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Abstract. Suffix sorting (or suffix array construction) is one of the most
important tasks in string processing, with dozens of applications, partic-
ularly in text indexing and data compression. Some of these applications
require the suffix array to be built for large inputs that greatly exceed the
size of RAM and so external memory must be used. However, existing
approaches for external memory suffix sorting either use debilitatingly
large amounts of disk space, or become too slow when the size of the
input data is more than a few times bigger than the size of RAM. In this
paper we address the latter problem via a non-trivial parallelization of
computation. In our experiments, the resulting algorithm is much faster
than the best prior external memory algorithms while using very little
disk space in addition to what is needed for the input and output. On
the way to this result we provide the current fastest (parallel) internal
memory algorithm for suffix sorting, which is usually around twice as
fast as previous methods, while using around one quarter of the working
space.

1 Introduction

Suffix sorting (or suffix array construction) is one of the most important tasks
in string processing. It is fundamental to building index data structures such
as suffix trees [10,32], (compressed) suffix arrays [14,24], and FM-indexes [11],
which in turn have dozens of applications in bioinformatics, including pattern
matching (i.e. read alignment [21,22]), genome assembly [30], and discovery of
repetitive structures [1]. Suffix sorting is also key to several major lossless com-
pression transforms, such as the Burrows-Wheeler transform, Lempel-Ziv (LZ77)
parsing [16,17,34], and several grammar compressors (e.g. [4,26]). Many of these
applications deal with massive data and often suffix sorting is the computation-
ally most demanding task.

Suffix sorting is also one of the most studied tasks in string processing [29],
but the majority of the work has focused on sequential, internal memory algo-
rithms, which do not really scale for massive data and do not fully utilize the
resources on modern computers. There has been some research on speeding up
suffix sorting by parallel computation and on external memory suffix sorting
algorithms that escape the limits of RAM, but no really effective combination of
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the two approaches. This is not very surprising since external memory computa-
tion is often I/O-bound and would not benefit greatly from (internal memory)
parallelism. Nevertheless, in this paper we show that the two computational
paradigms can be fruitfully combined in a suffix sorting algorithm.

Our contribution. Our starting point is the recent external memory suffix sort-
ing algorithm SAscan [15], the basic idea of which is to divide the text into
blocks, construct suffix arrays for the blocks and then merge these partial suffix
arrays. In this paper, we describe a parallelization of the central procedure that
merges two partial suffix arrays. Using this procedure, we first design an internal
memory suffix sorting algorithm that constructs several partial suffix arrays in
parallel (using any sequential suffix sorter) and then merges them together. The
result is the fastest internal memory algorithm that we are aware of. This inter-
nal memory suffix sorter and the parallel merging procedure are then used in
designing a parallelized version of SAscan which we call pSAscan. On a machine
with 12 physical cores (24 with hyper-threading), pSAscan is over four times
faster than SAscan and much faster than any other external memory algorithm
in all of our experiments.

The algorithms are not theoretically optimal. The internal memory algorithm
needs Ω(n log p) work on p processors, and the external memory pSAscan needs
˜Ω(n2/M) work, where M is the size of the RAM. However, low constant factors
and, crucially, space efficiency make them more scalable in practice than their
competitors. The internal memory algorithm needs less than 10n bytes of RAM,
and pSAscan needs just 7.5n bytes of disk space, which is nearly optimal. The
best competitors use about four times as much RAM/disk space, which is likely
to be a more serious limitation to their scalability than the time complexity is
to our algorithms. To demonstrate the scalability, we have constructed the suffix
array of a 1 TiB text in a little over 8 days.

Related work. The idea of external memory suffix sorting by merging separately
constructed partial suffix arrays goes back over 20 years [13], and there has been
several improvements over the years [7,12] (see also [31]). The recent incarna-
tion SAscan [15] is one of the fastest external memory suffix sorters in practice.
A different approach to merging suffix arrays in [23] is limited to merging sep-
arate files rather than blocks of the same file. The main competitor of SAscan
is the eSAIS algorithm by Bingmann, Fischer and Osipov [5]. eSAIS is theoreti-
cally optimal but suffers from a large disk space usage (roughly 28n bytes, for an
input of n symbols). SAscan needs just 7.5n bytes of disk space but because of
its ˜O(n2/M) time complexity, it is competitive with eSAIS only when the input
is less than about five times the size of RAM. The new pSAscan extends the
advantage over eSAIS to much bigger inputs. Another recent external memory
suffix sorter EM-SA-DS [27] appears to be slightly worse than eSAIS in practice,
although a direct comparison is missing.

