
Faster, Minuter∗

Simon Gog1, Juha Kärkkäinen2, Dominik Kempa2,

Matthias Petri3 and Simon J. Puglisi2

1 Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Germany
2 Helsinki Institute for Information Technology,

Department of Computer Science, University of Helsinki, Finland
3 Department of Computing and Information Systems, University of Melbourne, Australia

Abstract

The FM index (Ferragina & Manzini, J. ACM, 2005) is a widely-used com-
pressed data structure that stores a string T in a compressed form that also
supports fast pattern matching queries. Fixed-block boosting is a relatively
straightforward technique that achieves optimal index size in theory, but to
date it is unclear how best to translate the method into practice. In this pa-
per we describe several new techniques for implementing fixed-block boosting
efficiently. The new indexes are consistently fast and small relative to the state-
of-the-art, and thus make a good “off-the-shelf” choice for most applications.

1 Introduction

The Fast Minute (FM) index, by Ferragina and Manzini [3] is perhaps the most
widely used compressed data structure, fundamental to all serious pieces of software
for DNA sequence alignment (see, e.g., [6, 10]) and also extensively used for genome
assembly [1]. The index stores a string T in a compressed form that also supports fast
pattern matching queries. Both compression and search are achieved by exploiting
structure present in the Burrows-Wheeler transform (BWT) of T.

In the 15 years since its discovery, techniques to reduce index size and to pro-
vide faster pattern searches (preferably both at the same time) have been the sub-
ject of many research articles (see, e.g., [5, 7] and references therein). One particu-
larly straightforward scheme is the so-called fixed-block boosting method described by
Kärkkäinen and Puglisi [8], which leads to an FM-index of size nHk(T) + o(n) log(σ)
bits1. This space usage is optimal in theory, but how to best exploit fixed block boost-
ing in practice has to date been unclear — a simple proof-of-concept implementation
in [8] gives encouraging, if somewhat inconclusive, results on a narrow range of data.

∗Supported by the Academy of Finland via grant 1294143.
1nHk(T) is a lower bound on the compression achievable by any statistical compressor that

models symbol probabilities as a function of the k letters preceding it in the text, see [14].

2016 Data Compression Conference

1068-0314/16 $31.00 © 2016 IEEE

DOI 10.1109/DCC.2016.94

53

2016 Data Compression Conference

1068-0314/16 $31.00 © 2016 IEEE

DOI 10.1109/DCC.2016.94

53

2016 Data Compression Conference

1068-0314/16 $31.00 © 2016 IEEE

DOI 10.1109/DCC.2016.94

53

In an FM-index, pattern matching is reduced to a series of rank queries over the
BWT. The query rank(c, i) returns the number of occurrences of the symbol c up
to position i in a string. To accelerate the rank queries, the BWT is preprocessed
to build a rank index. The main idea of fixed-block boosting is to divide the BWT
of T into blocks of fixed size and store a compressed rank index for each block.
Due to properties of the BWT, the smaller the blocks are, the better compression is
achieved. However, an overhead of O(σ log n) bits per block prevents too small block
sizes. Kärkkäinen and Puglisi [8] show that asymptotically optimal index size can be
achieved by setting the block size to O(σ log2 n).

Our Contribution. In this paper we show how to implement fixed-block boosting
efficiently in practice, via a number of non-trivial optimizations to the basic scheme
described in [8]. The goal is to reduce the space overhead per block to as low as pos-
sible but without increasing query times. The main components of the overhead are
the storage of the rank of each symbol at the block boundary and the representation
of a Huffman-shaped wavelet tree, which is used as the rank index. We show that
storing ranks for the symbols occurring in a block rather than for all symbols in the
alphabet is enough, and describe a fast new Huffman-shaped wavelet tree variant.

The resulting indexes represent a new Pareto frontier for query time and index
size in practice on a wide range of data. These new indexes give consistently strong
performance in both time and space dimensions, and thus make a good “off-the-shelf”
choice for most applications.

2 Overview of FM-Index

Let T = T[0..n − 1] = T[0]T[1] . . .T[n − 1] be a string of n symbols or characters
drawn from an alphabet Σ = {0, 1, .., σ − 1}. We assume that T[n − 1] = 0 and 0
does not appear anywhere else in T. In the examples, we use ‘$’ to denote 0.

