
Tighter Bounds for the Sum of Irreducible
LCP Values

Juha Kärkkäinen1(B), Dominik Kempa1, and Marcin Pi ↪atkowski1,2

1 Helsinki Institute of Information Technology (HIIT) and
Department of Computer Science, University of Helsinki,

Helsinki, Finland
{juha.karkkainen,dominik.kempa}@cs.helsinki.fi

2 Faculty of Mathematics and Computer Science,
Nicolaus Copernicus University, Torun, Poland

marcin.piatkowski@mat.umk.pl

Abstract. The suffix array is frequently augmented with the longest-
common-prefix (LCP) array that stores the lengths of the longest com-
mon prefixes between lexicographically adjacent suffixes of a text. While
the sum of the values in the LCP array can be Ω(n2) for a text of length
n, the sum of so-called irreducible LCP values was shown to be O(n lg n)
just a few years ago. In this paper, we improve the bound to O(n lg r),
where r ≤ n is the number of runs in the Burrows-Wheeler transform of
the text. We also show that our bound is tight up to lower order terms
(unlike the previous bound). Our results and the techniques used in prov-
ing them provide new insights into the combinatorics of text indexing and
compression, and have immediate applications to LCP array construc-
tion algorithms.

1 Introduction

The suffix array [8], a lexicographically sorted array of the suffixes of a text, is the
most important data structure in modern string processing. Modern text books
spend dozens of pages in describing applications of suffix arrays, see e.g. [12].
In many of those applications, the suffix array needs to be augmented with
the longest-common-prefix (LCP) array, which stores the lengths of the longest
common prefixes between lexicographically adjacent suffixes (see e.g. [1,12]).

A closely related array is the Burrows–Wheeler transform (BWT) [2], which
stores the characters preceding each suffix in the lexicographical order of the
suffixes. The BWT was designed for text compression and is at the heart of
many compressed text indexes [11]. If a text is highly repetitive (and thus highly
compressible), its BWT tends to contain long runs of the same character. For
example, for any string x and positive integer k, x and xk have the same number
of BWT runs [7]. Thus the number of BWT runs is a rough measure of the
(in)compressibility of the text.

Partially supported by the project “Enhancing Educational Potential of Nicolaus
Copernicus University” (project no. POKL.04.01.01-00-081/10).

c© Springer International Publishing Switzerland 2015
F. Cicalese et al. (Eds.): CPM 2015, LNCS 9133, pp. 316–328, 2015.
DOI: 10.1007/978-3-319-19929-0 27

Tighter Bounds for the Sum of Irreducible LCP Values 317

An entry LCP[i] in the LCP array is called reducible if BWT[i] = BWT[i−1],
and irreducible otherwise. Given all the irreducible LCP values, the reducible
values are easy to compute, which has been utilized in several LCP array con-
struction algorithms [5,6,10,14]. There is also a compressed representation of
the LCP array based on the fact that the number of irreducible values is one
less than the number of BWT runs and thus small for repetitive texts [14].

The sum of irreducible LCP values was shown to be O(n lg n) for a text of
length n in [6], and there are LCP array construction algorithms relying on this
bound [5,6,14]. In this paper, we improve the bound to n lg r + O(n), where r
is the number of BWT runs.1 This immediately gives better time complexities
for the algorithms in [6,14]. The tightness of our bound is shown by an infinite
family of strings with the irreducible LCP sum of n lg r − O(n).

Our proofs are derived in a setting where the suffix array, LCP array
and BWT are defined for an arbitrary multiset of strings, closely related
to the extended BWT introduced in [9]. This general setting offers cleaner
combinatorics — for example, our upper and lower bounds match exactly in this
setting — and could be useful for studying other topics in the combinatorics of
text indexes.

2 Preliminaries

By A we denote a finite ordered set, called the alphabet. Elements of the
alphabet are called letters. A finite word over A is a finite sequence of letters
w = a0a1 . . . an−1. The length of a word w is defined as the number of its letters
and denoted by |w|. An empty sequence of letters, called the empty word, is
denoted by ε. The set of all finite words over A is denoted by A∗ and the set of
all non-empty words over A by A+ = A∗ \ {ε}.

For two words x = a0a1 . . . am−1 and y = b0b1 . . . bn−1, their concatenation
is xy = x · y = a0a1 . . . am−1b0b1 . . . bn−1. For a word w and an integer k ≥ 1, we
use wk to denote the concatenation of k copies of w, also called a power of w.
A word w is primitive if w is not a power of some other word. The root of a
word w is defined as the shortest word u = root(w) such that w = uk for some
k ≥ 1.

A word u is a factor of a word w if there exist words x and y such that
w = xuy. Moreover, u is a prefix (resp. a suffix) of w if x = ε (resp. y = ε). By
lcp(u, v) we denote the length of the longest common prefix of u and v. For a
word w = a0 . . . an−1 and i, j ∈ [0..n) by w[i..j] we denote its factor of the form
aiai+1 . . . aj . A factor/prefix/suffix u of w is proper if u �= w. A (multi)set of
words W is prefix-free if no word in W is a proper prefix of another word in W .