In contrast to the large number of algorithms for serial suffix sorting [29], results
on parallel algorithms for suffix sorting are reasonably sparse. Earlier research
focused on suffix tree construction (see, e.g., [3]) and was mostly of theoretical
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interest. More recently, research into practical algorithms has focused on either
distributed [20] or GPU platforms [9,28]. Most relevant to this paper is a paral-
lel version of DC3, a work optimal EREW-PRAM algorithm due to Kärkkäinen,
Sanders and Burkhardt [19] that has been subsequently implemented by Blelloch
and Shun [6]. We use their implementation as a baseline in experiments with our
internal memory algorithm.

2 Preliminaries

Let X = X[0..m) be a string over an integer alphabet [0..σ). Here and elsewhere
we use [i..j) as a shorthand for [i..j − 1]. For i ∈ [0..m) we write X[i..m) to
denote the suffix of X of length m − i, that is X[i..m) = X[i]X[i + 1] . . .X[m − 1].
Similarly, we write X[0..i) to denote the prefix of X of length i and X[i..j) to
denote the substring X[i]X[i+1] . . .X[j −1] of length j − i. If i = j, the substring
X[i..j) is the empty string, also denoted by ε.

The suffix array SAX of a string X contains the starting positions of the non-
empty suffixes of X in the lexicographical order, i.e., it is an array SAX[0..m)
which contains a permutation of the integers [0..m) such that X[SAX[0]..m) <
X[SAX[1]..m) < · · · < X[SAX[m − 1]..m). In other words, SAX[j] = i iff X[i..m) is
the (j + 1)th suffix of X in ascending lexicographical order.

The Burrows-Wheeler transform BWTX[0..m) of a string X contains the char-
acters preceding each suffix in lexicographical order: BWTX[i] = X[SAX[i] − 1] if
SAX[i] > 0 and otherwise $, a special symbol that does not appear in the text.

Partial suffix arrays. The partial suffix array SAX:Y is the lexicographical order-
ing of the suffixes of XY with a starting position in X, i.e., it is an array
SAX:Y[0..m) that contains a permutation of the integers [0..m) such that X[SAX:Y

[0]..m)Y < X[SAX:Y[1]..m)Y < · · · < X[SAX:Y[m − 1]..m)Y. Note that SAX:ε =
SAX and that SAX:Y is usually similar but not identical to SAX. Also note that
SAX:Y can be obtained from SAXY by removing all entries that are larger or equal
to m. The definition of the Burrows–Wheeler transform extends naturally to the
partial version BWTX:Y[0..m).

When comparing two suffixes of XY starting in X, in most cases we only need
to access characters in X, but sometimes the comparison continues beyond the
end of X and may, in an extreme case, continue all the way to the end of Y. To
avoid such long comparisons, we store additional information about the order of
the suffixes in the form of bitvectors gtSX:Y[0..m) defined as follows:

gtSX:Y[i] =
{

1 if X[i..m)Y > S
0 if X[i..m)Y ≤ S

.

For example, for 0 ≤ i < j < m, the following are equivalent:

1. X[i..m)Y < X[j..m)Y
2. X[i..m) < X[j..m)Y[0..j−i) or X[i..m) = X[j..m)Y[0..j−i) and gtYY:ε[j−i] = 1
3. X[i..m− j + i) < X[j..m) or X[i..m− j + i) = X[j..m) and gtYX:Y[m− j + i] = 0.
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3 Merging of Partial SAs

The basic building block of pSAscan is a procedure for merging two adjacent
partial suffix arrays. In this section, we describe a sequential algorithm for per-
forming the merging and then, in the next section, show how to parallelize it.