Let nw be the number of occurrences of a string w in T, and let T|w be the
subsequence of T consisting of those characters that are immediately followed by w.
The zeroth order and the kth order empirical entropy of T are defined as

H0(T) =
∑
c∈Σ

nc

n
log

n

nc

Hk(T) =
∑
w∈Σk

nw

n
H0(T|w) (1)

The value nHk(T) represents a lower bound on the number of bits needed to encode
T by any compressor that considers a context of size at most k when encoding a
symbol. Note that Hk+1(T) ≤ Hk(T) ≤ log σ for all k.

BWT. For any i ∈ 0..n−1, the string T[i..n−1]T[0..i−1] is a rotation of T. Let M
be the n× n matrix whose rows are all the rotations of T in lexicographic order. Let
F be the first and L the last column of M. The string L is the Burrows–Wheeler
transform (BWT) of T. An example is given in Figure 1.

Note that L is a permutation of T and thus H0(L) = H0(T). Furthermore, for any
k ≥ 0, there exists a partitioning of L1L2 · · ·L� = L of the BWT L into � ≤ σk blocks
so that

∑�
i=1 |Li|H0(Li) = nHk(T). In other words, by compressing each BWT block

545454

F L
$ B A N A N A

A $ B A N A N

A N A $ B A N

A N A N A $ B

B A N A N A $

N A $ B A N A

N A N A $ B A

Figure 1: BWTmatrixM
for text T = BANANA$.

B NA$

AAA B NN$

ANNB$AA
0111000

110
NNB

1011
A$AA

N

A

B$

10
NN

B

AAA

$

0111100
ANNB$AA

B$

NNB$
0011

Figure 2: Balanced (left) and Huffman-shaped (right)
wavelet trees.

Algorithm FM-Count(P[0..m− 1])
1: b ← 0; e ← n
2: for i ← m− 1 downto 0 do
3: c ← P[i]
4: b ← C[c] + rankL(c, b)
5: e ← C[c] + rankL(c, e)
6: if b = e then break
7: return e− b

Figure 3: Counting pattern occurrences
using backward search.

Algorithm WT-Rank(c, r)
1: v ← root; q ← r
2: while v is not a leaf do
3: if c is in the left subtree of v then
4: q ← q − rankB(v)(1, q)

5: v ← leftchild(v)
6: else
7: q ← rankB(v)(1, q)

8: v ← rightchild(v)
9: return q

Figure 4: Rank using a wavelet tree.

to zero-order entropy, we obtain kth order entropy compression for the whole text.
This is called compression boosting [4].

The compressibility of highly repetitive texts, such as collections of similar genomes
or multiple versions of the same document, is not captured by the kth order entropy
for small values of k. For example, Hk(T

h) ≈ Hk(T) for any h > 1 and any k < |T|
while it is clear that Th is much more compressible than T. The long repeats in a
highly repetitive texts manifest as short runs of the same character in the BWT [13].

Backward Search. The FM-family of compressed text self-indexes is based on a
procedure called backward search, which finds the range of rows in M that begin
with a given pattern P. This range represents the occurrences of P in T. Figure 3
shows how backward search is used for counting the number of occurrences (the count
query). In the algorithm, C[c] is the position of the first occurrence of the symbol c
in F, and the function rankL is defined as rankL(c, j) ≡ ∣∣{i | i < j and L[i] = c}∣∣.
The main difference between the members of the FM-family is how they implement
the rankL-function. The best ones use wavelet trees.

Wavelet Tree. A wavelet tree of a string X over an alphabet Σ is a binary tree with
leaves labelled by the symbols of Σ. Each node v is associated with the subsequence of
X consisting of those symbols that appear in the subtree rooted at v. The associated
strings are not stored; instead each internal node v stores a bitvector B(v) that tells
for each character in the associated string whether it is in the left or right subtree

555555

of v. Figure 2 shows examples of the two commonly used variants of wavelet trees,
the balanced and the Huffman-shaped.

In a balanced wavelet tree the total length of the bitvectors is |X|	log |Σ|
, which
is exactly the length of X in bits using the standard representation. On the other
hand, a Huffman-shaped wavelet tree (HWT) corresponds to a Huffman coding of
X and has the smallest total bitvector length over all wavelet trees. The length of
bitvectors is less than |X|(H0(X) + 1), i.e., a Huffman-shaped wavelet tree gets close
to zeroth order compression.

A rank query rankX(c, r) over a wavelet tree is evaluated by a traversal from the
root to the leaf labelled by c, as shown in Figure 4. The procedure involves rank
queries over the bitvectors stored on the root-to-leaf path.