The order on letters of A can be extended in a natural way into the lexico-
graphical order of words. For any two words x and y we have x < y if x is a
proper prefix of y or we have x = uav1 and y = ubv2, where a, b ∈ A and a < b.

Let a ∈ A and x ∈ A∗. We define a rotation operator σ : A+ → A+ as
σ(a · x) �→ x · a, a first-letter operator τ : A+ → A as τ(a · x) �→ a and a reverse
1 Throughout the paper we use lg as a shorthand for log2.

318 J. Kärkkäinen et al.

operator : A∗ → A∗ as ε �→ ε and a · x �→ x · a. We say that a word w1 is a
conjugate of a word w2 if w1 = σk(w2) for some k.

The set of infinite periodic words is defined as (A+)ω = {wω : w ∈ A+},
where wω = w · w · . . . is the infinite power of w. We extend several of the above
operators to infinite periodic words: root(wω) = root(w), σ(wω) =

(
σ(w)

)ω,
τ
(
(a · w)ω

)
= a and (wω) =

(
w

)ω. Some key properties are given below:

– The operators are well defined: If uω = vω for two words u and v, then
root(u) = root(v), σ(u)ω = σ(v)ω, τ(u) = τ(v), and uω = vω.

– The rotation operator σ is in fact a suffix operator for infinite periodic words:
wω = τ(wω)σ(wω) for all w ∈ A+. However, unlike a suffix operator for finite
words, σ has a well defined inverse σ−1.

– The lexicographical ordering of infinite periodic words is not necessarily the
same as their roots. For example, with alphabet {a < b}, ab < aba but
(ab)ω > (aba)ω. However, for two infinite periodic words with the roots u and
v, either uω = vω (and lcp(uω, vω) = ω) or lcp(uω, vω) ≤ |u|+ |v|−gcd(|u|, |v|)
due to properties of periodicity [3].

A rooted tree T is a directed graph that contains no undirected cycles and where
every vertex is reachable from a single vertex called the root. If (u, v) is an edge
in T , u is the parent of v and v is a child of u. If there is a directed path from a
vertex u to vertex v, u is an ancestor of v and v is a descendant of u. A subgraph
of T induced by the set of vertices that are reachable from a vertex u is called
the subtree rooted at u.

A compact trie is a rooted tree, where the edges are labelled by non-empty
words so that, for any vertex u with two outgoing edges (u, v1) and (u, v2),
lcp(label(u, v1), label(u, v2)) = 0. The edge labelling induces a vertex labelling:
the label of a vertex u is the concatenation of edge labels on the path from
the root to u. The compact trie CTrie(W) for a set W of words is the smallest
compact trie that contains a vertex labelled by w for every w ∈ W . If W is
prefix-free, a vertex v in CTrie(W) is labelled by a word in W if and only if v is
a leaf. For W ⊆ (A+)ω, the leafs and the leaf edges in CTrie(W) are labelled by
infinite periodic words, but other edges and vertices have finite labels.

3 Cyclic Suffixes

In this section, we define a generalization of the suffix array and related data
structures based on the concept of cyclic suffixes.

Let W = {{wi}}s
i=1 be a multiset2 of words and n =

∑s
i=1 |wi|. The set of

positions of W is defined as the set of integer pairs pos(W) :=
{〈i, p〉 : i ∈

[1..s], p ∈ [0..|wi|)
}
. For a position 〈i, p〉 ∈ pos(W) we define a cyclic suffix

W〈i,p〉 :=
(
σp(wi)

)ω ∈ (A+)ω. The multiset of all cyclic suffixes of W is defined
as suf(W) := {{W〈i,p〉 : 〈i, p〉 ∈ pos(W)}}.

2 We use the double brace notation {{·}} to denote a multiset as opposed to a set.

Tighter Bounds for the Sum of Irreducible LCP Values 319

We define two multisets V and W to be cyclically equivalent if suf(V) =
suf(W). It is easy to see that the corresponding equivalence classes are closed
under conjugation of words in the multiset. Indeed, the restriction of cyclic
equivalency to multisets of primitive words is the multiset conjugacy relation
defined in [9]. The following lemma illustrates some further properties of our
extension.

Lemma 1. For any multiset of words W = {{wi}}s
i=1 there exists a multiset of

primitive words V = {{vi}}t
i=1, t ≥ s, such that suf(W) = suf(V), and a set (not

a multiset) of words U = {ui}q
i=1, q ≤ s, such that suf(W) = suf(U).

Proof. To obtain V we replace each non-primitive word w = vk ∈ W , where
v = root(w), with k occurrences of the primitive word v. To obtain U we replace
each word w having k occurrences in W with a single word u = wk. ��
Over the multiset pos(W), we define a total order
W . We say that 〈i, p〉
W

〈i′, p′〉 if W〈i,p〉 < W〈i′,p′〉, or W〈i,p〉 = W〈i′,p′〉 and 〈i, p〉 ≤ 〈i′, p′〉, where the last
comparison is the usual integer pair comparison, i.e. (i1, j1) < (i2, j2) if i1 < i2
or i1 = i2 and j1 < j2.