Given the partial suffix arrays SAX:YZ and SAY:Z, for some strings X, Y and Z,
the task is to construct the partial suffix array SAXY:Z. The suffixes in each input
array stay in the same relative order in the output, and thus we just need to
know how to interleave the input arrays. For this purpose, we compute the gap
array gapX:Y:Z[0..|X|], where gapX:Y:Z[i] is the number of suffixes in SAY:Z that
are lexicographically between the suffixes SAX:YZ[i − 1] and SAX:YZ[i]. Formally,
denoting m = |X| and n = |Y|,

gapX:Y:Z[0] =
∣

∣{j ∈ [0..n) : Y[j..n)Z < X[SAX:YZ[0]..m)YZ}∣∣
gapX:Y:Z[m] =

∣

∣{j ∈ [0..n) : X[SAX:YZ[m − 1]..m)YZ < Y[j..n)Z}∣∣

and, for i ∈ [1..m),

gapX:Y:Z[i] =
∣

∣{j ∈ [0..n) :

X[SAX:YZ[i − 1]..m)YZ < Y[j..n)Z < X[SAX:YZ[i]..m)YZ}∣∣.

Given the gap array, the actual merging is easy; the difficult part is computing
the gap array.

For a string S, let sufrankX:YZ(S) be the number of suffixes in SAX:YZ that
are lexicographically smaller than S. In other words, if sufrankX:YZ(S) = k (and
0 < k < m), then X[SAX:YZ[k−1]..m)YZ < S ≤ X[SAX:YZ[k]..m)YZ. Thus we can
compute the gap array gapX:Y:Z by initializing all entries to zeros, and then, for
all j ∈ [0..n), computing k = sufrankX:YZ(Y[j..n)Z) and incrementing gapX:Y:Z[k].
The values sufrankX:YZ(Y[j..n)Z) are computed starting from the end of Y using
a procedure called backward search [11].

Backward search is based on rank operations on the Burrows–Wheeler trans-
form BWTX:YZ. For a character c and an integer i ∈ [0..m], the answer to the
rank query rankBWTX:YZ(c, i) is the number of occurrences of c in BWTX:YZ[0..i).
We preprocess BWTX:YZ[0..m) so that arbitrary rank queries can be answered
quickly; see [15] for details. Let C[0..σ) be an array, where C[c] is the number of
positions i ∈ [0..m) such that X[i] < c. The following lemma shows one step of
backward search.

Lemma 1. [11,15]. Let k = sufrankX:YZ(S) for a string S. For any symbol c,

sufrankX:YZ(cS) = C[c] + rankBWTX:YZ(c, k) +
{

1 if X[m − 1] = c and YZ < S
0 otherwise .

Note that when S = Y[j..n)Z, we can replace the comparison YZ < S with
gtYZY:Z[j] = 1. Thus, given sufrankX:YZ(Y[j..n)Z), we can easily compute sufrankX:YZ
(Y[j −1..n)Z) using the lemma, and we only need to access Y[j −1] and gtYZY:Z[j].
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Hence the whole computation of gapX:Y:Z can be done with a single sequential
pass over Y and gtYZY:Z.

Improvements to SAscan. The procedure described above is identical to the one
in the original SAscan [15], but the rest of this section describes details that
differ from (and improve) the original.

First, we need BWTX:YZ and gtYZY:Z for the gap array computation. In SAscan,
these are computed from the strings and the partial suffix arrays as needed. This
is easy and takes only linear time but is relatively expensive in practice because
of frequent cache misses. We compute them differently based on the assumption
that both the BWT and the bitvector are available for every partial suffix array.
That is, we assume that we are given BWTX:YZ, BWTY:Z, gtXYZX:YZ and gtYZY:Z as
input, and we need to compute BWTXY:Z and gtXYZXY:Z as output. Each BWT is
stored interleaved with the corresponding SA so that the merging of the SAs
produces the output BWT at almost no additional cost. The output bitvector
gtXYZXY:Z is constructed by concatenating the two bitvectors gtXYZX:YZ and gtXYZY:Z . The
former was given as an input and the latter is computed (as in SAscan) during the
backward search using the fact that gtXYZY:Z [j] = 1 iff sufrankX:YZ(Y[j..n)Z) > iXYZ,
where iXYZ is the position of XYZ in SAX:YZ, i.e., SAX:YZ[iXYZ] = 0.