Bitvector Rank. There are many data structures for representing bitvectors so
that rank queries can be answered in (near) constant time. They can be divided
into two main categories. Uncompressing techniques leave the bitvector intact but
use a small data structure on top of it. Compressing techniques reduce the space
of the bitvector as well as prepare it for rank queries. The best-known compressing
technique, RRR, stores a bitvector B in |B|H0(B)+ o(|B|) bits and supports constant
time rank queries. In practice, however, uncompressed bitvectors are substantially
faster. The hybrid bitvector uses a combination of representations and offers good
compression, though without as strong guarantees as RRR, and fast queries, though
not quite as fast as uncompressed bitvectors. Recent experimental studies of these
bitvectors can be found in [7, 9].

Higher Order and Repetitive Text Compression. Even the uncompressing
variants of the FM-index require only a little space in addition to the size of the
uncompressed text. The space can be reduced close to the zeroth order compressed
size either by using Huffman-shaped wavelet trees or by using compressed bitvectors.

Higher order compression requires compression boosting, i.e., partitioning the
BWT into blocks and compressing those blocks separately. In fixed-block boosting,
the blocks are all the same size. This is not quite optimal for compression but still can
be implemented in nHk(T) + o(n) log σ bits of space, while offering fast queries and
simple implementation. The division into blocks can also be done at the bitvector
level, and is in fact done by the RRR and hybrid bitvectors, the use of which thus
achieves higher order compression without explicit partitioning. This is known as
implicit compression boosting [12].

The short runs in the BWT of highly repetitive texts are best compressed using
run-length encoding. This can be done either at the BWT level as described in [13] or
at the bitvector level as is done when using the hybrid bitvector. The RRR bitvectors
use small block sizes that are often small enough to compress those short runs.

The RRR (with block size 63) and hybrid bitvectors have an overhead of about
10% of the uncompressed bitvector size beyond which they cannot be compressed.
Thus they are often best used in combination with fixed-block boosting and Huffman-
shaped wavelet trees that reduce the uncompressed size of the bitvectors.

565656

3 Implementation

We have implemented a new version of the FM-index based on the SDSL library2.
The top level of the index including backward searching uses the standard SDSL
implementation. The bitvector rank implementation is a parameter and any of the
implementations in SDSL can be used.

SDSL contains no implementation of fixed block boosting. Our implementation
of fixed block boosting contains some novel features designed to reduce the space
requirement and/or to speed up queries. We have also implemented a new wavelet
tree variant designed specifically for fixed block boosting.

3.1 Fixed Block Boosting

Having a separate wavelet tree for each block reduces the total size of the bitvectors.
It can also speed up queries because the height of the wavelet trees is smaller. The
smaller the block size, the bigger these advantages are. On the other hand, each
block needs some space in addition to the bitvectors and this overhead increases as
the blocks get smaller. We want to minimize this overhead without sacrificing speed.

Alphabet Mapping. The wavelet tree of a block Lj contains a leaf for each symbol
that appers in the block. Let Σj = [0 . . . σj) be the block alphabet representing these
symbols in the order of the leaves in the wavelet tree. To implement the rank query,
we need a mapping γj : Σ → Σj∪{⊥} from the global alphabet to the block alphabet,
where ⊥ is a special value indicating that the symbol does not appear in the block.
To implement an access query, we also need the inverse mapping γ−1

j : Σj → Σ.
The inverse mappings are implemented as separate arrays for each block. The

forward mappings are implemented as a single two-dimensional array in symbol-wise
order, i.e., for a given symbol c, the values γ[1..�](c) are stored consecutively.

The implementation assumes a byte alphabet no larger than 256, and uses the
value 255 for ⊥. If some block Lj happens to contain all 256 possible symbols, we
map two symbols to 254. Whenever γj(c) = 254, we check if γ−1

j (254) = c and if not,
change the value to 255.

Block Boundary Ranks. Let Lj be the block that contains a given position i and
let sj be the starting position of Lj in L. Since all blocks have the same size, computing
j and sj is easy. A rank query rankL(c, i) is implemented differently depending on
whether Lj contains at least one occurrence of c or not. If it does, we compute the
rank using

rankL(c, i) = rankL(c, sj) + rankLj
(c, i− sj) .

The first term is obtained from an array Rj[0..σj), where Rj[γj(c)] = rankL(c, sj).
The second term is computed using the wavelet tree of Lj.