The (cyclic) suffix array of a multiset of words W is defined as an array
SAW [j] = 〈ij , pj〉, where 〈ij , pj〉 ∈ pos(W) for all j ∈ [0..n) and 〈ij−1, pj−1〉 ≺W

〈ij , pj〉 for all j ∈ [1..n). Note that for two cyclically equivalent multisets V and
W , we may have SAV �= SAW but always VSAV [j] = WSAW [j] for all j.

The longest-common-prefix array LCPW [1..n) is defined as LCPW [j] =
lcp

(
WSA[j−1],WSA[j]

)
. The distinguishing prefix array DPW [1..n) is defined as

DPW [i] = LCPW [i] + 1. Note that we can have LCPW [i] = ω = DPW [i].
The Burrows-Wheeler transform BWTW [0..n) (also denoted BWT(W)) is

defined as BWTW [j] = τ
(
σ−1(WSA[j])

)
. This definition is a natural generaliza-

tion of the original one [2] defined for a single (not necessarily primitive) word
and the one in [9] defined for a multiset of primitive words. It is easy to see that if
multisets V and W are cyclically equivalent, then LCPV = LCPW , DPV = DPW

and BWTV = BWTW .
Let v be a word of length n and v̂ be obtained from v by sorting its letters.

The standard permutation [4] of v is the permutation corresponding to the stable
sorting of the letters, i.e., it is the mapping Ψv : [0..n) → [0..n) such that: for
each i ∈ [0..n) we have v̂[i] = v[Ψv(i)] and for v̂[i] = v̂[j] the relation i < j
implies Ψv(i) < Ψv(j). Let IBWT be the mapping that maps a word v into a
multiset of (primitive) words W as follows. Let Ψv be a standard permutation
of v and C = {ci}s

i=1 its disjoint cycle decomposition. Then W = {{wi}}s
i=1 and

for each i ∈ [1..s] and j ∈ [0..|ci|) we define wi[j] = v[Ψv(ci[j])]. The mapping
IBWT is the inverse of BWT in the sense that BWT(IBWT(v)) = v for every
word v. Thus the mapping from a word v to the cyclical equivalence class of
IBWT(v) is a bijection (see [9]).

Example 1. Let W = {{ab, abaaba}}. We have v = BWT(W) = bbaabaaa (having
r = 4 runs) and Ψv = (0, 2, 5)(1, 3, 6)(4, 7). Then IBWT(v) = {{aab, aab, ab}},
which is cyclically equivalent to W .

320 J. Kärkkäinen et al.

The suffix tree of W , denoted by STree(W), is the compact trie of suffixes
CTrie(suf(W)). If suf(W) is a multiset, a single vertex in STree(W) represents
all copies of a suffix, and the number of leaves in STree(W) is the number of
distinct words in suf(W).

4 Irreducible Sums

For a multiset of words W , we say that a value LCPW [i] is reducible if
BWTW [i−1] = BWTW [i] and irreducible otherwise. Observe that if LCPW [i] =
ω, then this value is obviously reducible. We say that a value DPW [i] is irre-
ducible if the corresponding value LCPW [i] is irreducible. Let Σlcp(W) denote
the sum of all LCPW values, Σilcp(W) the sum of all irreducible LCPW val-
ues, and Σidp(W) the sum of irreducible DPW values. Note, that Σidp =
Σilcp + r − 1, where r is the number of runs in the BWT. For technical reasons
we analyze Σidp rather than Σilcp.

We define a lexicographically adjacent repeat (LAR) in a multiset W as a
tuple (〈i, p〉, 〈j, q〉, �) such that 〈i, p〉, 〈j, q〉 ∈ pos(W), � is a non-negative integer,
lcp(W〈i,p〉,W〈j,q〉) ≥ �, 〈i, p〉 ≺W 〈j, q〉 and there exists no 〈i′, p′〉 such that
〈i, p〉 ≺W 〈i′, p′〉 ≺W 〈j, q〉 i.e., W〈i,p〉 and W〈j,q〉 are lexicographically adjacent
suffixes with a common prefix of length (at least) �. A LAR (〈i, p〉, 〈j, q〉, �) is
left-maximal if (〈i, p − 1〉, 〈j, q − 1〉, � + 1) is not a LAR.

Lemma 2. The number of left-maximal LARs in W equals Σidp(W).

Proof. Clearly, the set of all LARs is exactly {(SA[i−1],SA[i], �) : i ∈ [1..n), � ∈
[0..DP[i])}, and a LAR (SA[i − 1],SA[i], �) is left-maximal if and only if DP[i] is
irreducible. ��
Let T be a rooted tree and ≤ a total order over the leaves of T . Let u and v
be leaves of T , and let x be the nearest common ancestor of u and v. The pair
(u, v) is called a dispersal pair if u < v and the subtree rooted at x contains no
leaf w such that u < w < v. Let Dx(T,≤) denote the set of dispersal pairs with
x as the nearest common ancestor. The dispersal value of T with respect to ≤,
denoted by d(T,≤), is the number of dispersal pairs in T .