Second, we need to know sufrankX:YZ(Z) as the starting position of the back-
ward search. We replace the O(m + n) time string range matching [18] used
in SAscan by a binary search over SAX:YZ with Z as the query. A plain binary
search needs O(� log m) time, where � is the length of the longest common prefix
between Z and any suffix in SAX:YZ. This is fast enough in most cases as � is
typically small and the constant factors are small. However, we employ several
techniques to ensure a good performance even in pathological cases. We use a
string binary search algorithm with O(�+log m) average case time (see [24]) and
O(� log� m) worst case time (see [2] for an even better complexity); we utilize the
gt-bitvectors to resolve comparisons early; and, in the full algorithm with many
binary searches, we utilize the fact that all the strings are suffixes of the same
text. We omit the details here due to lack of space, and because most of the
advanced binary searching techniques are only used in pathological cases and
have little effect on the experimental results.

The final difference to SAscan is the actual merging of SAs. In SAscan, the
merging is delayed (and the gap array is stored on disk) but here we often need
to perform the merging immediately. This is easily done if given a separate
array for the output, but we want to do the merging almost in-place to reduce
space usage. The basic idea, following [19, Appendix B], is to divide the SAs
into small blocks, which we call pages, and maintain pointers to the pages in an
additional array, called the page index. Any random access has to go through
the page index, which allows us to relocate the pages independently. We assume
that both the input SAs and the output SA are stored in this form. As merging
proceeds and elements are moved from input to output, input pages that become
empty are reused as output pages. This way merging can be performed using
only a constant number of extra pages.
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4 Parallel Merging of Partial SAs

In this section, we describe a parallelized implementation for the merging pro-
cedure. We assume a multicore architecture capable of running p threads simul-
taneously and a shared memory large enough to hold all the data structures.

The first task during merging is the construction of the rank data structure,
which is easily parallelized since the data structure is naturally divided into
(almost) independent blocks (see [15]).

The most expensive part of merging is the backward search, mainly because
the rank queries are relatively expensive (see [15]). We parallelize it by starting
the backward search in p places simultaneously. That is, we divide Y into p
blocks of equal size and perform a separate backward search for each block in
parallel. Each thread computes its own starting sufrank value by a binary search,
and then the repeated computation of the sufrank values parallelizes trivially.

For each sufrank value computed during the backward search, we need to
increment the corresponding entry in the gap array, but we cannot allow multiple
threads to increment the same entry simultaneously, and guarding the gap array
by locks would make the updates too expensive. Instead, each thread collects
the sufrank values into a buffer. When the buffer is full, it is sorted and stored
onto a queue. A separate thread takes the full buffers from the queue one at a
time, divides the buffer into up to p parts and starts a thread for each part to
do the corresponding gap array updates. Since the buffer is sorted, two threads
can never try to increment the same gap array entry.

Once the gap array has been constructed, we still need to perform the actual
merging. Recall that we assume the paged storage for the SA. We divide the out-
put SA into p blocks, with the block boundaries always at the page boundaries,
and assign a thread for each block. Each thread then finds the corresponding
ranges in the input SAs using the gap array. The gap array has been preprocessed
by computing cumulative sums at p equally spaced positions, so that the input
ranges can be determined by scans of length O(n/p) over the gap array. Next
each thread performs the merging using the sequential almost-in-place procedure
described in the previous section. The pages containing the beginning and the
end of each input range might be shared with another thread and those pages
are treated as read-only. Other input pages and all output pages are exclusive
to a single thread. Thus each thread needs only four extra pages to do its part
of the merging. Once all threads have finished, the extra pages can be relocated
to the input boundary pages.