If c does not appear in Lj, we find the nearest block Lk, k > j, that contains c by
scanning γ[j+1..k](c) for the first non-⊥ value. Then

rankL(c, i) = rankL(c, sk) = Rk[γk(c)] .

2https://github.com/simongog/sdsl-lite

575757

This approach achieves a potentially significant space saving by storing the value
rankL(c, sj) only if c occurs in Lj, since often σj is much smaller than σ.

Superblocks. The BWT is partitioned into superblocks each consisting of a num-
ber of blocks. Each superblock stores a mapping from the global alphabet to a
superblock alphabet and the ranks at the superblock boundaries for all symbols. The
implementations of these are simpler and less optimized than the ones for the blocks.

All the block data structures within a superblock are implemented completely
separately for each superblock. In particular, each superblock can use a different
block size. Our implementation tries multiple different block sizes for each superblock
and chooses the most space efficient one.

The separation of the superblock data structures means that they can be con-
structed separately offering possibilities for parallel, distributed or (semi)external
construction. For example, if the compressed index fits in RAM but the uncom-
pressed BWT does not, we need only one superblockful of the BWT in RAM at a
time during the construction.

3.2 Wavelet Tree

A good survey of wavelet tree implementation variants can be found in [2]. Our
implementation is essentially a pointerless wavelet tree based on canonical Huffman
code. However, we store some additional information to achieve the speed of pointer-
based wavelet trees.

Tree Structure. We use a Huffman shaped wavelet tree based on the canonical
Huffman code. In such a tree, all the nodes are packed to the right (or to the left
in some versions) without gaps and all the internal nodes are to the right of the
leaves on the same level. Since the number of nodes on level k is twice the number of
internal nodes on level k− 1, storing the number of leaves on each level is a complete
representation of the structure.

In a rank query we need to find the path to the ith leaf. Using the above rep-
resentation, it is easy to find the level k that contains the ith leaf. Furthermore,
we can compute an integer j such that the ith leaf would be the node number j on
the level k if the tree was a complete binary tree. Then the bits in the k-bit binary
representation of j indicate the turns on the path from the root to the ith leaf.

Bitvectors. All the bitvectors on a level are concatenated together into a single
level bitvector. We also concatenate all the level bitvectors together into a single
wavelet tree bitvector. We store the sizes of the level bitvectors in order to locate
them. Furthermore, we also concatenate all the wavelet tree bitvectors within a
superblock. Each block stores the position of its wavelet tree bitvector in the su-
perblock bitvector. The superblock bitvector can be implemented with any of the
SDSL bitvectors supporting rank and access queries.

Computing a rank query rankB(1, i) requires locating the starting position s of B

in the concatenated bitvector B̂. Then

rankB(1, i) = rank
̂B(1, s+ i)− rank

̂B(1, s) .

585858

In a pointerless wavelet tree, s is computed without storing any extra information.
The bit vector of a left child starts at the same position on the level bitvector as its
parent’s bitvector on the previous level, where the position is measured as a distance
from the right end of the level bitvector. Similarly, the bitvector of a right child ends
at the same position as its parent’s. The size of each bitvector can be computed by
counting the number of zeros (left child) or ones (right child) in the parent bitvector.
The counting can be done with two rank queries at the bitvector boundaries.

The above procedure requires three bitvector rank queries for each level of the
wavelet tree while a pointer-based wavelet tree needs just one rank query per level.
However, two of the three queries are at the bitvector boundaries. Thus only one rank
query per level is needed if we store the bitvector boundary ranks, which needs less
space than a full pointer-based wavelet tree. We are not aware of a previous wavelet
tree implementation with this type of optimization. To reduce the number of bits
needed, we do not store the absolute rank values but the difference to the rank value
at the parent boundary (already computed during the descend).

3.3 The Final Data Structure

Let us now summarize the components of the implementation and their sizes. We
assume that the maximum alphabet size is 256, the maximum block size is 216 and
the maximum superblock size is 224.

For each superblock we store:

1. The mapping from the global alphabet to the superblock alphabet (σ bytes).
2. The ranks at the superblock boundaries using 4σ bytes. If the BWT is longer

than 232, it is further divided into hyperblocks of size 232.
3. The alphabet mappings from the superblock alphabet to the block alphabets

using σs bytes per block, where σs is the size of the superblock alphabet.
4. The concatenated wavelet tree bitvectors.
5. An array with a variable-sized entry for each block (see below).
6. An array with a 14 byte entry for each block containing the block alphabet size,

the number of wavelet tree levels, the bitvector rank at the start of the wavelet
tree bitvector and pointers to the two arrays above.

