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Abstract. Computing the LZ factorization (or LZ77 parsing) of a string
is a computational bottleneck in many diverse applications, including
data compression, text indexing, and pattern discovery. We describe
new linear time LZ factorization algorithms, some of which require only
2n log n+O(log n) bits of working space to factorize a string of length n.
These are the most space efficient linear time algorithms to date, using
n log n bits less space than any previous linear time algorithm. The algo-
rithms are also simple to implement, very fast in practice, and amenable
to streaming implementation.

1 Introduction

In the 35 years since its discovery the LZ77 factorization of a string — named
after its authors Abraham Lempel and Jacob Ziv, and the year 1977 in which it
was published — has been applied all over computer science. The first uses of
LZ77 were in data compression, and to this day it lies at the heart of efficient
and widely used file compressors, like gzip and 7zip. LZ77 is also important as
a measure of compressibility. For example, its size is a lower bound on the size
of the smallest context-free grammar that represents a string [2]. Our particu-
lar motivation is the construction of compressed full-text indexes [15], several
recent and powerful instances of which are based on LZ77 [8,7,14]. In all these
applications (and in most of the many others we have not listed) computation
of the factorization is a time- and space-bottleneck in practice.

Related work. There exists a variety of worstcase linear time algorithms to com-
pute the LZ factorization [1,9,16]. All of them require at least 3n logn bits of
working space1 in the worstcase. The most space efficient linear time algorithm
is due to Chen et al. [3]. By overwriting the suffix array it achieves a working
space of (2n+ s) logn bits, where s is the maximal size of the stack used in the
algorithm. However, in the worstcase s = Θ(n). Another space efficient solution
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requiring (2n+
√
n) logn bits of space in the worstcase is from [6] but it computes

only the lengths of LZ77 factorization phrases. It can be extended to compute
the full parsing at the cost of extra n logn bits.

All of these algorithms rely on the suffix array, which can be constructed in
O(n) time and using (1 + ε)n logn bits of space (in addition to the input string
but including the output of size n logn bits) [11]. This raises the question of
whether the space complexity of linear time LZ77 factorization can be reduced
from 3n logn bits. In this paper, we answer the question in the affirmative by
describing a linear time algorithm using 2n logn bits.

In terms of practical performance, the fastest linear time LZ factorization
algorithms are the very recent ones by Goto and Bannai [9], all using at least
3n logn bits of working space. Other candidates for the fastest algorithms are
described by Kempa and Puglisi [13]. Due to nearly simultaneous publication,
no comparison between them exists so far. Experiments in this paper put the
algorithms of Kempa and Puglisi slightly ahead. Their algorithms are also very
space efficient; one of them uses 2n logn + n bits of working space and others
even less. However, their worstcase time complexity is Θ(n log σ) for an alphabet
of size σ. More details about these algorithms are given in Section 2.

Our contribution. We describe two linear time algorithms for LZ factorization.
The first algorithm uses 3n logn bits of working space and can be seen as a
reorganization of an algorithm by Goto and Bannai [9]. However, this reorgani-
zation makes it smaller and faster. In our experiments, this is the fastest of all
algorithms when the input is not highly repetitive.

The second algorithm reduces the working space to 2n logn bits, which is
at least n logn bits less than any previous linear time algorithm uses in the
worstcase. The space reduction does not come at a great cost in performance.
The algorithm is the fastest on some inputs and never far behind the fastest. It
relies on novel combinatorial observations that might be of independent interest.

Both algorithms share several nice features. They are simple and easy to im-
plement; they are alphabet-independent, using only character comparisons to
access the input; and they make just one sequential pass over the suffix array,
enabling streaming from disk. Our experiments show that streaming not only
reduces the working space by a further n logn bits, but also speeds up the com-
putation when the time for reading inputs from disk is taken into account.

2 Preliminaries

Strings. Throughout we consider a string X = X[1..n] = X[1]X[2] . . .X[n] of
|X| = n symbols drawn from an ordered alphabet of size σ.