The whole merging procedure can be performed in O((m + trankn)/p) time,
where trank is the time for performing one rank query. The input is overwritten by
the output, and significant additional space is needed only for the rank structure,
the gap array, the extra 4p pages and the page indexes. Using the representations
from [15], the first two need about (4.125 + 1)m bytes. If we choose page size
Θ(

√

n/p), the space needed for the latter two is Θ(
√

np), which is negligible.
Assuming one byte characters and five byte SA entries, the input/output itself
needs about 7.125(m + n) bytes (text, SA, BWT and gt bitvectors). The total is
12.25m + 7.125n bytes (plus the Θ(

√
np) bytes).
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5 Parallel SA Construction

In this section, we extend the parallel merging procedure into a full parallel suffix
array construction algorithm. As before, we assume a multicore architecture with
p threads and a shared memory large enough for all the data structures.

The basic idea is simple: divide the input string of length n into p blocks
of size m = �n/p�, construct the partial SAs for the blocks in parallel using a
sequential suffix array construction algorithm, and then keep merging the partial
SAs using the parallel merging procedure until the full SA is obtained.

We construct the block SAs using Yuta Mori’s divsufsort [25], possibly the
fastest sequential suffix sorting algorithm in practice, but we could use any other
algorithm too. Let X be a block, Y the following block, and Z the full suffix start-
ing after Y. To obtain the partial suffix array SAX:YZ instead of the full suffix array
SAX, we construct a string ̂X such that SA

̂X = SAX:YZ, and for this we need the
bitvector gtYZX:YZ, which we denote by gtX for brevity. For further details of the con-
struction, we refer to [15], but the computation of gtX is different. We first compute
˜gtX = gtYX:Y in O(m) time. During the computation, we identify and mark the posi-
tions i, where X[i..m)Y[0..m− i) = Y; we call these undecided positions. It is easy
to see that if ˜gtX[i] �= gtX[i], then i must be an undecided position. Furthermore,
in that case gtX[i] = gtY[i]. Thus, if i is an undecided position in ˜gtX, it depends on
˜gtY[i]. If that too is undecided, it depends on the position i in the next block and
so on. Thus, given the ˜gt-bitvectors for all blocks, we can decide all the undecided
i-positions in them in O(p) time. Deciding all undecided positions requires O(pm)
work and O(m + p) time using p threads.

Let X be a block and Z the suffix starting after the block. Given SAX:Z, we can
easily compute BWTX:Z and gtXZX:Z as well as the page index for SAX:Z in O(m)
time in preparation for the merging phase. Furthermore, we compute O(p2)
sufrank values by binary searches (the suffixes starting at the block boundaries
against the block SAs); these are used to ensure fast binary searches later during
the merging. The worst case complexity of these binary searches is O(np) work
and O(n) time, i.e., it does not scale with p. We have designed theoretically
better ways of computing the sufrank values, but binary searching is better in
practice because of small constant factors and because it is almost always much
faster than the worst case. In all our experiments in Sect. 7, the binary searches
never took more than 1.5% of the total time, and even in the very worst case
(a unary string) it takes less than 25 % of the total time.

To obtain the final SA from the p initial block SAs, we have to do p−1 pairwise
merges. If we do the merges in a balanced manner, each element is involved in
about log p merges, and the total time complexity is O((trankn log p)/p) for a
string of length n. Surprisingly, doing the merges in a balanced manner is not
necessarily the optimal way. The time for a single merge can be approximated by
a� + br, where � is the size of the left-hand block, r is the size of the right-hand
block, and a and b are some constants. Because the merging time is dominated
by the backward search phase, b is much larger than a both in theory as well
as in practice. We have implemented a dynamic programming algorithm for
computing the optimal merging schedule given p and the value b/a. For example,
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in a balanced merging with p = 8, a single element is involved in three merges,
1.5 times on the left-hand side and 1.5 times on the right-hand side on average.
However, in an optimal merging schedule for b/a = 4, the averages are 2.25
times on the left-hand side and 1.125 times on the right-hand side. The optimal
schedule is about 10 % faster than the balanced schedule in this case. The actual
value of b/a in our experiments is about 7.

The space requirement of the algorithm is maximized during the last merge
when it is about 12.25� + 7.125r bytes (see Sect. 4). The space usage can be
controlled to an extent by skewing the merging to favor larger right-hand block.
Thus there is a space-time tradeoff, but only for the largest merges. Smaller
merges can be optimized for time only. Our dynamic program can compute a
time-optimal merging schedule under a constraint on the maximal space usage.

