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Abstract. We prove that it is NP-complete to decide whether a given
string can be factored into palindromes that are each unique in the fac-
torization.

1 Introduction

Several papers have appeared on the subject of palindromic factorization. The
palindromic length of a string is the minimum number of palindromic substrings
into which the string can be factored. Notice that, since a single symbol is a
palindrome, the palindromic length of a string is always defined and at most
the length of the string. Ravsky [8] proved a tight bound on the maximum
palindromic length of a binary string in terms of its length. Frid, Puzynina,
and Zamboni [4] conjectured that any infinite string in which the palindromic
length of any finite substring is bounded, is ultimately periodic. Their work led
other researchers to consider how to efficiently compute a string’s palindromic
length and give a minimum palindromic factorization. It is not difficult to design
a quadratic-time algorithm that uses linear space, but doing better than that
seems to require some string combinatorics.

Alatabbi, Iliopoulos and Rahman [1] first gave a linear-time algorithm for
computing a minimum factorization into maximal palindromes, if such a fac-
torization exists. Notice that abaca cannot be factored into maximal palin-
dromes, for example, because its maximal palindromes are a, aba, a, aca and a.
Fici, Gagie, Kärkkäinen and Kempa [3] and I, Sugimoto, Inenaga, Bannai and
Takeda [6] independently then described essentially the same O(n log n)-time
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algorithm for computing a minimum palindromic factorization. Shortly there-
after, Kosolobov, Rubinchik and Shur [7] gave an algorithm for recognizing
strings with a given palindromic length. Their result can be used to compute
the palindromic length � of a string of length n in O(n� log �) time. We also note
that Gawrychowski and Uznański [5] used similar techniques as Fici et al. and I
et al., for finding approximately the longest palindrome in a stream.

We call a factorization diverse if each of the factors is unique. Some well-
known factorizations, such as the LZ77 [10] and LZ78 [11] parses, are diverse
(except that the last factor may have appeared before). Fernau, Manea, Mercaş
and Schmid [2] very recently proved that it is NP-complete to determine whether
a given string has a diverse factorization of size at least k. It seems natural
to consider the problem of determining whether a given string has a diverse
factorization into palindromes. For example, bgikkpps and bgikpspk each have
exactly one such factorization — i.e., (b, g, i, kk, pp, s) and (b, g, i, kpspk),
respectively — but bgkpispk has none. This problem is obviously in NP and in
this paper we prove that it is NP-hard and, thus, NP-complete. Some people
might dismiss as doubly useless a lower bound for a problem with no apparent
application; nevertheless, we feel the proof is pretty (albeit somewhat intricate)
and we would like to share it. We conjecture that it is also NP-complete to
determine whether a given string has a palindromic factorization in which each
factor appears at most a given number k > 1 times.

2 Outline

The circuit satisfiability problem was one of the first to be proven NP-complete
and is often the first taught in undergraduate courses. It asks whether a given
Boolean circuit C is satisfiable, i.e., has an assignment to its inputs that makes
its single output true. We will show how to build, in time linear in the size
of C, a string that has a diverse palindromic factorization if and only if C is
satisfiable. It follows that diverse palindromic factorization is also NP-hard. Our
construction is similar to the Tseitin Transform [9] from Boolean circuits to CNF
formulas.

Because AND, OR and NOT gates can be implemented with a constant
number of NAND gates, we assume without loss of generality that C is composed
only of NAND gates with two inputs and one output each, and splitters that each
divide one wire into two. Furthermore, we assume each wire in C is labelled with
a unique symbol (considering a split to be the end of an incoming wire and the
beginning of two new wires, so all three wires have different labels). For each such
symbol a, and some auxiliary symbols we introduce during our construction, we
use as characters in our construction three related symbols: a itself, ā and xa.
We indicate an auxiliary symbol related to a by writing a′ or a′′. We write xj

a to
denote j copies of xa. We emphasize that, despite their visual similarity, a and
ā are separate characters, which play complementary roles in our reduction. We
use $ and # as generic separator symbols, which we consider to be distinct for
each use; to prevent confusion, we add different superscripts to their different
uses within the same part of the construction.
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We can build a sequence C0, . . . , Ct of subcircuits such that C0 is empty,
Ct = C and, for 1 ≤ i ≤ t, we obtain Ci from Ci−1 by one of the following
operations:

– adding a new wire (which is both an input and an output in Ci),
– splitting an output of Ci−1 into two outputs,
– making two outputs of Ci−1 the inputs of a new NAND gate.

