
Lempel-Ziv Parsing in External Memory∗

Juha Kärkkäinen Dominik Kempa Simon J. Puglisi

Helsinki Institute for Information Technology (HIIT) and
Department of Computer Science, University of Helsinki, Finland

{firstname.lastname}@cs.helsinki.fi

Abstract

In the 35 years since its discovery, the Lempel-Ziv factorization (or LZ77
parsing) has become a fundamental method for data compression and string
processing. In many applications, computation of the factorization is a time-
space bottleneck. However, and despite the increasing need to apply LZ77 to
massive data sets (for both storage and indexing), no algorithm to date scales
to inputs that exceed the size of RAM. In this paper we describe the first
algorithms for computing the LZ77 parsing efficiently using external memory.

1 Introduction

For over three decades the Lempel-Ziv (LZ77) factorization [18] has been a fundamen-
tal tool for data compression and today it lies at the heart of popular file compressors
(e.g. gzip and 7zip), and information retrieval systems (see, e.g., [7]).

Recently LZ77 has become the basis for several compressed full-text self-indexes [15,
9, 10]. These indexes are designed to support efficient storage and fast searching of
massive, highly repetitive data sets such as web crawls, whole genome databases, and
versioned repositories of source code files and multi-author documents, like Wikipedia.

In order for these LZ77-based indexes to be constructed, whole collection (i.e. un-
bounded window) LZ77 factorizations need to be computed. However, to our knowl-
edge, all current LZ77 algorithms are designed to be “in-memory” algorithms and
require large amounts of RAM to operate. In order to compute the LZ factorization
of a text of length n, most algorithms need at least 6n bytes of RAM and often much
more [1, 13]. Recently, we managed to reduce the memory requirement to less than
2n bytes [12]. In this paper, we go beyond the limitations of RAM by using external
memory.

Our contribution. We have designed and implemented three external memory
algorithms for LZ77 factorization with quite different resource requirements with re-
spect to CPU time, I/O volume, RAM and disk space.

We present the results from an experimental comparison that has been carefully
designed to expose the strengths and limitations of the algorithms. It shows that each
of the three algorithms has its niche (a combination of input and system parameters),
where it is the best of all algorithms.

∗This research is partially supported by Academy of Finland through grant 118653 (ALGODAN)
and grant 250345 (CoECGR).

2014 Data Compression Conference

1068-0314/14 $31.00 © 2014 IEEE

DOI 10.1109/DCC.2014.78

153

Related work. A recent survey [1] and even more recent papers [12, 13] outline
the many algorithms for LZ77 factorization, all of which operate in RAM. The per-
formance of the best algorithms has been investigated in recent experimental com-
parisons [12, 13]. According to those studies, the most efficient in-memory algorithm
under limited memory conditions is LZscan, which we have included in our experi-
ments as a point of reference. There is also a recent parallel algorithm for LZ77 [17]
that provides a substantial practical speed-up but needs lots of RAM.

2 Basic Notation

Throughout we consider a string X = X[1..n] = X[1]X[2] . . .X[n] of |X| = n symbols
drawn from the alphabet [0..σ − 1]. For i = 1, . . . , n we write X[i..n] to denote the
suffix of X of length n− i+1, that is X[i..n] = X[i]X[i+1] . . .X[n]. We will often refer
to suffix X[i..n] simply as “suffix i”. Similarly, we write X[1..i] to denote the prefix of
X of length i. X[i..j] is the substring X[i]X[i+ 1] . . .X[j] of X that starts at position i
and ends at position j. By X[i..j) we denote X[i..j − 1].

The suffix array [16] SAX (we drop subscripts when they are clear from the context)
of a string X is an array SA[1..n] which contains a permutation of the integers [1..n]
such that X[SA[1]..n] < X[SA[2]..n] < · · · < X[SA[n]..n]. In other words, SA[j] = i iff
X[i..n] is the jth suffix of X in ascending lexicographical order. Let lcp(i, j) denote
the length of the longest-common-prefix of suffix i and suffix j. For example, in the
string X = cccccatcat, lcp(1, 4) = 2 = |cc|, and lcp(5, 8) = 3 = |cat|. The longest-
common-prefix (LCP) array [14], LCPX = LCP[1..n], is defined such that LCP[1] = 0,
and LCP[i] = lcp(SA[i], SA[i− 1]) for i ∈ [2..n].