The variable-sized block entry for a block with a block alphabet size σb consists of:

5.1 The inverse alphabet mapping using σb bytes.
5.2 The block boundary ranks using 3σb bytes.
5.3 The wavelet tree structure and the level bitvector sizes using three bytes per

wavelet tree level.
5.4 The bitvector boundary ranks using 2(σb − 1) bytes.

The relative sizes of the different components are shown in Figure 5 for several
files. The missing component is the bitvectors implemented with hybrid bitvectors
in this experiment. Here as well as in all of our experiments, the superblock size was
fixed to 1MiB. The block size was chosen separately for each superblock to minimize
the total space. A more detailed study of the effect of the block and superblock sizes
will be provided in an extended version of this paper.

595959

dn
a

pr
ot

ei
ns

en
gl

is
h

so
ur

ce
s

db
lp

.x
m

l
pa

ra
in

flu
en

za
w

.le
ad

er
s

ke
rn

el
ei

ns
te

in
.e

n

0

5

10

15

20

25

30

35
Other (1 + 2)
Alphabet mapping (3)
Block headers (5.1 + 5.3 + 6)
Bitvector boundary ranks (5.4)
Block boundary ranks (5.2)

Fr
ac

tio
n

of
 in

de
x

si
ze

 [%
]

Figure 5: The percentage of the total in-
dex size for individual components of the
new wavelet tree (with hybrid bitvector as
a bitvector representation) for different test-
files. The numbers refer to description in Sec-
tion 3.3.

Name σ n/220 n/r n/z

dna 16 200 1.63 15.0
proteins 25 200 1.93 8.5
english 225 200 2.91 15.0
sources 230 200 4.40 18.3
dblp.xml 96 200 7.09 29.9

para 5 410 27 184
influenza 15 148 51 199
w.leaders 89 44 82 267
kernel 227 2048 304 1127
einstein.en 199 1198 707 2420

Table 1: Files used in the experi-
ments. The files are from the Pizza
& Chili standard and repetitive corpus
(available from http://pizzachili.

dcc.uchile.cl/), except we use larger
versions of kernel and einstein.en test-
files. The values of n/r (average length
of the run in BWT) and n/z (average
length of phrase in the LZ77 factoriza-
tion) are included as measures of repet-
itiveness.

Perhaps the most important novelty with respect to prior implementations is
that we store only σb instead of σs boundary ranks per block. Figure 5 shows the
effectiveness of this optimization. In the figure, the alphabet mappings need σs bytes
per block and the block boundary ranks would need three times that without the
boundary rank optimization. For all files, the actual space is much smaller.

Another novel optimization is that we achieve the speed of pointer-based wavelet
trees (one bitvector rank query per level) using just 2σb bytes of additional space,
which was never more than about 2% of the total index size in our experiments.

4 Experiments

We performed experiments on a 3.4GHz Intel Core i7-4770 CPU equipped with 8MiB
L3 cache and 16GiB of DDR3 main memory. The machine had no other significant
CPU tasks running and only a single thread of execution was used. The OS was
Linux (Ubuntu 14.04, 64bit) running kernel 3.19.0. All programs were compiled using
g++ version 4.9.2 with -O3 -DNDEBUG -funroll-loops -msse4.2 options. All given
runtimes were recorded with the C++11 high resolution clock time measurement
facility.

We implemented the new version of FM-index as described in Section 3 and com-
pared its performance for count queries to a number of other indexes, including other
variants of FM-index. The results, including more detailed description of competing
indexes, are presented in Figure 6.

606060

●

●

●

●

dna.200MB

english.200MB

sources.200MB

dblp.xml.200MB

100

200
300

500

1000

2000

100

200
300

500

1000

2000

100

200
300

500

1000

2000

100

200
300

500

1000

2000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ti
m

e
pe

r C
ha

ra
ct

er
 [n

s]

●

●

●

●

para

world_leaders

kernel−2GB

einstein.en−1.2GB

100

200
300

500

1000

2000

100

200
300

500

1000

2000

100

200
300

500

1000

2000

100

200
300

500

1000

2000

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

●
FM−FB−BVIL
FM−FB−HYB
FM−FB−RRR
FM−HF−BVIL
FM−HF−HYB
FM−HF−RRR
FM−RLMN
RLCSA

Compression Ratio [%]