For i = 1, . . . , n we write X[i..n] to denote the suffix of X of length n− i+ 1,
that is X[i..n] = X[i]X[i + 1] . . .X[n]. We will often refer to suffix X[i..n] simply
as “suffix i”. Similarly, we write X[1..i] to denote the prefix of X of length i.
We write X[i..j] to represent the substring X[i]X[i+1] . . .X[j] of X that starts at
position i and ends at position j. Let lcp(i, j) denote the length of the longest-
common-prefix of suffix i and suffix j. For example, in the string X = zzzzzipzip,
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lcp(2, 5) = 1 = |z|, and lcp(5, 8) = 3 = |zip|. For technical reasons we define
lcp(i, 0) = lcp(0, i) = 0 for all i.

Suffix Arrays. The suffix array SA is an array SA[1..n] containing a permutation
of the integers 1..n such that X[SA[1]..n] < X[SA[2]..n] < · · · < X[SA[n]..n]. In
other words, SA[j] = i iff X[i..n] is the jth suffix of X in ascending lexicographical
order. The inverse suffix array ISA is the inverse permutation of SA, that is
ISA[i] = j iff SA[j] = i. Conceptually, ISA[i] tells us the position of suffix i in SA.

The array Φ[0..n] (see [12]) is defined by Φ[i] = SA[ISA[i]−1], that is, the suffix
Φ[i] is the immediate lexicographical predecessor of the suffix i. For completeness
and for technical reasons we define Φ[SA[1]] = 0 and Φ[0] = SA[n] so that Φ forms
a permutation with one cycle.

LZ77. The LZ77 factorization uses the notion of a longest previous factor (LPF).
The LPF at position i in X is a pair (pi, �i) such that, pi < i, X[pi..pi + �i− 1] =
X[i..i + �i − 1] and �i > 0 is maximized. In other words, X[i..i + �i − 1] is the
longest prefix of X[i..n] which also occurs at some position pi < i in X. If X[i]
is the leftmost occurrence of a symbol in X then such a pair does not exist. In
this case we define pi = X[i] and �i = 0. Note that there may be more than one
potential pi, and we do not care which one is used.

The LZ77 factorization (or LZ77 parsing) of a string X is then just a greedy,
left-to-right parsing of X into longest previous factors. More precisely, if the jth
LZ factor (or phrase) in the parsing is to start at position i, then we output
(pi, �i) (to represent the jth phrase), and then the (j + 1)th phrase starts at
position i + �i, unless �i = 0, in which case the next phrase starts at position
i + 1. We call a factor (pi, �i) normal if it satisfies li > 0 and special otherwise.
The number of phrases in the factorization is denoted by z.

For the example string X = zzzzzipzip, the LZ77 factorization produces:

(z, 0), (1, 4), (i, 0), (p, 0), (5, 3).

The second and fifth factors are normal, and the other three are special.

NSV/PSV. The LPF pairs can be computed using next and previous smaller
values (NSV/PSV) defined as

NSVlex[i] = min{j ∈ [i+ 1..n] | SA[j] < SA[i]}
PSVlex[i] = max{j ∈ [1..i− 1] | SA[j] < SA[i]}.

If the set on the right hand side is empty, we set the value to 0. Further define

NSVtext[i] = SA[NSVlex[ISA[i]]] (1)

PSVtext[i] = SA[PSVlex[ISA[i]]]. (2)

If NSVlex[ISA[i]] = 0 (PSVlex[ISA[i]] = 0) we set NSVtext[i] = 0 (PSVtext[i] = 0).
If (pi, �i) is a normal factor, then either pi = NSVtext[i] or pi = PSVtext[i] is

always a valid choice for pi [4]. To choose between the two (and to compute the
�i component), we have to compute lcp(i,NSVtext[i]) and lcp(i,PSVtext[i]) and
choose the larger of the two. This is given as a procedure LZ-Factor in Fig. 1.
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Lazy LZ Factorization. The fastest LZ factorization algorithms in practice are
from recent papers by Kempa and Puglisi [13] and Goto and Bannai [9]. A com-
mon feature between them is a lazy evaluation of LCP values: lcp(i,NSVtext[i])
and lcp(i,PSVtext[i]) are computed only when i is a starting position of a phrase.
The values are computed by a plain character-by-character comparison of the
suffixes, but it is easy to see that the total time complexity is O(n). This is in
contrast to most previous algorithms that compute the LCP values for every
suffix using more complicated techniques. The new algorithms in this paper use
lazy evaluation too.