The next and previous smaller value (NSV/PSV) arrays are defined as NSV[i] =
min{j ∈ [i + 1..n] | SA[j] < SA[i]} and PSV[i] = max{j ∈ [1..i − 1] | SA[j] <
SA[i]}. The array NPSVtext[1..n] stores the two arrays interleaved and in text order:
NPSVtext[SA[i]] = (SA[NSV[i]], SA[PSV[i]]).

The longest previous factor (LPF) at position i in string X is a pair LPFX[i] =
(pi, �i) such that, pi < i, X[pi..pi + �i) = X[i..i + �i), and �i is maximized. In other
words, X[i..i + �i) is the longest prefix of X[i..n] which also occurs at some position
pi < i in X. There may be more than one potential pi — in this paper any suffices.

The LZ77 factorization (or LZ77 parsing) of a string X is a greedy, left-to-right
parsing of X into longest previous factors. More precisely, if the jth LZ factor (or
phrase) in the parsing is to start at position i, then LZ[j] = LPF[i] = (pi, �i) (to
represent the jth phrase), and then the (j + 1)th phrase starts at position i+ �i. The
exception is the case �i = 0, which happens iff X[i] is the leftmost occurrence of a
symbol in X. In this case LZ[j] = (X[i], 0) (to represent X[i..i]) and the next phrase
starts at position i + 1. When �i > 0, substring X[pi..pi + �i) is called the source of
phrase X[i..i+ �i). We denote the number of phrases in the LZ77 parsing of X by z.

Given two strings Y and Z, the matching statistics of Y w.r.t. Z, denoted MSY|Z,
is an array of |Y| pairs, (p1, �1), (p2, �2), ..., (p|Y|, �|Y|), such that for all i ∈ [1..|Y|],
Y[i..i + �i) = Z[pi..pi + �i) is the longest substring starting at position i in Y that is
also a substring of Z. Note the subtle link to the LPF array.

154

3 EM-LPF

Our first external memory LZ factorization algorithm is EM-LPF, an external memory
variant of the in-memory algorithm by Crochemore, Ilie and Smyth [4]. The algorithm
has three main phases:

1. Compute SA and LCP from X.
2. Compute LPF from SA and LCP.
3. Compute LZ from LPF.
The first phase, computing the suffix and LCP arrays, is a much studied problem,

and could be computed with any algorithm. We use the eSAIS [3] implementation
by Timo Bingmann1, which is the fastest implementation we know of capable of
computing both arrays for arbitrary inputs larger than RAM.

LPF-from-SA-and-LCP(SA[1..n], LCP[1..n])
1: S ← empty stack
2: for i← 1 to n+ 1 do
3: if i = n+ 1 then (j, �)← (0, 0)
4: else (j, �)← (SA[i], LCP[i])
5: while S �= ∅ do
6: (js, �s)← top(S)
7: if j < js then
8: pop(S)
9: if � < �s then
10: (j′, ·)← top(S)
11: LPF[js]← (j′, �s)
12: else
13: LPF[js]← (j, �)
14: �← �s
15: elsif j > js and �s ≥ � then
16: pop(S)

17: if S = ∅ then j′ ← 0
18: else (j′, ·)← top(S)
19: LPF[js]← (j′, �s)
20: else break
21: push(S, (j, �))
22: return LPF[1..n]

LZ-from-LPF(LPF[1..n],X[1..n])
1: i← 1; z ← 0
2: while i ≤ n do
3: (p, �)← LPF[i]
4: if � = 0 then p← X[i]
5: z ← z + 1
6: LZ[z]← (p, �)
7: i← i+max{�, 1}
8: return LZ[1..z]

Figure 1: The second (left) and the third (right) phase of the EM-LPF algorithm.

Pseudocode for the second and third phases is shown in Figure 1. The logic of
the pseudocode is identical to the original description [4]. Two changes are notable,
however. First, our pseudocode computes both components of LPF and LZ, not just
the length component, as in [4]. Second, in order to avoid non-sequential accesses
to SA and LCP, we do not store pointers into those arrays on the stack, but rather
actual element values.

For clarity, the pseudocode describes the in-memory algorithm, but it is easy to see
that most accesses to large arrays are purely sequential and thus easily implemented
via external memory scan operations. The only non-sequential operations are the
writes to LPF in the second phase. The external memory version of the algorithm
replaces the assignment LPF[js] ← (j, �) by outputting the tuple (js, j, �). The LPF
array can then be obtained by sorting the output sequence by the first component.
Sorting is accomplished using the external memory STXXL library [6].

