∈ [1 . . n− 3τ +2] : per (T [i . . i+3τ − 2]) ≤ 1

3τ
}
.

The description of the algorithm is divided into the nonperi-

odic case (when R = ∅) and the general case.
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1) The Nonperiodic Case: Let (s′i)i∈[1. .|S|] be the se-

quence containing all positions in S such that i < j holds if

• T∞[s′i . . s
′
i + 7τ) ≺ T∞[s′j . . s

′
j + 7τ), or

• T∞[s′i . . s
′
i + 7τ) = T∞[s′j . . s

′
j + 7τ) and

T∞[s′i − τ . . s′i) ≺ T∞[s′j − τ . . s′j).

Based on (s′i)i∈[1. .|S|], we define three length-|S| sequences.
For i ∈ [1 . . |S|], we set

W̃ [i] = T∞[s′i − τ . . s′i + 7τ),

W [i] = T∞[s′i − τ . . s′i),

W ′[i] = T∞[s′i . . s
′
i + 7τ).

Recall that we can compactly represent W̃ in O(1 +

|RL(W̃ )|) space using RL((lpos(W̃ [j]))j∈[1. .|S|]). The se-

quences W and W ′ can be represented analogously, except

that we use RL((lpos(W [j]))j∈[1. .|S|]) for W .

Lemma V.15. The sequences W̃ , W , and W ′ defined above
satisfy |RL(W )|, |RL(W ′)| ≤ |RL(W̃ )| ≤ |comp7(S)|.

Proof: For the first inequality, note that W̃ [i] = W̃ [i+1]
implies W [i] = W [i+ 1] and W ′[i] = W ′[i+ 1].

Let RL(W̃ ) = ((R1, λ1), . . . , (Rh, λh)). Observe that i �=
j implies Ri �= Rj . For i ∈ [1 . . h], let T∞[p−τ . . p+7τ) be
the occurrence of Ri in T∞ that minimizes p ∈ [1 . . n]. Then,
there exists j ∈ [1 . . z] such that ej−8τ < p−τ ≤ ej . By the

consistency of S, we conclude that p ∈ S∩(ej−7τ . . ej+τ ] ⊆
comp7(S). The claim follows, since this map is injective.

Importantly, the compact representations of W̃ , W , and

W ′ can be computed efficiently.

Lemma V.16 (♠). Given comp7(S) and the LZ77 parsing
of T , the compact representations of W̃ , W , and W ′ can be
constructed in O(z log4 n+ |comp7(S)| log3 n) time.

Next, we recall the notion of distinguishing prefixes,
originally introduced in [33], that allows mapping each suffix

T∞[i . .) to the corresponding node of the wavelet tree of W .

Definition V.17 (Distinguishing prefix). For any position
i ∈ [1 . .max(S∪{0})], let isucc = min{j ∈ S : j ≥ i}. The
distinguishing prefix of T [i . . n] is Di = T [i . . isucc + 2τ).

Let D = {Dj : j ∈ [1 . .max(S ∪ {0})]}. Note that

if Y starts with D ∈ D, then, for every occurrence

T∞[i . . i+|Y |) = Y with i ∈ [1 . . n], the distinguishing pre-

fix Di is defined and satisfies Di = D.2 Thus, for any such Y ,

we define DY = D. We denote D′Y = DY [1 . . |DY |−2τ ].
We now present the key lemma used in our algorithm.

Assume that we have constructed a wavelet tree of W .

Lemma V.18. Let Y be a string starting with an element
of D. Denote Y = XX ′, where X = D′Y , and assume

2Here, we utilize the assumption that T [n] = $. For this reason, if Y
contains $, then T∞[i . . i+|Y |) = Y for at most one index i ∈ [1 . . n].

that |X| < τ and |X ′| ≤ 7τ . Let [y . . y′] be the range of all
indices i such that T∞[SA[i] . .] starts with Y for i ∈ [y . . y′].

Let W ′[f . . f ′] be the range containing all elements of W ′

prefixed with the string X ′, and let [b . . b′] = {i ∈ [1 . . |IX |] :
IX [i] ∈ [f . . f ′]}. Then

1) BX [b . . b′] and BWT[y . . y′] are equal as multisets.
2) |RL(BX [b . . b′])| ≤ 3|RL(BWT[y . . y′])|.

Proof: 1. Due to T [n] = $, by the consistency of S,
there is a one-to-one correspondence between the occurrences

of Y in T∞ starting in [1 . . n], and positions s ∈ S satisfying

(a) T∞[s . . s+ |X ′|) = X ′, and (b) T∞[s− |X| . . s) = X .

Let us interpret the process of identifying the subsequence

of (s′i)i∈[1. .|S|] containing all such s as a two-step search.

First, we note that s′i ∈ S satisfies condition (a) if and only

if i ∈ [f . . f ′]. We refer to the process of identifying the

range [f . . f ′] as the forward search. Then, to additionally

satisfy (b), we select a subsequence of W [f . . f ′] containing
only strings ending with X (backward search). By definition

of [b . . b′], such subsequence is given by IX [b . . b′], and

moreover, BX [b . . b′] contains symbols preceding suffix X
in all W [f . . f ′] having X as a suffix. This yields the claim.