Let suf(W) = {{w : w ∈ suf(W)}} be the multiset of reverse suffixes of a
multiset W . The reverse suffix tree STree(W) of W is CTrie(suf(W)). Define a
total order ≤W over the leaves of STree(W) by u ≤W v ⇐⇒ 〈i, p〉
W 〈j, q〉,
where W〈i,p〉 is the label of u and W〈j,q〉 is the label of v. If suf(W) contains
duplicates, any of the identical reverse suffixes can be used as the representative
of a vertex.

Lemma 3. d(STree(W),≤W) = Σidp(W).

Proof. Let (SA[i − 1],SA[i], �) be a left-maximal LAR, i.e., DP[i] > � is irre-
ducible. Let x be the length � prefix of WSA[i], and let y and y′ be infinite
periodic words such that xy = WSA[i−1] and xy′ = WSA[i]. Then x is the longest

Tighter Bounds for the Sum of Irreducible LCP Values 321

common prefix of y and y′. Let u, v and v′ be the vertices of STree(W) that are
labelled by x, y and y′, respectively. Then v <W v′ and we will show that (v, v′)
is a dispersal pair. Suppose (v, v′) is not a dispersal pair. Then there exists a
leaf v′′ descendant to u such that v <W v′′ <W v′. If y′′ is the label of v′′, then
xy′′ ∈ suf(W) and xy < xy′′ < xy′, which contradicts xy and xy′ being adjacent
in SA. Thus (v, v′) is a dispersal pair. This mapping from left-maximal LARs to
dispersal pairs is clearly injective, and thus d(STree(W),≤W) ≥ Σidp(W).

Let (v, v′) be a dispersal pair in STree(W), and let u be the nearest com-
mon ancestor of v and v′. Let y, y′ and x be words such that x, y and y′ are
the labels of u, v and v′, respectively. Then xy, xy′ ∈ suf(W), xy < xy′ and
τ(σ−1(xy)) �= τ(σ−1(xy′)). Let i be the largest integer such that WSA[i] = xy
and i′ the smallest integer such that WSA[i′] = xy′. Then i < i′ and we will
show that i = i′ − 1. Suppose i < i′ − 1 and let i′′ = i′ − 1. Then we must
have WSA[i] < WSA[i′′] < WSA[i′] and x is a prefix of WSA[i′′]. If y′′ is the word
such that xy′′ = WSA[i′′], then y′′ ∈ suf(W) has x as a prefix. If v′′ is the leaf in
STree(W) labelled by y′′, then v <W v′′ <W v′, which contradicts (v, v′) being
a dispersal pair. Thus i = i′ −1 and (SA[i−1],SA[i], |x|) is a left-maximal LAR.
This mapping from dispersal pairs to left-maximal LARs is clearly injective and
thus d(STree(W),≤W) ≤ Σidp(W). ��

5 n lgn Upper Bound

We will now derive upper bounds on the maximum dispersal value of any tree
with n leaves. By Lemma 3, these bounds are upper bounds for Σidp, too.

Define, for n > 0 and k ∈ [1..�n/2�],
d(1) = 0
d(n) = max

i∈[1..�n/2]
d(n, i) when n > 1

d(n, k) = d(k) + d(n − k) + min{2k, n − 1}
Lemma 4. d(n) = max{d(T,≤)}, where the maximum is taken over any rooted
tree T with n leaves and any total order ≤ on the leaves of T .

Proof. We will first prove that we can restrict ourselves to proper binary trees,
where every non-leaf vertex has exactly two children. Let T be a tree with a leaf
order ≤, and let u be a vertex with at least three children v1, v2 and v3. Let
T ′ be the tree obtained from T by adding a vertex u′ and replacing the edges
(u, v1) and (u, v2) with (u, u′), (u′, v1) and (u′, v2). Let w1, w2 and w3 be leaves
in the subtrees rooted at v1, v2 and v3, respectively. Then, (w1, w2) could be a
dispersal pair in T ′ but not in T if w1 < w3 < w2. However, any dispersal pair
in T is a dispersal pair in T ′ too. Thus d(T,≤) ≤ d(T ′,≤). The above procedure
can be repeated as long as the tree contains vertices with more than two children
to obtain a binary tree. Furthermore, one can similarly show that unary vertices
can be removed without removing any dispersal pairs to obtain a proper binary
tree.