We will show how to build in time linear in the size of C, inductively and in
turn, a sequence of strings S1, . . . , St such that Si represents Ci according to the
following definitions:

Definition 1. A diverse palindromic factorization P of a string Si encodes an
assignment τ to the inputs of a circuit Ci if the following conditions hold:

– if τ makes an output of Ci labelled a true, then a, xa and xaāxa are complete
factors in P but ā, xaaxa and xj

a are not for j > 1;
– if τ makes an output of Ci labelled a false, then ā, xa and xaaxa are complete

factors in P but a, xaāxa and xj
a are not for j > 1;

– if a is a label in C but not in Ci, then none of a, ā, xaaxa, xaāxa and xj
a

for j ≥ 1 are complete factors in P .

Definition 2. A string Si represents a circuit Ci if each assignment to the
inputs of Ci is encoded by some diverse palindromic factorization of Si, and each
diverse palindromic factorization of Si encodes some assignment to the inputs
of Ci.

Once we have St, we can easily build in constant time a string S that has
a diverse palindromic factorization if and only if C is satisfiable. To do this, we
append $#xaaxa to St, where $ and # are symbols not occurring in St and
a is the label on C’s output. Since $ and # do not occur in St and occur as
a pair of consecutive characters in S, they must each be complete factors in
any palindromic factorization of S. It follows that there is a diverse palindromic
factorization of S if and only if there is a diverse palindromic factorization of
St in which xaaxa is not a factor, which is the case if and only if there is an
assignment to the inputs of C that makes its output true.

3 Adding a Wire

Suppose Ci is obtained from Ci−1 by adding a new wire labelled a. If i = 1
then we set Si = xaaxaāxa, whose two diverse palindromic factorizations
(xa, a, xaāxa) and (xaaxa, ā, xa) encode the assignments true and false to
the wire labelled a, which is both the input and output in Ci. If i > 1 then we
set

Si = Si−1 $#xaaxaāxa ,

where $ and # are symbols not occurring in Si−1 and not equal to a′, a′ or xa′

for any label a′ in C.
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Since $ and # do not occur in Si−1 and occur as a pair of consecu-
tive characters in Si, they must each be complete factors in any palindromic
factorization of Si. Therefore, any diverse palindromic factorization of Si is
the concatenation of a diverse palindromic factorization of Si−1 and either
($, #, xa, a, xaāxa) or ($, #, xaaxa, ā, xa). Conversely, any diverse palin-
dromic factorization of Si−1 can be extended to a diverse palindromic factoriza-
tion of Si by appending either ($, #, xa, a, xaāxa) or ($, #, xaaxa, ā, xa).

Assume Si−1 represents Ci−1. Let τ be an assignment to the inputs of Ci

and let P be a diverse palindromic factorization of Si−1 encoding τ restricted
to the inputs of Ci−1. If τ makes the input (and output) of Ci labelled a true,
then P concatenated with ($, #, xa, a, xaāxa) is a diverse palindromic factor-
ization of Si that encodes τ . If τ makes that input false, then P concatenated
with ($, #, xaaxa, ā, xa) is a diverse palindromic factorization of Si that
encodes τ . Therefore, each assignment to the inputs of Ci is encoded by some
diverse palindromic factorization of Si.

Now let P be a diverse palindromic factorization of Si and let τ be the
assignment to the inputs of Ci−1 that is encoded by a prefix of P . If P ends
with ($, #, xa, a, xaāxa) then P encodes the assignment to the inputs of
Ci that makes the input labelled a true and makes the other inputs true or
false according to τ . If P ends with ($, #, xaaxa, ā, xa) then P encodes the
assignment to the inputs of Ci that makes the input labelled a false and makes
the other inputs true or false according to τ . Therefore, each diverse palindromic
factorization of Si encodes some assignment to the inputs of Ci.