Figure 6: Time/space tradeoffs on standard (left) and repetitive (right) collections for
count queries using the methodology of Ferragina et al. [5] which measures mean time in
nanoseconds to process one symbol during a single count query over 5× 104 queries on 20-
length patterns randomly extracted from the indexed text. Space is given with respect to the
original size of the input text. The text indexes included in the experiments are primarily a
Huffman-shaped wavelet tree based FM-index (FM-HF-*) and a fixed blocked partitioned
wavelet tree (FM-FB-*). For each FM-index type we use (1) RRR compressed bitvectors
(FM-*-RRR) using block sizes 15, 31 and 63 [7, 15, 16]; (2) optimized uncompressed
bitvectors with interleaved rank samples (FM-*-BVIL) using block sizes 256, 512, and
1024, providing a rank space overhead of 25%, 12.5% and 6.25% respectively; and (3) the
hybrid encoding method [9] using a superblock size of 16 (FM-*-HYB). Additionally, we use
an FM-index based on a run-length encoded BWT (FM-RLMN) [11] and the RLCSA index
of Mäkinen et al. [13]. All code except RLCSA (http://iki.fi/jouni.siren/rlcsa) and
the fixed block wavelet tree are part of the SDSL library. All optional structures not needed
for count queries are excluded.

616161

The new FM-index achieves superior performance compared to a single wavelet
tree independently of the underlying bitvectors representation and simultaneously
achieves very significant compression for nearly all types of data. For example: (i)
plugging the high-speed uncompressed bitvectors from SDSL library to our FM-index
sets a new speed record for count queries (within the space achievable by an FM-
index), (ii) plugging the high-compression RRR representation to the new FM-index
allows reducing the space beyond what is achievable with a single wavelet-tree RRR.

The lone exception, where the new FM-index is slightly slower (and achieves only
marginally better compression) is DNA data which, due to even distribution of (small
number of) symbols, does not benefit from high-order entropy compression.

Plugging the hybrid bitvector into the new FM-index results in a particularly
effective combination. The resulting index achieves all-around excellent compression
and is never much slower than other indexes at the corresponding compression level.

References

[1] A. Bowe, T. Onodera, K. Sadakane, and T. Shibuya. Succinct de Bruijn graphs. In
Proc. WABI, volume 7534 of LNCS, pages 225–235. Springer, 2012.

[2] F. Claude, G. Navarro, and A. O. Pereira. The wavelet matrix: An efficient wavelet
tree for large alphabets. Inf. Syst., 47:15–32, 2015.

[3] P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52(4):552–581, 2005.
[4] P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual compression

in optimal linear time. J. ACM, 52(4):688–713, 2005.
[5] P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text indexes:

From theory to practice. ACM J. Experiment. Algor., 13:1.12–1.31, 2009.
[6] P. Flicek and E. Birney. Sense from sequence reads: Methods for alignment and

assembly. Nat. Methods, 6(11 Suppl):S6–S12, Nov. 2009.
[7] S. Gog and M. Petri. Optimized succinct data structures for massive data. Softw.,

Pract. Exper., 44(11):1287–1314, 2014.
[8] J. Kärkkäinen and S. J. Puglisi. Fixed block compression boosting in FM-indexes. In

Proc. SPIRE, volume 7024 of LNCS, pages 174–184. Springer, 2011.
[9] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. Hybrid compression of bitvectors for the

FM-index. In Proc. DCC, pages 302–311. IEEE, 2014.
[10] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang. SOAP2: An

improved ultrafast tool for short read alignment. Bioinformatics, 25(15):1966–1967,
2009.

[11] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding. In
Proc. CPM, volume 3537 of LNCS, pages 45–56. Springer, 2005.

[12] V. Mäkinen and G. Navarro. Implicit compression boosting with applications to self-
indexing. In Proc. SPIRE, volume 4726 of LNCS, pages 229–241. Springer, 2007.

[13] V. Mäkinen, G. Navarro, J. Sirén, and N. Välimäki. Storage and retrieval of highly
repetitive sequence collections. J. Comp. Biol., 17(3):281–308, 2010.

[14] G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM, 48(3):407–430,
2001.

[15] G. Navarro and E. Providel. Fast, small, simple rank/select on bitmaps. In Proc. SEA,
volume 7276 of LNCS, pages 295–306. Springer, 2012.

[16] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications
to encoding k-ary trees, prefix sums and multisets. ACM Trans. Alg., 3(4), 2007.

626262