Goto and Bannai [9] describe algorithms that compute and store the full set
of NSV/PSV values. One of their algorithms, BGT, computes the NSVtext and
PSVtext arrays with the help of the Φ array. The LZ factorization is then easily
computed by repeatedly calling LZ-Factor. Two other algorithms, BGS and
BGL, compute the NSVlex and PSVlex arrays and use them together with SA and
ISA to simulate NSVtext and PSVtext as in Eqs. (1) and (2). All three algorithms
run in linear time and they use 3n logn (BGT), 4n logn (BGL) and (4n+s) logn
(BGS) bits of working space, where s is the size of the stack used by BGS. In
the worst case s = Θ(n). The algorithms for computing the NSV/PSV values
are not new but come from [16] (BGT) and from [4] (BGL and BGS). However,
the use of lazy LCP evaluation makes the algorithms of Goto and Bannai faster
in practice than earlier algorithms.

Kempa and Puglisi [13] extend the lazy evaluation to the NSV/PSV values
too. Using ISA and a small data structure that allows arbitrary NSV/PSV queries
over SA to be answered quickly, they compute NSVtext[i] and PSVtext[i] only when
i is a starting position of a phrase. The approach requires (2+1/b)n logn bits of
working space and O(n+zb+z log(n/b)) time, where b is a parameter controlling
a space-time tradeoff in the NSV/PSV data structure. If we set b = logn, and
given z = O(n/ logσ n), then in the worstcase the algorithm requires O(n log σ)
time, and 2n logn + n bits of space. Despite the superlinear time complexity,
this algorithm (ISA9) is both faster and more space efficient than earlier lin-
ear time algorithms. Kempa and Puglisi also show how to reduce the space to
(1 + ε)n logn + n + O(σ logn) bits by storing a succinct representation of ISA
(algorithms ISA6r and ISA6s). Because of the lazy evaluation, these algorithms
are especially fast when the resulting LZ factorization is small.

Optimized Parsing. Fig. 1 shows two versions of the basic parsing procedure. The
standard version is essentially how the computation is done in all prior imple-
mentations using lazy LZ factorization. The optimized version is the first, small
contribution of this paper. It is based on the observation that lcp(nsv, psv) =
min(lcp(i, nsv), lcp(i, psv)) and performs lcp(nsv, psv) fewer symbol comparisons
than the standard version.

3 3n logn-Bit Algorithm

Our first algorithm is closely related to the algorithms of Goto and Bannai [9],
particularly BGT and BGS. It first computes the NSVtext and PSVtext arrays and
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Procedure LZ-Factor(i, nsv, psv)
1: �nsv ← lcp(i, nsv)
2: �psv ← lcp(i, psv)
3: if �nsv > �psv then
4: (p, �)← (nsv, �nsv)
5: else
6: (p, �)← (psv, �psv)
7: if � = 0 then p← X[i]
8: output factor (p, �)
9: return i+max(�, 1)

Procedure LZ-Factor(i, nsv, psv)
1: �← lcp(nsv, psv)
2: if X[i+ �] = X[nsv + �] then
3: �← �+ 1
4: (p, �)← (nsv, �+ lcp(i+ �, nsv + �))
5: else
6: (p, �)← (psv, �+ lcp(i+ �, psv + �))
7: if � = 0 then p← X[i]
8: output factor (p, �)
9: return i+max(�, 1)

Fig. 1. The standard (left) and optimized (right) versions of the basic procedure for
computing a phrase starting at a position i given nsv = NSVtext[i] and psv = PSVtext[i].
The return value is the starting position of the next phrase.

uses them for lazy LZ factorization similarly to the BGT algorithm (lines 11–13
in Fig. 2). However, the NSV/PSV values are computed using the technique of
the BGS algorithm, which comes originally from [4].