Lemma 1. We can build a string S1 that represents C1. If we have a string
Si−1 that represents Ci−1 and Ci is obtained from Ci−1 by adding a new wire,
then in constant time we can append symbols to Si−1 to obtain a string Si that
represents Ci.

4 Splitting a Wire

Now suppose Ci is obtained from Ci−1 by splitting an output of Ci−1 labelled a
into two outputs labelled b and c. We set

S′
i = Si−1 $#x3

ab′xaaxac′x5
a $′#′ x7

ab′xaāxac′x9
a ,

where $, $′, #, #′, b′, b′, c′ and c′ are symbols not occurring in Si−1 and not
equal to a′, a′ or xa′ for any label a′ in C.

Since $, $′, # and #′ do not occur in Si−1 and occur as pairs of consecutive
characters in S′

i, they must each be complete factors in any palindromic factoriza-
tion of S′

i. Therefore, a simple case analysis shows that any diverse palindromic
factorization of S′

i is the concatenation of a diverse palindromic factorization of
Si−1 and one of
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($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x2
a, x4

a, xab′xa, ā, xac′xa, x8
a) ,

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x4
a, x2

a, xab′xa, ā, xac′xa, x8
a) ,

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x6
a, xab′xa, ā, xac′xa, x8

a) ,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x3

a, x6
a) ,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x6

a, x3
a) ,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x9

a) .

In any diverse palindromic factorization of S′
i, therefore, either b′ and c′ are

complete factors but b′ and c′ are not, or vice versa.
Conversely, any diverse palindromic factorization of Si−1 in which a, xa and

xaāxa are complete factors but ā, xaaxa and xj
a are not for j > 1, can be

extended to a diverse palindromic factorization of S′
i by appending either of

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x2
a, x4

a, xab′xa, ā, xac′xa, x8
a) ,

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x6
a, xab′xa, ā, xac′xa, x8

a) ;

any diverse palindromic factorization of Si−1 in which ā, xa and xaaxa are
complete factors but a, xaāxa and xj

a are not for j > 1, can be extended to a
diverse palindromic factorization of S′

i by appending either of

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x3

a, x6
a) ,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x9

a) .

We set

Si = S′
i $′′#′′ xbbxbb

′xbb′xbb̄xb $′′′#′′′ xccxcc
′xcc′xcc̄xc ,

where $′′, $′′′, #′′ and #′′′ are symbols not occurring in S′
i and not equal to a′,

a′ or xa′ for any label a′ in C. Since $′′, $′′′, #′′ and #′′′ do not occur in S′
i

and occur as pairs of consecutive characters in S′
i, they must each be complete

factors in any palindromic factorization of Si. Therefore, any diverse palindromic
factorization of Si is the concatenation of a diverse palindromic factorization of
S′

i and one of

($′′, #′′, xb, b, xbb
′xb, b′, xbb̄xb, $′′′, #′′′, xc, c, xcc

′xc, c′, xcc̄xc) ,

($′′, #′′, xbbxb, b′, xbb′xb, b̄, xb, $′′′, #′′′, xccxc, c′, xcc′xc, c̄, xc) .

Conversely, any diverse palindromic factorization of S′
i in which b′ and c′ are

complete factors but b′ and c′ are not, can be extended to a diverse palindromic
factorization of Si by appending

($′′, #′′, xb, b, xbb
′xb, b′, xbb̄xb, $′′′, #′′′, xc, c, xcc

′xc, c′, xcc̄xc) ;

any diverse palindromic factorization of S′
i in which b′ and c′ are complete factors

but b′ and c′ are not, can be extended to a diverse palindromic factorization of
Si by appending

($′′, #′′, xbbxb, b′, xbb′xb, b̄, xb, $′′′, #′′′, xccxc, c′, xcc′xc, c̄, xc) .
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Assume Si−1 represents Ci−1. Let τ be an assignment to the inputs of Ci−1

and let P be a diverse palindromic factorization of Si−1 encoding τ . If τ makes
the output of Ci−1 labelled a true, then P concatenated with, e.g.,

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x2
a, x4

a, xab′xa, ā, xac′xa, x8
a,

$′′, #′′, xb, b, xbb
′xb, b′, xbb̄xb, $′′′, #′′′, xc, c, xcc

′xc, c′, xcc̄xc)

is a diverse palindromic factorization of Si. Notice b, c, xb, xc, xbb̄xb and xcc̄xc

are complete factors but b̄, c̄, xbbxb, xccxc, xj
b and xj

c for j > 1 are not. Therefore,
this concatenation encodes the assignment to the inputs of Ci that makes them
true or false according to τ .