6 Parallel SA Construction in External Memory

In this section, we combine the parallel SA construction described above and
the external memory construction described in [15] to obtain a faster external
memory algorithm.

The basic idea of the algorithm in [15] is:

1. Divide the text into blocks of size m that are small enough to handle in
internal memory.

2. For each block X (from last to first), construct the partial suffix array SAX:Z

and the gap array gapX:Z:ε, where Z is the suffix starting after X.
3. After constructing all the partial SA and gap arrays, merge the SAs in one

multiway merge.

The last step is dominated by I/O and does not benefit much from parallelism,
but we will describe how the SA and gap array construction are parallelized.

For constructing SAX:Z, we can use the algorithm of the previous section with
minor changes required because we are constructing a partial SA and the tail Z
is stored on disk. There are two phases affected by this: the construction of the
gt bitvectors in the beginning and the computation of sufrank values before the
merging phase. We assume that the bitvector gtZZ:ε is stored on disk too, which
allows us to limit the access to a prefix of Z (and gtZZ:ε) of length at most m.

The construction of gapX:Z:ε is done by backward searching Z over the rank
data structure on BWTX:Z as described in previous sections. The only difference
is that Z and gtZZ:ε are now on disk, but this is not a problem as only a sequential
access is needed. For large files (n � m), this is by far the most time consuming
part because the total number of backward search steps is Θ(n2/m). Even with
parallelism, the time is dominated by internal memory computation rather than
I/O, because rank queries and gap array updates are expensive and the I/O
volume per step is low. Thus the parallelism achieves a great speed-up compared
to the sequential version.
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Table 1. The memory usage of internal memory
parallel suffix-sorting algorithms (in bytes). The
merging schedule of pSAscan (see Sect. 5) was con-
figured to use 10n bytes of RAM in all experiments.

Algor. pDC3 divsufsort pSAscan

32-bit 64-bit 32-bit 64-bit 32-bit 40-bit

RAM 21n 41n 5n 9n 10n 10n

Table 2. Dataset statistics

Name |X| σ

hg.reads 1024 GiB 6

kernel 200 GiB 229

wiki 2 GiB 210

countries 2 GiB 205

skyline 2 GiB 32

random 2 GiB 255

The block size m is chosen to fit necessary data structures in RAM. However,
the gap array construction needs only about 5.2m bytes but the SA construc-
tion needs nearly 10m bytes. Therefore we add one more stage to the compu-
tation. We choose m so that 5.2m bytes fits in RAM, but each block X of size
m is split into two halfblocks X1 and X2. We first compute the halfblock suffix
arrays SAX1:X2Z and SAX2:Z separately and write them to disk. Next we compute
gapX1:X2:Z and use it to merge BWTX1:X2Z and BWTX2:Z into BWTX:Z, which is
then used for computing gapX:Z:ε. This approach minimizes the total number of
backward search steps. To reduce I/O, SAX1:X2Z and SAX2:Z are never merged
into SAX:Z, but all halfblock SAs are merged simultaneously in the final multiway
merging stage. For the final merging, we need gapX1:X2Z:ε and gapX2:Z:ε, which
can be computed quickly and easily from gapX1:X2:Z and gapX:Z:ε.

The disk usage is less than 7.5n bytes consisting of the text (n bytes), SAs
(5n), gap arrays (about n using vbyte-encoding [33]), and a gt-bitvector (n bits).

7 Experimental Results

Setup. We performed experiments on two different machines referred to as Plat-
form S (small) and Platform L (large). Platform S was equipped with a 4-core
3.40 GHz Intel i7-3770 CPU with 8 MiB L2 cache and 16 GiB of DDR3 RAM. Plat-
form L was equipped with two 6-core 1.9 GHz Intel Xeon E5-2420 CPUs (capable,
via hyper-threading, of running 24 threads) with 15 MiB L2 cache and 120 GiB of
DDR3 RAM. The machine had 7.2 TiB of disk space striped with RAID0 across
four identical local disks (achieving a (combined) transfer rate of about 480 MiB/s),
and an additional two-disk RAID0 which was used only for the experiment on 1TiB
input. The OS was Linux (Ubuntu 12.04, 64 bit). All programs were compiled using
g++ (Cilk Plus branch) version 4.8.1 with -O2 -DNDEBUG options.