2. Let Ỹ be any substring of T∞ such that Y is a prefix

of Ỹ and |Ỹ | = |X|+ 7τ . Let [ỹ . . ỹ′], [f̃ . . f̃ ′], and [̃b . . b̃′]
be the ranges (as in the lemma statement) for Ỹ . Since Y is

a prefix of Ỹ and D
˜Y = DY , we obtain [ỹ . . ỹ′] ⊆ [y . . y′],

[f̃ . . f̃ ′] ⊆ [f . . f ′], and [̃b . . b̃′] ⊆ [b . . b′]. Moreover, by

definition of IX , the range [b . . b′] is a disjoint union of

ranges [̃b . . b̃′] corresponding to all choices of Ỹ .

Since |Ỹ | − |X| = 7τ implies |RL(W ′[f̃ . . f̃ ′])| = 1, the
symbols in BX [̃b . . b̃′] appear in the nondecreasing order.

Consequently, BX [b . . b′] can be obtained by partitioning

BWT[y . . y′] into blocks corresponding to all Ỹ , and sorting

the symbols in each block. If BWT[y . . y′] initially contains

k runs, this adds at most 2(k − 1) new runs.

Let BWT�[y . . y
′] = cδ ∈ N

+ be a run in BWT�, and let

Y = T∞[c . . c + �). Since Y is left-maximal, c + � ≤ n.
Thus, by 3τ ≤ � and R = ∅, we obtain [c . . c+ τ) ∩ S �= ∅.
Moreover, if Y = XX ′ is such that |X| = Δ, where

c+Δ = min(S ∩ [c . . c+ τ)),

then D′Y = X . Since we also have |X ′| ≤ 2� ≤ 7τ (due to

q ≥ 4), Lemma V.18 holds for Y . Let [b . . b′] be the range

of BX corresponding to Y through Lemma V.18. Then,

|RL(BX)| > 1. Moreover:

• For every j ∈ [0 . . δ) such that BWT2�[y + j] ∈ Σ, the

following equality holds: BWT2�[y + j] = BX [b + j].

To see this, apply Lemma V.18 to all strings Ỹ ∈
Y := {T∞[SA[j] . . SA[j] + 2�) : j ∈ [y . . y′]} ordered

lexicographically. Since D
˜Y = DY , the corresponding

ranges [̃b . . b̃′] form a left-to-right partition of [b . . b′].
Thus, if Ỹ is not left-maximal, its BWT block is

BWT[ỹ . . ỹ′] = BX [̃b . . b̃′].
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• On the other hand, if c′ = BWT2�[y+ j] ∈ N holds for

some j ∈ [0 . . δ), then the string BX [̃b . . b̃′] correspond-
ing (through Lemma V.18) to Ỹ = T∞[c′ . . c′ + 2�) ∈
Y is not unary, i.e., there exists an index b̂ ∈ [̃b . . b̃′)
satisfying BX [b̂] �= BX [b̂ + 1], and lcp(W ′[IX [b̂]],

W ′[IX [b̂+ 1]]) ≥ 2� − |X|. The converse is also

true: if b̂ ∈ [b . . b′) satisfies the two conditions, then

BWT2�[y + (b̂− b)] ∈ N. Consequently, the set of left-

maximal strings in Y is

{X ·W ′[IX [b̂]][1 . . 2�−|X|] :
b̂ ∈ [b . . b′), BX [b̂] �= BX [b̂+ 1], and

lcp(W ′[IX [b̂]],W ′[IX [b̂+ 1]]) ≥ 2�− |X|}.

Moreover, letting Ỹ = X · W ′[IX [b̂]][1 . . 2�−|X|]
for any b̂ satisfying the above conditions, the range

[ỹ . . ỹ′] = {j ∈ [1 . . n] : T∞[SA[j] . . SA[j]+2�) = Ỹ }
satisfies [ỹ . . ỹ′] = y − b + [̃b . . b̃′], where BX [̃b . . b̃′]
corresponds to Ỹ through Lemma V.18.

The algorithm processing a run BWT�[y . . y
′] = cδ ∈ N

+

is thus as follows. Letting Y = T∞[c . . c+ �) and X = D′Y ,

we first compute |X| and the pointer to vX . We then perform

a single forward and backward search to find the ranges

[f . . f ′] and [b . . b′] for Y . Given these, the computation

of BWT2�[y . . y
′] is achieved by a series of forward and

backward searches (at most one per run of BX [b . . b′]).
The length |X| is computed using comp7(S). The pointers

to vX are precomputed since |RL(BX)| > 1 implies vX ∈
V (Tc). To implement a forward search, we use LCE queries

on T . A backward search is implemented using primary

index queries on the wavelet tree of W . We thus obtain:

Proposition V.19 (♠). Let T be a string of length n, and
let � = 2q be such that q ∈ [4 . . 
log n�). If R = ∅, then,
given RL(BWT�) and the LZ77 parsing of T , the sequence
RL(BWT2�) can be constructed in O((r + z) log5 n) time.

2) The General Case: Periodic fragments are handled

similarly as in the BWT construction in [33], resulting in

the following algorithm.

Proposition V.20 (♠). Let T be a string of length n,
and let � = 2q be such that q ∈ [4 . . 
log n�). Then,
given RL(BWT�) and the LZ77 parsing of T , the sequence
RL(BWT2�) can be constructed in O((r + z) log5 n) time.

By Proposition V.14 we can compute BWT� for � =
2q and q < 4 in O(z log4 n) time. For q ≥ 4, we use

Proposition V.20. Thus, by the upper bound r = O(z log2 n)
from Theorem III.2, we obtain the main result of this section.

Theorem V.21. There exists a Las-Vegas randomized algo-
rithm that, given the LZ77 parsing of a text T of length n,
computes its run-length compressed Burrows–Wheeler trans-
form in O((r + z) log6 n) = O(z log8 n) time.
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