If τ makes the output of Ci−1 labelled a false, then P concatenated with,
e.g.,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x3

a, x6
a,

$′′, #′′, xbbxb, b′, xbb′xb, b̄, xb, $′′′, #′′′, xccxc, c′, xcc′xc, c̄, xc)

is a diverse palindromic factorization of Si. Notice b̄, c̄, xb, xc, xbbxb and xccxc are
complete factors but b, c, xbb̄xb, xcc̄xc, xj

b and xj
c for j > 1 are not. Therefore, this

concatenation encodes the assignment to the inputs of Ci that makes them true
or false according to τ . Since Ci−1 and Ci have the same inputs, each assignment
to the inputs of Ci is encoded by some diverse palindromic factorization of Si.

Now let P be a diverse palindromic factorization of Si and let τ be the
assignment to the inputs of Ci−1 that is encoded by a prefix of P . If P ends with
any of

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x2
a, x4

a, xab′xa, ā, xac′xa, x8
a) ,

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x4
a, x2

a, xab′xa, ā, xac′xa, x8
a) ,

($, #, x3
a, b′, xaaxa, c′, x5

a, $′, #′, x6
a, xab′xa, ā, xac′xa, x8

a)

followed by

($′′, #′′, xb, b, xbb
′xb, b′, xbb̄xb, $′′′, #′′′, xc, c, xcc

′xc, c′, xcc̄xc) ,

then a must be a complete factor in the prefix of P encoding τ , so τ must make
the output of Ci−1 labelled a true. Since b, c, xb, xc, xbb̄xb and xcc̄xc are complete
factors in P but b̄, c̄, xbbxb, xccxc, xj

b and xj
c for j > 1 are not, P encodes the

assignment to the inputs of Ci that makes them true or false according to τ .
If P ends with any of

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x3

a, x6
a) ,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x6

a, x3
a) ,

($, #, x2
a, xab′xa, a, xac′xa, x4

a, $′, #′, x7
a, b′, xaāxa, c′, x9

a)

followed by

($′′, #′′, xbbxb, b′, xbb′xb, b̄, xb, $′′′, #′′′, xccxc, c′, xcc′xc, c̄, xc) ,
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then ā must be a complete factor in the prefix of P encoding τ , so τ must
make the output of Ci−1 labelled a false. Since b̄, c̄, xb, xc, xbbxb and xccxc are
complete factors but b, c, xbb̄xb, xcc̄xc, xj

b and xj
c for j > 1 are not, P encodes

the assignment to the inputs of Ci that makes them true or false according to τ .
Since these are all the possibilities for how P can end, each diverse palin-

dromic factorization of Si encodes some assignment to the inputs of Ci. This
gives us the following lemma:

Lemma 2. If we have a string Si−1 that represents Ci−1 and Ci is obtained
from Ci−1 by splitting an output of Ci−1 into two outputs, then in constant time
we can append symbols to Si−1 to obtain a string Si that represents Ci.

5 Adding a NAND Gate

Finally, suppose Ci is obtained from Ci−1 by making two outputs of Ci−1 labelled
a and b the inputs of a new NAND gate whose output is labelled c. Let C ′

i−1 be
the circuit obtained from Ci−1 by splitting the output of Ci−1 labelled a into
two outputs labelled a1 and a2, where a1 and a2 are symbols we use only here.
Assuming Si−1 represents Ci−1, we can use Lemma 2 to build in constant time
a string S′

i−1 representing C ′
i−1. We set

S′
i = S′

i−1 $#x3
c′a′

1xc′a1xc′a1xc′a′
1x

5
c′

$′#′ x7
c′a′

2xc′a2xc′a2xc′a′
2x

9
c′

$′′#′′ x11
c′ b′xc′bxc′ b̄xc′b′x13

c′ ,

where all of the symbols in the suffix after S′
i−1 are ones we use only here.