1http://tbingmann.de/2012/esais/

155

The total I/O complexity is the sorting complexity O((n/B) logM/B(n/B))), where
M is the size of RAM and B is the disk block size, both in units of Θ(log n)-bit words.
The algorithm could be implemented to run in just O(B) words of RAM, but the
actual implementation uses a bit more, dominated by eSAIS (the in-memory RMQ
version, see [3]). The main bottleneck in the practical scalability of the algorithm,
however, is likely to be the disk space requirement of eSAIS, which is reported as 54n
in [3] but we found it to be significantly more in practice, see Section 6.

4 EM-LZscan

Our second algorithm, called EM-LZscan, is an external memory version of the scanning-
based, block-oriented LZ77 factorization algorithm LZscan that was introduced in [12].

Conceptually EM-LZscan divides X up into at most d = 	n/b
 fixed size blocks of
length b = Θ(M): X[1..b], X[b + 1..2b], In the description that follows we will
refer to the block currently under consideration as Z, and to the prefix of X that ends
just before Z as Y. Thus, if Z = X[kb + 1..(k + 1)b], then Y = X[1..kb]. To begin,
we will assume no LZ factor crosses the boundary of Z (an assumption we will later
remove). The outline of the algorithm for processing a block Z is shown below.

1. Compute MSY|Z
2. Compute MSZ|Y from MSY|Z, SAZ and LCPZ

3. Compute LPFYZ[kb+ 1..(k + 1)b] from MSZ|Y and LPFZ

4. Compute LZ from LPFYZ[kb+ 1..(k + 1)b]

Step 1: Computing Matching Statistics. Similar to most algorithms for com-
puting the matching statistics, we first construct some data structures on Z and then
scan Y. The main difference to the in-memory algorithm is that Y is not held in
RAM but read from disk. For the details of the data structures we refer to [12]. The
key properties are linear time construction and space requirement of 29b bytes. The
scanning of Y is the computational bottleneck of the algorithm in theory and practice.
The I/O complexity is O(|Y|/(B logσ n)) (logσ n is the number of characters that fit
in one machine word) and the time complexity is O(|Y|σ) (where σ, the time for the
rank operation, can be reduced to O(log(2 + (log σ/ log log n))) in theory [2]).

An important optimization, called the skipping trick, speeds up the computation
for highly repetitive inputs [12]. It takes advantage of repetition present in Y that
was found in the previous stages of the algorithm. Consider an LZ factor Y[i..i+ �).
Because, by definition, Y[i..i + �) occurs earlier in Y too, any source of an LZ factor
of Z that is completely inside Y[i..i+ �) could be replaced with an equivalent source
in that earlier occurrence. Thus such factors can be skipped during the computation
of MSY|Z without affecting the correctness of the factorization. To implement the
skipping trick, we need to know the positions of phrase boundaries. We store the
boundaries on disk and scan them in synchrony with Y. This does not affect the I/O
complexity of the algorithm as z = O(n/ logσ n). As a practical optimization, we
skip, and scan the boundaries of, only phrases of length 40 or more.

156

Step 2: Inverting Matching Statistics. With the help of SAZ and LCPZ, con-
structed in RAM, we can invert MSY|Z to obtain MSZ|Y, which is what we need for
LZ77 factorization. Note that a direct computation of MSZ|Y using the techniques
from Step 1 would need O(|Y|) words of RAM, which we cannot afford. Again, we
refer to [12] for details of the inversion algorithm and give only the key properties.
The algorithm accesses each entry of MSY|Z (except those skipped by the skipping
trick) once, in an arbitrary order, and processes the entry in constant time. Thus we
do not need to store MSY|Z but can process each entry as soon as it is produced in
Step 1. The rest of the computation takes O(b) time and no I/Os.

Step 3: Computing LPF. There is no I/O involved in this step as all the data
structures of this step fit in O(b) space. We refer to [12] for details.

Step 4: Parsing. The block Z is parsed in RAM using the standard LPF-based
parsing (see Fig. 1) but with LPFZ replaced by LPFYZ[kb+1..(k+1)b]. This produces
the correct global factorization except for the last phrase because, as described below,
the beginning of a block is always aligned with the beginning of a phrase.

The last phrase of Z produced by the parsing, call it P, could extend beyond the
end of Z in the global parsing of X. If |P| ≤ b/2, we start the next block at the
beginning of P, and compute the true phrase while processing that block. This can
increase the number of blocks, but not more than by a factor of two.