322 J. Kärkkäinen et al.

Let then T be a proper binary tree of size (number of leaves) n ≥ 2 with a
leaf order ≤. Let TL and TR be the left and right subtree of T of sizes k and n−k,
respectively. W.l.o.g., assume that k ≤ n − k. Let ≤L (≤R) be the leaf order ≤
restricted to the left (right) subtree. Let Droot(T,≤) be the set of dispersal pairs
with the root of T as the nearest common ancestor. Then, clearly,

d(T,≤) = d(TL,≤L) + d(TR,≤R) + |Droot(T,≤)| .
If (u, v) ∈ Droot(T,≤), then u and v are adjacent in the order ≤, and one of u
and v is in TL and the other is in TR. A leaf u can be involved with at most two
pairs in Droot(T,≤), once with its immediate predecessor in ≤ and once with
its immediate successor. Thus |Droot(T,≤)| ≤ 2k. Furthermore, if k = n − k,
at least one of the leaves in TL is the first in ≤, the last in ≤ or adjacent to
another leaf in TL, and thus involved in at most one pair in Droot(T,≤). Then
|Droot(T,≤)| ≤ 2k −1 = n−1. It is now easy to see that d(n) is an upper bound
on the dispersal value over trees of size n, by induction on n:

d(T,≤) = d(TL,≤L) + d(TR,≤R) + |Droot(T,≤)|
≤ d(k) + d(n − k) + min{2k, n − 1} = d(n, k) ≤ d(n) .

We still need to show that, for every n, there exists a tree Tn and its leaf order
≤n such that d(Tn,≤n) = d(n). The case n = 1 is trivial. For n > 1 and k ∈
[1..�n/2�], let Tn,k be a tree with Tk and Tn−k as the two subtrees. Define the leaf
order ≤n,k so that the leaves at positions 2, 4, 6, . . . , 2k come from Tk consistent
with the order ≤k and the leaves at positions 1, 3, 5, . . . , 2k−1, 2k+1, 2k+2, . . . , n
come from Tn−k consistent with the order ≤n−k. Then, it is easy to see that

d(Tn,k,≤n,k) = d(Tk,≤k) + d(Tn−k,≤n−k) + |Droot(Tn,k,≤n,k)|
= d(k) + d(n − k) + min{2k, n − 1} = d(n, k)

Finally, set Tn = Tn,k and ≤n=≤n,k, for k = argmaxi d(n, i). Then d(Tn,≤n) =
d(n). ��
Basic properties and closed form equations for d(n) are given in the following
lemmas. The proofs are omitted due to lack of space.

Lemma 5. For any 2 ≤ 2k ≤ n,

(i) d(n, k) ≤ d(n, �n/2�)
(ii) d(n) − d(n − 1) = �lg n� .

Lemma 6. d(n) = n�lg n� − 2
lg n� + 1.

Lemma 7. d(n) = n lg n − (1 − α(n))n + 1, where
0 ≤ α(n) := 1 − 2
lg n�/n + lg(2
lg n�/n) < (1 − lg e + lg lg e) < 0.0861.

Thus we obtain an n lg n bound on the irreducible sums.

Theorem 1. For any multiset W of words of total length n > 0, we have

Σilcp(W) ≤ Σidp(W) ≤ d(n) ≤ n lg n .

Tighter Bounds for the Sum of Irreducible LCP Values 323

6 n lg r Upper Bound

We will now use the above machinery to improve the upper bound on Σidp(W)
when the number r of runs in BWT(W) is given.

Lemma 8. If BWT(W) has r runs, then |Du(STree(W),≤W)| < r for every
vertex u in STree(W).

Proof. Let u be a vertex in STree(W) labelled by x. The bijection defined in the
proof of Lemma 3 maps Du(STree(W),≤W) into

{(SA[i−1],SA[i], |x|) :x is prefix of WSA[i−1]and WSA[i], and DP[i] is irreducible}.

Since the total number of irreducible distinguishing prefixes is r − 1, the size of
this set cannot be more than r − 1, and thus |Du(STree(W),≤W)| < r. ��

Define, for r > 0, n > 0 and k ∈ [1..�n/2�],

dr(1) = 0
dr(n) = max

i∈[1..�n/2]
dr(n, i) when n > 1

dr(n, k) = dr(k) + dr(n − k) + min{2k, n − 1, r − 1}

Lemma 9. dr(n) = max{d(T,≤)}, where the maximum is taken over any
rooted tree T with n leaves and any total order ≤ on the leaves of T such that
|Du(T,≤)| < r for every vertex u in T .

Proof. We will prove the claim by modifying the construction utilized in the
proof of Lemma 4. First note that in the transformation from a non-binary tree
to a binary tree, the new vertex u′ might have |Du′(T ′,≤)| ≥ r. However, we
can then replace ≤ with ≤′ such that |Du′(T ′,≤′)| = r − 1 and no other vertex
dispersal value is changed. Then we must have |Du(T ′,≤′)| + |Du′(T ′,≤′)| ≥
|Du(T,≤)| and thus d(T,≤) ≤ d(T ′ ≤′).