Datasets. For the experiments we used the following files varying in the number
of repetitions and alphabet size (see Table 2 for some statistics):

– hg.reads: a collection of DNA reads (short fragments produced by a sequenc-
ing machine) from 40 human genomes1 filtered from symbols other than
{A, C, G, T, N} and newline;

1 http://www.1000genomes.org/.

https://www.vpn.helsinki.fi/,DanaInfo=www.1000genomes.org+
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– wiki: a prefix of English Wikipedia dump2 (dated 20140707) in the XML
format;

– kernel: a concatenation of ∼16.8 million source files from 510 recent versions
of Linux kernel3;

– countries: a concatenation of all versions (edit history) of four Wikipedia arti-
cles about countries in the XML format. It contains a large number of 1–5 KiB
repetitions;

– skyline: an artificial, highly repetitive sequence (see [5] for details);
– random: a randomly generated sequence of bytes.

Experiments. We implemented the pSAscan algorithm in C++ using STL threads
for parallelism4. In the first experiment we study the performance of pSAscan as
a standalone internal-memory suffix sorting algorithm and compare it with the
parallel implementation of DC3 algorithm [6], the fastest parallel suffix-sorter in
previous studies, and the parallel version of divsufsort [25]. The latter has a paral-
lel mode that (slightly) improves the runtime, but is mostly known as the fastest
sequential suffix array construction algorithm. For each algorithm, we included
two versions, one using 32-bit integers and limited to 2 GiB or 4 GiB files, and the
other capable of processing larger files. The algorithms and their memory usage
are summarized in Table 1. For fair comparison pSAscan produces the suffix array
as a plain array (rather than in a paged form). This requires an additional per-
muting step and slightly slows down our algorithm. The results for Platform L
are given in Fig. 1. pSAscan is clearly the fastest algorithm when using full paral-
lelism and at least competitive when using less threads. The exception is the ran-
dom input with a large alphabet (where DC3 excels due to very shallow recursion)
and skyline. The poor performance of pSAscan on the skyline testfile is, however,
inherited from divsufsort for which it is the worst case input. The relative perfor-
mance of pDC3 and pSAscan on Platform S (see Fig. 2 for two sample graphs) is
similar to Platform L.

In the second experiment we compare the EM version of pSAscan to the
best EM algorithms for suffix array construction: eSAIS [5] (with the STXXL
library [8] compiled in parallel mode) and SAscan [15] (sequential), using a
moderate amount of RAM (3.5 GiB). Results are given in Fig. 3. For smaller
files, pSAscan is several times faster than the competitors. For larger files,
eSAIS approaches pSAscan and would probably overtake it somewhere around
250–300 GiB files, which coincidentally is about the size for which eSAIS would
run out of disk space on the test machine. Using the full 120 GiB RAM moves
the crossover point to several terabytes and allowed us to process the full 1TiB
instance of hg.reads (see Table 3).

Finally, Table 4 shows that, particularly for large files, the running time of
pSAscan is dominated by the gap array construction, which involves Θ(n2/m)
steps of backward searching.

2 http://dumps.wikimedia.org/.
3 http://www.kernel.org/.
4 The implementation is available at http://www.cs.helsinki.fi/group/pads/.

https://www.vpn.helsinki.fi/,DanaInfo=dumps.wikimedia.org+
https://www.vpn.helsinki.fi/,DanaInfo=www.kernel.org+
https://www.vpn.helsinki.fi/group/pads/,DanaInfo=www.cs.helsinki.fi+
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Fig. 1. Internal memory parallel suffix array construction on Platform L. All input files
are of size 2 GiB (Color Figure Online).
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are of size 360 MiB (Color Figure Online).
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Fig. 3. Scalability of EM version of pSAscan compared to eSAIS and SAscan. All
algorithms were allowed to use only 3.5 GiB of RAM for computation. pSAscan and
eSAIS were allowed to use the maximum number of threads (24) (Color Figure Online).