If |P| > b/2, we run a separate procedure to determine that one phrase, and then
start the next block at the end of that phrase. The procedure involves scanning X
from the beginning up to the end of the phrase using a modified string matching
algorithm by Crochemore [5, 11]. If the length � of the phrase is very long, the
procedure may involve up to O(1 + �/M) scans of X. This does not change the time
or I/O complexity of the algorithm as each extra scan moves the start of the next
block Ω(M) = Ω(b) steps forward.

Complexity. The total CPU time complexity of EM-LZscan is O(n2σ/M) and the
I/O complexity is O(n log σ

B logn
· n
M
). For highly repetitive inputs, the skipping trick can

dramatically reduce both the time and I/O complexities, as our experiments show.

5 SE-KKP

Our third algorithm is not fully external but semi-external: it needs to have the
whole input text in RAM at one stage of the computation. It is based on the KKP3
algorithm [13] and has three phases:

1. Compute SA from X.
2. Compute NPSVtext from SA.
3. Compute LZ from NPSVtext and X.
The array NPSVtext (just NPSV from now on) has a very similar intermediary role

in SE-KKP as LPF has in EM-LPF. The main differences between the algorithms are
that SE-KKP does not need to compute LCP in the first phase but needs random
access to the text X during the third phase.

157

In the first phase, we need to compute SA but not LCP and we know that the
size of the input text does not exceed the RAM size. Thus, we do not need the
LCP computation and the full scalability of eSAIS. On the other hand, we want
to be able to process input sizes very close to the RAM size, which excludes any
in-memory SA construction algorithm. The best match to our requirements is the
FGM algorithm [8] which has O(n2/M) time complexity and I/O volume, but fairly
small constant factors. FGM is originally designed and implemented to compute the
Burrows–Wheeler transform (BWT), but can be used for computing SA too [8, Th.
3]. We have modified the BWT implementation by Giovanni Manzini2 to do this.

NPSV-from-SA(SA[1..n])
1: S ← {0}
2: for i← 1 to n+ 1 do
3: if i = n+ 1 then j ← 0
4: else j ← SA[i]
5: js ← top(S)
6: while js > j do
7: pop(S)
8: NPSV[js]← (j, top(S))
9: js ← top(S)
10: push(S, j)
11: return NPSV[1..n]

LZ-from-NPSV(NPSV[1..n],X[1..n])
1: i← 1; z ← 0
2: while i ≤ n do
3: (nsv, psv)← NPSV[i]
4: �← lcp(nsv, psv)
5: if X[i+ �] = X[nsv + �] then p← nsv
6: else p← psv
7: �← �+ lcp(i+ �, p+ �)
8: if � = 0 then p← X[i]
9: z ← z + 1
10: LZ[z]← (p, �)
11: i← i+max{�, 1}
12: return LZ[1..z]

Figure 2: The second (left) and the third (right) phase of the SE-KKP algorithm. The
procedure lcp(·, ·) computes lcp values using brute force character comparisons.

The pseudocode for the second and third phase is given in Figure 2. It is essentially
the same as the original description [13, KKP3], to which we refer for the detailed
explanation. The main difference is that we use an explicit stack instead of overwriting
the suffix array with the stack. Similar to EM-LPF the only non-sequential operations
in the second phase are write operations, to NPSV in this case, and the solution is
the same too: external memory sorting between the second and third phases. The
lcp computation on line 4 of LZ-from-NPSV requires the string X to remain in RAM
as the positions nsv and psv can be effectively random.

The algorithm requires the RAM to be large enough to hold the string X. RecallM
is the size of RAM in terms of Θ(log n)-bit integers, while the size of X is O(n log σ)
bits. Thus, when the algorithm is usable, we can assume that M = Ω(n/ logσ n).
The time complexity of the algorithm is then O(n logσ n) and the I/O complexity is
O(n logσ n/B), both dominated by the FGM algorithm.

6 Experimental Results

We implemented the three algorithms described in this paper and performed experi-
ments to find the limits of their scalability in practice. Also included is LZscan [12],
the best of prior algorithms under limited RAM.

2http://people.unipmn.it/manzini/bwtdisk/index.html

158

Table 1: Files used in the experiments. The value of n/z (the average length of
a phrase in the LZ factorization) is included as a measure of repetitiveness.