The NSV/PSV computation scans the suffix array while maintaining a stack
of suffixes, which are always in double ascending order: both in ascending lex-
icographical order and in ascending order of text position. The following are
equivalent characterizations of the stack content after processing suffix SA[i]:

– SA[i], PSVtext[SA[i]], PSVtext[PSVtext[SA[i]]], . . ., 0
– 0 and all SA[k], k ∈ [1..i], such that SA[k] = min SA[k..i]
– 0 and all SA[k], k ∈ [1..i], such that NSVtext[SA[k]] �∈ SA[k + 1..i].

Our version of this NSV/PSV computation is shown on lines 1–10 in Fig. 2. It
differs from the BGS algorithm of Goto and Bannai in the following ways:

1. We write the NSV/PSV values to the text ordered arrays NSVtext and PSVtext

instead of the lexicographically ordered arrays NSVlex and PSVlex. Because
of this, the second phase of the algorithm does not need the SA and ISA
arrays.

2. BGS uses a dynamically growing separate stack while we overwrite the suffix
array with the stack. This is possible because the stack is never larger than
the already scanned part of SA, which we do not need any more (see above).
The worst case size of the stack is Θ(n) (but it is almost always much smaller
in practice).

3. Similar to the algorithms of Goto and Bannai, we store the arrays PSVtext

and NSVtext interleaved so that the values PSVtext[i] and NSVtext[i] are next
to each other. We compute the PSV value when popping from the stack
instead of when pushing to the stack as BGS does. This way PSVtext[i] and
NSVtext[i] are computed and written at the same time which can reduce the
number of cache misses.

Because of these differences, our algorithm uses between n logn and 2n logn
bits less space and is significantly faster than BGS, which is the fastest of the
algorithms in [9].
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Algorithm KKP3

1: SA[0]← 0 // bottom of stack
2: SA[n+ 1]← 0 // empties the stack at end
3: top← 0 // top of stack
4: for i← 1 to n+ 1 do
5: while SA[top] > SA[i] do
6: NSVtext[SA[top]]← SA[i]
7: PSVtext[SA[top]]← SA[top− 1]
8: top← top− 1 // pop from stack
9: top← top+ 1
10: SA[top]← SA[i] // push to stack
11: i← 1
12: while i ≤ n do
13: i← LZ-Factor(i,NSVtext[i],PSVtext[i])

Fig. 2. LZ factorization using 3n log n bits of working space (the arrays SA, NSVtext

and PSVtext)

4 2n logn-Bit Algorithm

Our second algorithm reduces space by computing and storing only the NSV
values at first. It then computes the PSV values from the NSV values on the fly.
As a side effect, the algorithm also computes the Φ array! This is a surprising
reversal of direction compared to some algorithms that compute NSV and PSV
values from Φ [16,9].

For t ∈ [0..n], let Xt = {X[i..n] | i ≤ t} be the set of suffixes starting at or
before position t. Let Φt be Φ restricted to Xt, that is, for i ∈ [1..t], suffix Φt[i]
is the immediate lexicographical predecessor of suffix i among the suffixes in Xt.
In particular, Φn = Φ. As with the full Φ, we make Φt a complete unicyclic
permutation by setting Φt[imin] = 0 and Φt[0] = imax, where imin and imax are
the lexicographically smallest and largest suffixes in Xt. We also set Φ0[0] = 0.
A useful way to view Φt is as a circular linked list storing Xt in the descending
lexicographical order with Φt[0] as the head of the list.

Now consider computing Φt given Φt−1. We need to insert a new suffix t
into the list, which can be done using standard insertion into a singly-linked
list provided we know the position. It is easy to see that t should be inserted
between NSVtext[t] and PSVtext[t]. Thus

Φt[i] =

⎧
⎨

⎩

t if i = NSVtext[t]
PSVtext[t] if i = t
Φt−1[i] otherwise

and furthermore

PSVtext[t] = Φt−1[NSVtext[t]] .