Since $, $′, $′′, $′′′, # and #′ do not occur in Si−1 and occur as pairs of
consecutive characters in S′

i, they must each be complete factors in any palin-
dromic factorization of S′

i. Therefore, any diverse palindromic factorization of
S′

i consists of

1. a diverse palindromic factorization of S′
i−1,

2. ($, #),
3. a diverse palindromic factorization of x3

c′a′
1xc′a1xc′a1xc′a′

1x
5
c′ ,

4. ($′, #′),
5. a diverse palindromic factorization of x7

c′a′
2xc′a2xc′a2xc′a′

2x
9
c′ ,

6. ($′′, #′′),
7. a diverse palindromic factorization of x11

c′ b′xc′bxc′ b̄xc′b′x13
c′ .

If a1 is a complete factor in the factorization of S′
i−1, then the diverse palin-

dromic factorization of
x3

c′a′
1xc′a1xc′a1xc′a′

1x
5
c′

must include either

(a′
1, xc′a1xc′ , a1, xc′a′

1xc′) or (a′
1, xc′a1xc′ , a1, xc′ , a′

1) .
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Notice that in the former case, the factorization need not contain xc′ . If a1

is a complete factor in the factorization of S′
i−1, then the diverse palindromic

factorization of
x3

c′a′
1xc′a1xc′a1xc′a′

1x
5
c′

must include either

(xc′a′
1xc′ , a1, xc′a1xc′ , a′

1) or (a′
1, xc′ , a1, xc′a1xc′ , a′

1) .

Again, in the former case, the factorization need not contain xc′ . A simple case
analysis shows analogous propositions hold for a2 and b; we leave the details for
the full version of this paper.

We set

S′′
i = S′

i $†#† x15
c′ a′

1xc′c′xc′b′x17
c′ $††#†† x19

c′ a′
2xc′dxc′b′x21

c′ ,

where $†, #†, $††, #††, c′ and d are symbols we use only here. Any diverse
palindromic factorization of S′′

i consists of

1. a diverse palindromic factorization of S′
i,

2. ($†, #†),
3. a diverse palindromic factorization of x15

c′ a′
1xc′c′xc′b′x17

c′ ,
4. ($††, #††),
5. a diverse palindromic factorization of x19

c′ a′
2xc′dxc′b′x21

c′ .

Since a1 and a2 label outputs in C ′
i−1 split from the same output in Ci−1,

it follows that a1 is a complete factor in a diverse palindromic factorization of
S′

i−1 if and only if a2 is. Therefore, we need consider only four cases:

– The factorization of S′
i−1 includes a1, a2 and b as complete factors, so the

factorization of S′
i includes as complete factors either xc′a′

1xc′ , or a′
1 and xc′ ;

either xc′a′
2xc′ , or a′

2 and xc′ ; either xc′b′xc′ , or b′ and xc′ ; and b′. Trying all
the combinations — there are only four, since xc′ can appear as a complete
factor at most once — shows that any diverse palindromic factorization of
S′′

i includes one of

(a′
1, xc′c′xc′ , b′, . . . , a′

2, xc′ , d, xc′b′xc′) ,

(a′
1, xc′c′xc′ , b′, . . . , xc′a′

2xc′ , d, xc′b′xc′) ,

with the latter only possible if xc′ appears earlier in the factorization.
– The factorization of S′

i−1 includes a1, a2 and b as complete factors, so the
factorization of S′

i includes as complete factors either xc′a′
1xc′ , or a′

1 and xc′ ;
either xc′a′

2xc′ , or a′
2 and xc′ ; b′; and either xc′b′xc′ , or b′ and xc′ . Trying

all the combinations shows that any diverse palindromic factorization of S′′
i

includes one of

(a′
1, xc′ , c′, xc′b′xc′ , . . . , a′

2, xc′dxc′ , b′) ,

(xc′a′
1xc′ , c′, xc′b′xc′ , . . . , a′

2, xc′dxc′ , b′) ,

with the latter only possible if xc′ appears earlier in the factorization.
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– The factorization of S′
i−1 includes a1, a2 and b as complete factors, so the fac-