Name n σ n/z Description

countries 10 GiB 203 2871 Wikipedia version databasea

cere 10 GiB 5 3230 Set of Yeast genomesb

enwik 6 GiB 209 19.30 English Wikipedia XMLc

hg 5.85 GiB 31 18.44 2 Human genomesd,e

a http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
b http://pizzachili.dcc.uchile.cl/repcorpus.html
c http://dumps.wikimedia.org/enwiki/
d http://hgdownload.soe.ucsc.edu/goldenPath/hg19/chromosomes/
e ftp://public.genomics.org.cn/BGI/yanhuang/fa/

Experimental Setup. In our experiments we use various prefixes of the files listed
in Table 1. The first two files are highly repetitive, which is the forte of LZ-based
compression and compressed indexes, and the other two represent “normal” files.

We performed experiments on a machine equipped with a 3.16GHz Intel Core
2 Duo CPU with 6144KiB L2 cache, 4GiB of main memory, and two 320GiB hard
drives. Only a single thread of execution was used. The OS was Linux (Ubuntu
12.04, 64bit) running kernel 3.2.0. The compiler was g++ version 4.6.4 with -O3

-static -DNDEBUG options. All reported runtimes are wallclock (real) times. The
implementations are available at http://www.cs.helsinki.fi/group/pads/.

Experiment 1. First we studied the scalability of the two proper external memory
algorithms, EM-LPF and EM-LZscan. Scalability of EM-LPF is primarily limited by
the disk space requirement of eSAIS. The test machine was equipped with two 320GiB
disks with 480GiB of effectively usable disk space. The reported peak disk usage of
eSAIS is 54n [3] implying a limit of 8.8GiB for the maximum input text that could be
processed with EM-LPF. However, we were able to process texts only up to 6GiB3.

In contrast, EM-LZscan needs little extra disk space, but slows down rapidly as
the input grows much bigger than available RAM. To expose this behaviour within
the 6GiB input size limit of EM-LPF, we restricted (with the Linux boot option mem)
the physical amount of RAM in our test machine to 2GiB and designated exactly
1.5GiB to be used by each algorithm. For EM-LPF this is not a serious restriction.

The results are given in Fig. 3. The results for the two non-repetitive files (enwik
and hg) show the quadratic time complexity of EM-LZscan, while EM-LPF scales nicely
until it runs out of disk space. For the highly repetitive files, EM-LZscan is much faster
because of the skipping trick, and would handle even larger inputs effectively. On the
same machine but without the manual RAM limitation, we factorized a 40.5GiB
version of the countries file using EM-LZscan in 2.3 days.

Experiment 2. In the second set of experiments, we study LZ factorization when
the input text fits into the main memory but is too big to use standard techniques
that require at least 6n bytes of RAM [13]. The main competitors in this context are

3For larger files, we get an STXXL error message “External memory block allocation error”.

159

● ●
● ● ●

●

2 4 6 8 10
0

2

4

6

8

10

12

14
T

im
e

[s
 /

M
iB

]

●

●

●

●

●

●

● ●
● ● ●

●

●

EM−LZscan
eSAIS + EM−LPF

EM−LPF
eSAIS

countries

●
● ●

●
● ●

2 4 6 8 10
0

2

4

6

8

10

12

14

●

●

●

●

●

●

●
● ●

●
● ●

cere

● ● ● ●
●

●

1 2 3 4 5 6
0

2

4

6

8

10

12

14

T
im

e
[s

 /
M

iB
]

Input size [GiB]

●

●

●

●

●

●

● ● ● ●

●
●

enwik

● ● ● ●
● ●

1 2 3 4 5
0

2

4

6

8

10

12

14

Input size [GiB]

●

●

●

●

●

●

● ● ● ●
● ●

hg

Figure 3: Comparison of external memory LZ77 parsing algorithms. For EM-LPF we
separate the total factorization time into two components: time spent for precomputing
SA and LCP arrays using eSAIS (dark grey), and the time for computing the actual LZ77
parsing using EM-LPF (light grey).

EM-LZscan and SE-KKP as well as LZscan [12]. We restricted the RAM used by the
algorithms to at most 3GiB.

The results are given in Fig. 4. For non-repetitive files, SE-KKP outperforms its
competitors. EM-LZscan is faster than its in-memory version, because not having to
keep the text in memory frees RAM for other data structures. For highly repetitive
data, LZscan and EM-LZscan are again much faster because of the skipping trick.

Discussion. For highly repetitive files, EM-LZscan is the best algorithm through
the range of our experiments. For non-repetitive data, it is beaten by SE-KKP for
smaller files and by EM-LPF for large files. Thus all three of our algorithms are the
best under some conditions.