Table 3. A performance comparison of eSAIS and pSAscan on prefixes of hg.reads
testfile with varying amount of memory available to algorithms. The peak disk space
usage includes input and output (which is five times the size of input).

Algorithm Input size RAM usage Runtime Peak disk usage I/O volume

eSAIS 200 GiB 3.5 GiB 8.3 days 4.6 TiB 52.0 TiB

200 GiB 120 GiB 4.1 days 4.6 TiB 36.1 TiB

pSAscan 200 GiB 3.5 GiB 7.0 days 1.4 TiB 43.8 TiB

200 GiB 120 GiB 0.5 days 1.4 TiB 4.9 TiB

1024 GiB 120 GiB 8.1 days 7.3 TiB 48.3 TiB

Table 4. A detailed runtime breakdown of external memory pSAscan on the 200GiB
instance of hg.reads. The times are given in hours.

RAM usage Internal memory suffix sort Gap array construction Final merge Other

I/O divsufsort Other

3.5 GiB 0.4 0.7 2.2 132.4 29.2 1.2

120 GiB 0.6 1.1 2.6 4.3 2.4 0.9

8 Concluding Remarks

When deciding whether an algorithm scales to deal with large inputs, we are
principally concerned with three values: RAM, time, and disk usage. The main
advantage of pSAscan is that it measures up well on all three of these dimensions.
The algorithm is also fairly versatile: for example, it would add little overhead
to have it output the BWT in addition to (or instead of) the SA in order to, say,
speed up construction of an FM-index.

There are many avenues for future work. Most obviously, one wonders if
similar techniques for suffix sorting can be successfully applied to other parallel
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architectures, such as GPUs and distributed systems. We also believe our merg-
ing procedure can find other uses, such as supporting the efficient update of the
suffix array when new text is appended to the underlying string.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004)

2. Andersson, A., Hagerup, T., H̊astad, J., Petersson, O.: Tight bounds for searching
a sorted array of strings. SIAM J. Comput. 30(5), 1552–1578 (2000)

3. Apostolico, A., Iliopoulos, C.S., Landau, G.M., Schieber, B., Vishkin, U.: Parallel
construction of a suffix tree with applications. Algorithmica 3, 347–365 (1988)

4. Apostolico, A., Lonardi, S.: Off-line compression by greedy textual substitution.
Proc. IEEE 88(11), 1733–1744 (2000)

5. Bingmann, T., Fischer, J., Osipov, V.: Inducing suffix and LCP arrays in external
memory. In: Sanders, P., Zeh, N. (eds.) ALENEX 2013. pp. 88–102. SIAM (2013)

6. Blelloch, G.E., Shun, J.: A simple parallel cartesian tree algorithm and its applica-
tion to suffix tree construction. In: Müller-Hannemann, M., Werneck, R.F.F. (eds.)
ALENEX 2011, pp. 48–58. SIAM (2011)

7. Crauser, A., Ferragina, P.: A theoretical and experimental study on the construc-
tion of suffix arrays in external memory. Algorithmica 32(1), 1–35 (2002)

8. Dementiev, R., Kettner, L., Sanders, P.: STXXL: standard template library for
XXL data sets. Softw. Pract. Exper. 38(6), 589–637 (2008)

9. Deo, M., Keely, S.: Parallel suffix array and least common prefix for the GPU. In:
Nicolau, A., Shen, X., Amarasinghe, S.P., Vuduc, R.W. (eds.) PPoPP 2013, pp.
197–206. ACM (2013)

10. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the sorting-complexity
of suffix tree construction. J. ACM 47(6), 987–1011 (2000)

11. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
(2005)

12. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression
in external memory. Algorithmica 63(3), 707–730 (2012)

13. Gonnet, G.H., Baeza-Yates, R.A., Snider, T.: New indices for text: pat trees and
pat arrays. In: Frakes, W.B., Baeza-Yates, R. (eds.) Information Retrieval: Data
Structures and Algorithms, pp. 66–82. Prentice-Hall, Englewood Cliffs (1992)

14. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comput. 35(2), 378–407 (2005)
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