torization of S′
i includes as complete factors a′

1; a′
2; either xc′b′xc′ , or b′ and

xc′ ; and b′. Trying all the combinations shows that any diverse palindromic
factorization of S′′

i includes one of

(xc′a′
1xc′ , c′, xc′ , b′, . . . , xc′a′

2xc′ , d, xc′b′xc′) ,

(xc′a′
1xc′ , c′, xc′b′xc′ , . . . , xc′a′

2xc′ , d, xc′b′xc′) ,

with the latter only possible if xc′ appears earlier in the factorization.
– The factorization of S′

i−1 includes a1, a2 and b as complete factors, so the
factorization of S′

i includes as complete factors a′
1; a′

2; b′; and either xc′b′xc′ ,
or b′ and xc′ . Trying all the combinations shows that any diverse palindromic
factorization of S′′

i that extends the factorization of S′
i includes one of

(xc′a′
1xc′ , c′, xc′b′xc′ , . . . , xc′a′

2xc′ , d, xc′ , b) ,

(xc′a′
1xc′ , c′, xc′b′xc′ , . . . , xc′a′

2xc′ , d, xc′b′xc′) ,

with the latter only possible if xc′ appears earlier in the factorization.

Summing up, any diverse palindromic factorization of S′′
i always includes xc′

and includes either xc′c′xc′ if the factorization of S′
i−1 includes a1, a2 and b as

complete factors, or c′ otherwise.
We set

S′′′
i = S′′

i $†††#††† x23
c′ c′′xc′c′xc′c′xc′c′′x25

c′ ,

where $††† and #††† are symbols we use only here. Any diverse palindromic
factorization of S′′′

i consists of

1. a diverse palindromic factorization of S′′
i ,

2. ($†††, #†††),
3. a diverse palindromic factorization of x23

c′ c′′xc′c′xc′c′xc′c′′x25
c′ .

Since xc′ must appear as a complete factor in the factorization of S′′
i , if c′ is

a complete factor in the factorization of S′′
i , then the factorization of

x23
c′ c′′xc′c′xc′c′xc′c′′x25

c′

must include
(c′′, xc′c′xc′ , c′, xc′c′′xc′) ;

otherwise, it must include

(xc′c′′xc′ , c′, xc′c′xc′ , c′′) .

That is, the factorization of x23
c′ c′′xc′c′xc′c′xc′c′′x25

c′ includes c′′, xc′ and xc′c′′xc′

but not c′′ or xc′c′′xc′ , if and only if the factorization of S′′
i includes c′; otherwise,

it includes c′′, xc′ and xc′c′′xc′ but not c′′ or xc′c′′xc′ .
We can slightly modify and apply the results in Section 4 to build in constant

time a string T such that in any diverse palindromic factorization of

Si = S′′′
i $‡#‡ T ,
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if c′′ is a complete factor in the factorization of S′′′, then c, xc and xcc̄xc are
complete factors in the factorization of T but c̄, xccxc and xj

c are not for j > 1;
otherwise, c̄, xc and xccxc are complete factors but c, xcc̄xc and xj

c are not for
j > 1. Again, we leave the details for the full version of this paper.

Assume Si−1 represents Ci−1. Let τ be an assignment to the inputs of Ci−1

and let P be a diverse palindromic factorization of Si−1 encoding τ . By Lemma 2
we can extend P to P ′ so that it encodes the assignment to the inputs of C ′

i−1

that makes them true or false according to τ . Suppose τ makes the output of
Ci−1 labelled a true but the output labelled b false. Then P ′ concatenated with,
e.g.,

($, #, x3
c′ , a′

1, xc′a1xc′ , a1, xc′a′
1xc′ , x4

c ,

$′, #′, x7
c′ , a′

2, xc′a2xc′ , a2, xc′a′
2xc′ , x8

c′ ,

$′′, #′′, x10
c′ , xc′b′xc′ , b, xc′ b̄xc′ , b′, x13

c′ )

is a diverse palindromic factorization P ′′ of S′
i which, concatenated with, e.g.,