Our test machine is quite modest by modern standards and machines with much
more RAM and disk space are commonly available. An interesting question is which
of the two proper external memory algorithms scales better with improved hardware.
Currently, the price of 1TiB of disk space is roughly the same as the price of 16GiB
of RAM. An extra 1TiB of disk would allow eSAIS/EM-LPF to process about 16GiB

160

●

●
●

●
●

●

0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

7

T
im

e
[s

 /
M

iB
]

●

●

●

●

●

●

●

●
●

●
●

●

●

LZscan
EM−LZscan
FGM + SE−KKP

SE−KKP
FGM

countries

●

●
●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

7

●

●

●

●

●

●

●

●
●

●

●

●

cere

●

● ●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

7

T
im

e
[s

 /
M

iB
]

Input size [GiB]

●

●

●

●

●

●

●

● ●

●

●

●

enwik

●

●

●

●
●

●

0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

7

Input size [GiB]

●

●

●

●

●

●

●

●

●

●
●

●

hg

Figure 4: Comparison of semi-external LZ77 parsing algorithms. For SE-KKP we sepa-
rately show the time to precompute SA using FGM (dark grey), and the actual LZ77 parsing
time using SE-KKP (light grey).

larger inputs, while an extra 16GiB of RAMwould extend the scalability of EM-LZscan
by about the same for non-repetitive data and much more for highly repetitive data.
Furthermore, the limit of scalability of EM-LZscan is soft: larger files can be factorized
given more time. Thus there are reasons to call EM-LZscan more scalable.

7 Concluding Remarks

We have described three very different methods for LZ factorization in external mem-
ory and have shown that in practice the method of choice depends on the size and
type of input as well as the RAM size and disk space of the system.

A different path to making LZ77 factorization scalable is to distribute or parallelize
the computation. Shun and Zhao [17] recently studied LZ factorization in the multi-
core setting. Of the three algorithms we describe, the work of EM-LZscan seems most
amenable to distribution (each node processes a different block, or set of adjacent
blocks), whereas the distributability of EM-LPF and SE-KKP will depend largely on
that of the SA construction algorithm used.

161

References

[1] Al-Hafeedh, A., Crochemore, M., Ilie, L., Kopylova, E., Smyth, W., Tischler, G.,
Yusufu, M.: A comparison of index-based Lempel-Ziv LZ77 factorization algorithms.
ACM Comput. Surv. 45(1), 5:1–5:17 (2012)

[2] Belazzougui, D., Navarro, G.: New lower and upper bounds for representing sequences.
In: Proc. ESA, pp. 181–192 (2012)

[3] Bingmann, T., Fischer, J., Osipov, V.: Inducing suffix and LCP arrays in external
memory. In: Proc. ALENEX. pp. 103–112 (2013)

[4] Crochemore, M., Ilie, L., Smyth, W.F.: A simple algorithm for computing the Lempel-
Ziv factorization. In: Proc. DCC. pp. 482–488 (2008)

[5] Crochemore, M.: String-matching on ordered alphabets. Theor. Comput. Sci. 92, 33–47
(1992)

[6] Dementiev, R., Kettner, L., Sanders, P.: STXXL: standard template library for XXL
data sets. Softw., Pract. Exper. 38(6), 589–637 (2008)

[7] Ferragina, P., Manzini, G.: On compressing the textual web. In: Proc. WSDM. pp.
391–400 (2010)

[8] Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression in
external memory. Algorithmica 63(3), 707–730 (2012)

[9] Gagie, T., Gawrychowski, P., Puglisi, S.J.: Faster approximate pattern matching in
compressed repetitive texts. In: Proc. ISAAC. pp. 653–662 (2011)

[10] Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A faster
grammar-based self-index. In: Proc. LATA. pp. 240–251 (2012)

[11] Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Crochemore’s string matching algorithm:
Simplification, extensions, applications. In: Proc. PSC. pp. 168–175 (2013)

[12] Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lightweight Lempel-Ziv parsing. In: Proc.
SEA. pp. 139–150 (2013)

[13] Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel–Ziv factorization: Sim-
ple, fast, small. In: Proc. CPM. pp. 189–200 (2013)

[14] Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-
prefix computation in suffix arrays and its applications. In: Proc. CPM. pp. 181–192
(2001)

[15] Kreft, S., Navarro, G.: Self-indexing based on LZ77. In: Proc. CPM. pp. 41–54 (2011)

[16] Manber, U., Myers, G.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

[17] Shun, J., Zhao, F.: Practical parallel Lempel-Ziv factorization. In: Proc. DCC. pp.
123–132 (2013)

[18] Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337–343 (1977)

162