The inequality d(T,≤) ≤ dr(n) follows immediately from using the bound
|Droot(T,≤)| ≤ min{2k, n − 1, r − 1} in place of |Droot(T,≤)| ≤ min{2k, n − 1}.
In the construction of Tn and ≤n, the only difference is in constructing ≤n,k

when r − 1 < min{2k, n − 1}. In that case, the interleaving of ≤k and ≤n−k to
obtain ≤n,k is then chosen so that |Droot(Tn,k,≤n,k)| = r − 1. With this change,
the construction shows that d(Tn,≤n) = dr(n). ��
Basic properties and closed form equations for dr(n) are given in the following
lemmas. Again, the proofs are omitted due to lack of space.

Lemma 10. For any r ≥ 2,

(i) dr(n) = d(n) if n ≤ r
(ii) dr(n, k) ≤ dr(n, �r/2�) if n ≥ r and k ≤ n/2
(iii) for n > �r/2�,

324 J. Kärkkäinen et al.

dr(n) − dr(n − 1) =
{ �lg r� if n − �r/2� − 1 mod �r/2� ∈ [0..q)

�lg r� if n − �r/2� − 1 mod �r/2� ∈ [q..�r/2�)

where q = 2
lg r�−1 − �r/2�.
Lemma 11. For any 2 ≤ r ≤ n,

dr(n) = n�lg r� − 2
lg r� + 1 − q(n − r − p)/�r/2� − min{q, p}
≤ n�lg r� − 2
lg r� + 1

where q = 2
lg r�−1 − �r/2� and p = (n − r) mod �r/2�.
Lemma 12. For any 2 ≤ r ≤ n,

dr(n) = n lg r + n(α(r) + β(r)) − r(1 + β(r)) − γ(p, q) + 1

≤ n lg r + nα(r) − r +
{

1 if r is even
n
r if r is odd ,

where p and q are as in Lemma 11, α(r) ∈ [0, 0.0861) is as in Lemma 7,

β(r) =

{
0 if r is even
2r−2�lg r�

r(r−1) if r is odd
∈ [0, 1/r]

and γ(p, q) = min{p, q} − pq/�r/2� ∈ [0, r/8).

Thus we obtain the following upper bound on the irreducible sums.

Theorem 2. For any multiset W of words of total length n > 0 such that
BWT(W) has r runs, we have

Σilcp(W)+r−1 = Σidp(W) ≤ dr(n) < n lg r+0.0861·n+n/r−r = n lg r+O(n) .

7 n lgn Lower Bound

In this and the next section, we will show the tightness of the above upper bounds
by constructing words and sets of words with matching irreducible sums. We will
deal only with sets (not multisets) over the binary alphabet {a, b}, which allows
a useful characterization of the LCP array.

Lemma 13. For any set of words W of total length least two, such that suf(W)
contains no duplicates, the sequence of the depths of internal (non-leaf) vertices
in STree(W) listed in inorder is exactly LCPW .

Proof. Consider constructing STree(W) by inserting the suffixes into a compact
trie one at a time in the lexicographical order. When inserting WSA[i], i > 0,
we add exactly two vertices, the leaf vi labelled WSA[i] and the parent ui of vi.
Note that ui could not have existed (or was the root and unary) before, since
the tree is binary. Since the depth of ui must be LCP[i], and the internal vertices
are inserted in inorder, the claim follows. ��

Tighter Bounds for the Sum of Irreducible LCP Values 325

A word set W ⊆ {a, b}∗ is a de Bruijn set [4] of order k ≥ 1 if every v ∈ {a, b}k

is a prefix of exactly one word in suf(W) (and thus suf(W) is a set).

Lemma 14. For any de Bruijn set W of order k, Σlcp(W) = k2k − 2k+1 + 2.

Proof. STree(W) has 2i vertices at depth i ∈ [0..k − 1] and no internal vertices
at levels i ≥ k. By Lemma 13, Σlcp(W) =

∑k−1
i=1 i2i = k2k − 2k+1 + 2. ��

Higgins [4] showed the following characterization of the de Bruijn sets.

Lemma 15 ([4]). For k ≥ 1, and any u ∈ Uk = {ab, ba}2k−1
, W = IBWT(u)

is a de Bruijn set.

In particular, Wk = IBWT((ab)2
k−1

) is a de Bruijn set. Since every entry in
LCPWk

is irreducible, we obtain the following result.

Theorem 3. For any k ≥ 1, Σilcp(Wk) = k2k − 2k+1 + 2 = n lg n − 2n + 2 and
Σidp(Wk) = Σilcp(Wk)+n−1 = n lg n−n+1, where n = 2k is the total length
of the words in Wk.

Thus Σidp(Wk) matches the upper bound from Sect. 5 exactly. We still want to
show that, for any k ≥ 1, there exist a de Bruijn word, i.e., a de Bruijn set of
size one, that matches the upper bound within O(n). First we need a bound on
the size of Wk.

Lemma 16. |Wk| ≤ (2k + (k − 1)2k/2)/k.

Proof. From [4, Theorem 3.8], the size of Wk is equal to the number of Lyndon
words of length dividing k. Thus the claim follows by combining Eqs. (7.10) and
(7.13) from [13].