($†, #†, x15
c′ , a′

1, xc′ , c′, xc′b′xc′ , x16
c′ ,

$‡, #‡, x19
c′ , a′

2, xc′dxc′ , b′, x21
c′ )

is a diverse palindromic factorization P ′′′ of S′′
i which, concatenated with, e.g.,

($†††, #†††, x23
c′ , c′′, xc′c′xc′ , c′, xc′c′′xc′ , x24

c′ )

is a diverse palindromic factorization P † of S′′′
i . Since P † does not contain c′′

as a complete factor, it can be extended to a diverse palindromic factorization
P ‡ of Si in which c̄, xc and xccxc are complete factors but c, xcc̄xc and xj

c are
not for j > 1. Notice P ‡ encodes the assignment to the inputs of Ci that makes
them true or false according to τ . The other three cases — in which τ makes the
outputs labelled a and b both false, false and true, and both true — are similar
and we leave them for the full version of this paper. Since Ci−1 and Ci have the
same inputs, each assignment to the inputs of Ci is encoded by some diverse
palindromic factorization of Si.

Now let P be a diverse palindromic factorization of Si and let τ be the
assignment to the inputs of Ci−1 that is encoded by a prefix of P . Let P ′ be the
prefix of P that is a diverse palindromic factorization of S′′′

i and suppose the
factorization of

x23
c′ c′′xc′c′xc′c′xc′c′′x25

c′

in P ′ includes c′′ as a complete factor, which is the case if and only if P includes
c̄, xc and xccxc as complete factors but not c, xcc̄xc and xj

c for j > 1. We will
show that τ must make the outputs of Ci−1 labelled a and b true. The other
case — in which the factorization includes c′′ as a complete factor and we want
to show τ makes at least one of the inputs labelled a and b false — is similar
but longer, and we leave it for the full version of this paper.

Let P ′′ be the prefix of P ′ that is a diverse palindromic factorization of S′′
i .

Since c′′ is a complete factor in the factorization of

x23
c′ c′′xc′c′xc′c′xc′c′′x25

c′
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in P ′, so is c′. Therefore, c′ is not a complete factor in the factorization of

x15
c′ a′

1xc′c′xc′b′x17
c′

in P ′′, so a′
1 and b′ are.

Let P ′′′ be the prefix of P ′′ that is a diverse palindromic factorization of S′
i.

Since a′
1 and b′ are complete factors later in P ′′, they are not complete factors

in P ′′′. Therefore, a1 and b̄ are complete factors in the factorizations of

x3
c′a′

1xc′a1xc′ , a1xc′a′
1x

5
c′ and x11

c′ b′xc′bxc′ b̄xc′b′x13
c′

in P ′′′, so they are not complete factors in the prefix P † of P that is a diverse
palindromic factorization of S′

i−1. Since we built S′
i−1 from Si−1 with Lemma 2,

it follows that a1 and b are complete factors in the prefix of P that encodes τ .
Therefore, τ makes the outputs of Ci−1 labelled a and b true.

Going through all the possibilities for how P can end, which we will do in
the full version of this paper, we find that each diverse palindromic factorization
of Si encodes some assignment to the inputs of Ci. This gives us the following
lemma:

Lemma 3. If we have a string Si−1 that represents Ci−1 and Ci is obtained
from Ci−1 by making two outputs of Ci−1 the inputs of a new NAND gate,
then in constant time we can append symbols to Si−1 to obtain a string Si that
represents Ci.

6 Conclusion

By Lemmas 1, 2 and 3 and induction, given a Boolean circuit C composed only
of splitters and NAND gates with two inputs and one output, in time linear
in the size of C we can build, inductively and in turn, a sequence of strings
S1, . . . , St such that Si represents Ci. As mentioned in Section 2, once we have
St we can easily build in constant time a string S that has a diverse palindromic
factorization if and only if C is satisfiable. Therefore, diverse palindromic factor-
ization is NP-hard. Since it is obviously in NP, we have the following theorem:

Theorem 1. Diverse palindromic factorization is NP-complete.

Acknowledgments. Many thanks to Gabriele Fici for his comments on a draft of this
paper, and to the anonymous referee who pointed out a gap in the proof of Lemma 3.
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