Lemma 17. Starting with u = uk = (ab)2
k−1

, there exists a sequence of |Wk|−1
swaps of the form u[2i] ↔ u[2i+1] resulting in u ∈ Uk such that |IBWT(u)| = 1.

Proof. We will show that the following invariant is maintained during the
sequence of swaps until |IBWT(u)| = 1: there exists i such that every value in
[0..2i] belongs to the same cycle in Ψu, 2i+1 belongs to a different cycle, and there
has been no swaps affecting u[2i..2k). Then the next swap is u[2i] ↔ u[2i + 1].
The invariant is clearly true when u = uk.

Let j = Ψ−1
u (2i) and j′ = Ψ−1

u (2i + 1). Since u[2i] = a and u[2i + 1] = b,
after the swap we have Ψu(j) = 2i + 1 and Ψu(j′) = 2i, i.e., the two cycles were
merged. The values of Ψu are not affected elsewhere. Now consider the smallest
j ∈ [2i + 2..2k) that is not in the same cycle as 0. We must have u[j] = b, since
otherwise Ψ−1

u (j) < j and j would be in the same cycle. Thus j is odd, and we
can choose i = (j − 1)/2 to satisfy the invariant. ��
Theorem 4. For any k ≥ 1, there exists a word w of length n = 2k such that
Σidp(w) = n lg n − O(n).

Proof. Let u ∈ Uk be the result of Lemma 17 and w = IBWT(u). From the proof
of Lemma 14, max LCPw = k − 1. Each swap reduces the number of irreducible
LCP values by at most two, thus the initial Σidp(Wk) = n lg n−O(n) is reduced
by at most (max LCPw + 1)|Wk| ≤ k(2k + (k − 1)2k/2)/k = O(n). ��

326 J. Kärkkäinen et al.

8 n lg r Lower Bound

We will now extend the above lower bound results to cases where r � n. The
following lemma shows the key idea of the construction.

Lemma 18. Let u ∈ {a, b}2k, k ≥ 1 be a word containing exactly k a’s and k b’s.
Then, for any w = uajk, j ≥ 0, it holds |IBWT(w)| = |IBWT(u)|. Furthermore,
IBWT(w) can be obtained by replacing every occurrence of b in all IBWT(u)
with ajb.

Proof. The standard permutation of w can be expressed by the following formula:

Ψw(i) =

⎧
⎨

⎩

Ψu(i) 0 ≤ i < k
i + k k ≤ i < |w| − k
Ψu(i − jk) |w| − k ≤ i < |w|

Let j > 0 (since the case j = 0 is trivial), and compare the reconstructions of
IBWT(u) and IBWT(w) by following Ψu and Ψw. Whenever we visit i ∈ [0..k),
Ψw(i) = Ψu(i) and we append letter a to the currently decoded word in both
cycles. When visiting i ∈ [k..2k) we append b to IBWT(u) but a to IBWT(w) and
Ψw(i) �= Ψu(i). However, for any such i, and any p ∈ [1..j], we have Ψp

w(i) = i+pk,
and thus Ψ j+1

w (i) = Ψw(i+jk) = Ψu(i). Therefore, after a detour of j extra steps
in Ψw the cycles meet again, and where a single b was appended IBWT(u), ajb
was appended to IBWT(w). ��
Define Uk,j = {ab, ba}2k−1

aj2k−1
for k ≥ 1 and j ≥ 0. Consider arbitrary u ∈ Uk,j

for some k and j, and let W = IBWT(u). Let Sk,j = S0,k,j ∪S1,k,j ∪. . .∪Sj+1,k,j ,
where

Si,k,j =
{

aibaj{a, baj}k−1 if i ≤ j
aj+1{a, baj}k−1 if i > j

.

Lemma 19. Every word in Sk,j is a prefix of exactly one word in suf(W).

Proof. First observe that, since Sk,j is prefix-free and |Sk,j | = (j + 2)2k−1 =
|suf(W)|, it is sufficient to show that every w ∈ Sk,j is a prefix of at least one
word in suf(W).

Let u′ ∈ {ab, ba}2k−1
be the word such that u = u′aj2k−1

, and let W ′ =
IBWT(u′). Since W ′ is a de Bruijn set, for every v′ ∈ {a, b}k either v′aj or v′ahb
for some h < j is a prefix of a word in suf(W ′). Thus, by Lemma 18, every
v ∈ {a, ajb}kaj = aj{a, baj}k is a prefix of a word in suf(W). Since every word
w ∈ Sk,j is a factor of a word v ∈ aj{a, baj}k, w must be a prefix of a word in
suf(W) too. ��
It is easy to see from the definition of Si,k,j , that CTrie(Si,k,j), consists of a full
binary tree of height k − 1 connected to the root with a single edge, and that
CTrie(Sk,j) consists of j + 2 such full binary subtrees connected to the main
branch labelled aj , see Fig. 1 for examples.

Define uk,j = (ab)2
k−1

aj2k−1 ∈ Uk,j and let Wk,j = IBWT(uk,j). Since uk,j ,
j ≥ 1 has 2k + 1 runs, Σidp(Wk,j) = Σilcp(Wk,j) + 2k.

Tighter Bounds for the Sum of Irreducible LCP Values 327

a baj

a

a baj

baj

a

a baj

a

a baj

baj

baj

a2baj

a ba3

a

a ba3

ba3

a

a ba3

ba3

a

a ba3

ba3

a

a ba3

ba3

Fig. 1. Left: CTrie(S2,4,j). Right: CTrie(S2,3). Dark vertices correspond to irreducible
LCP values of W2,3.

Lemma 20. For j ≥ 1, Σilcp(Wk,j) = (j + 2)k2k−1 − 2k+1 + j + 1.

Proof. By Lemma 19, STree(Wk,j) is the same as CTrie(Sk,j) except leaf
labels have been extended to infinite words. Clearly, all LCP values in
LCPWk,j

[1..2k] (and only these) are irreducible, and by Lemma 13, they cor-
respond to the depths of the first 2k internal vertices in CTrie(Sk,j) by
inorder. These are exactly the 2k − 1 vertices in the subtree CTrie({a, baj}k)
rooted in the vertex labelled aj plus one more vertex labelled aj−1 (see
Fig. 1). The sum of internal vertex depths of CTrie({a, baj}k) is (j + 2)(2k−1

(k − 2) + 1), thus Σilcp(Wk,j) = (j + 2)(2k−1(k − 2) + 1) + j(2k − 1) + j − 1 =
(j + 2)k2k−1 − 2k+1 + j + 1. ��
Thus we obtain the following bounds for a set of words (with the proof omitted
due to lack of space) and for a single word.

Theorem 5. For any k ≥ 1 and j ≥ 1, Σidp(Wk,j) = dr(n) matching the upper
bound in Sect. 6, where n = (j + 2)2k−1 is the total length of the words in Wk,j

and r = 2k + 1 is the number of runs in BWT(Wk,j).

Theorem 6. For any r = 2k+1, k ≥ 1, and n ≥ r such that 2k−1|n, there exists
a word w of length n such that BWT(w) contains r − o(r) runs and Σidp(w) =
n lg r − O(n).

Proof. Let u = uk,j , where j = n/2k−1−2 ≥ 1. From definition, u has 2k +1 = r
runs. Lemmas 16 and 18 give |IBWT(u)| = |Wk,j | = |Wk| = O(r/ lg r). Note,
that Lemma 17 applies also for u ∈ Uk,j . Let u′ ∈ Uk,j be the result and
w = IBWT(u′). From Lemma 19, LCPw = LCPWk,j

. Furthermore, max LCPw

corresponds to the deepest internal vertex in CTrie(Sk,j), i.e., max LCPw =
k(j + 1) − 1 = O((n lg r)/r). Each swap in Lemma 17 reduces the number

328 J. Kärkkäinen et al.

of irreducible LCP values by at most two, thus u′ = BWT(w) contains r −
O(r/ lg r) = r − o(r) runs. Altogether, the initial Σidp is reduced by at most
|Wk,j |(max LCPw + 1) = O(n), which gives Σidp(w) = Σidp(Wk,j) − O(n) =
n lg r − O(n) (see Theorem 5). ��

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004)

2. Burrows, M., Wheeler, D.J.: A block sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation, Palo Alto, California (1994)

3. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Amer.
Math. Soc. 16(1), 109–114 (1965)

4. Higgins, P.M.: Burrows-Wheeler transformations and de Bruijn words. Theor.
Comput. Sci. 457, 128–136 (2012)

5. Kärkkäinen, J., Kempa, D.: LCP array construction in external memory.
In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 412–
423. Springer, Heidelberg (2014)

6. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 181–192.
Springer, Heidelberg (2009)

7. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comp. Biol. 17(3), 281–308 (2010)

8. Manber, U., Myers, G.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comp. 22(5), 935–948 (1993)

9. Mantaci, S., Restivo, A., Rosone, G., Sciortino, M.: An extension of the Burrows-
Wheeler transform. Theor. Comput. Sci. 387(3), 298–312 (2007)

10. Manzini, G.: Two space saving tricks for linear time LCP array computation. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 372–383.
Springer, Heidelberg (2004)

11. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv.
39(1), 1–61 (2007)

12. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phy-
logenetic Reconstruction. Oldenbusch Verlag, Bremen, Germany (2013)

13. Ruskey, F.: Combinatorial generation, working version (1j-CSC 425/520) (2003)
14. Sirén, J.: Sampled longest common prefix array. In: Amir, A., Parida, L. (eds.)

CPM 2010. LNCS, vol. 6129, pp. 227–237. Springer, Heidelberg (2010)

	Tighter Bounds for the Sum of Irreducible LCP Values
	1 Introduction
	2 Preliminaries
	3 Cyclic Suffixes
	4 Irreducible Sums
	5 nlgn Upper Bound
	6 nlgr Upper Bound
	7 n lgn Lower Bound
	8 n lgr Lower Bound
	References