The pseudocode for the algorithm is given in Fig 3. The NSV values are computed
essentially the same way as in the first algorithm (lines 1–9) and stored in the
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array Φ. In the second phase, the algorithm maintains the invariant that after t
rounds of the loop on lines 12–18, Φ[0..t] = Φt and Φ[t+1..n] = NSVtext[t+1..n].

Algorithm KKP2

1: SA[0]← 0 // bottom of stack
2: SA[n+ 1]← 0 // empties the stack at end
3: top← 0 // top of stack
4: for i← 1 to n+ 1 do
5: while SA[top] > SA[i] do
6: Φ[SA[top]]← SA[i] // Φ[SA[top]] = NSVtext[SA[top]]
7: top← top− 1 // pop from stack
8: top← top+ 1
9: SA[top]← SA[i] // push to stack
10: Φ[0]← 0
11: next← 1
12: for t← 1 to n do
13: nsv ← Φ[t]
14: psv ← Φ[nsv]
15: if t = next then
16: next← LZ-Factor(t, nsv, psv)
17: Φ[t]← psv
18: Φ[nsv]← t

Fig. 3. LZ factorization using 2n log n bits of working space (the arrays SA and Φ)

An interesting observation about the algorithm is that the second phase com-
putes Φ from NSVtext without any additional information. Since the suffix array
can be computed from Φ, the NSVtext array alone contains sufficient information
to reconstruct the suffix array.

5 Getting Rid of the Stack

The above algorithms overwrite the suffix array with the stack, which can be
undesirable. First, we might need the suffix array later for another purpose.
Second, since the algorithms make just one sequential pass over the suffix array,
we could stream the suffix array from disk to further reduce the memory usage.
In this section, we describe variants of our algorithms that do not overwrite SA
(and still make just one pass over it).

The idea, already used in the BGL algorithm of Goto and Bannai [9], is to
replace the stack with PSVtext pointers. As observed in Section 3, if j is the
suffix on the top of the stack, then the next suffixes in the stack are PSVtext[j],
PSVtext[PSVtext[j]], etcetera. Thus given PSVtext we do not need an explicit stack
at all. Both of our algorithms can be modified to exploit this:
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– In KKP3, we need to compute the PSVtext values when pushing on the stack
rather than when popping. The body of the main loop (lines 5–10 in Fig. 2)
now becomes:

while top > SA[i] do
NSVtext[top]← SA[i]
top← PSVtext[top]

PSVtext[SA[i]]← top
top← SA[i]

– KKP2 needs to be modified to compute PSVtext values first instead of NSVtext

values. The PSVtext-first version is symmetric to the NSVtext-first algorithm.
In particular, Φt is replaced by the inverse permutation Φ−1

t . The algorithm
is shown in Fig. 4.

Algorithm KKP2n

1: top← 0 // top of stack
2: for i← 1 to n do
3: while top > SA[i] do
4: top← Φ−1[top] // pop from stack
5: Φ−1[SA[i]]← top // Φ−1[SA[i]] = PSVtext[SA[i]]
6: top← SA[i] // push to stack
7: Φ−1[0]← 0
8: next← 1
9: for t← 1 to n do
10: psv ← Φ−1[t]
11: nsv ← Φ−1[psv]
12: if t = next then
13: next← LZ-Factor(t, nsv, psv)
14: Φ−1[t]← nsv
15: Φ−1[psv]← t

Fig. 4. LZ factorization using 2n log n bits of working space (the arrays SA and Φ−1)
without an explicit stack. The SA remains intact after the computation.

The versions without an explicit stack are slightly slower because of the non-
locality of stack operations. A faster way to avoid overwriting SA would be to
use a separate stack. However, the stack can grow as big as n (for example when
X = an−1b) which increases the worst case space requirement by n logn bits.
We can get the best of both alternatives by adding a fixed size stack buffer to
the stackless version. The buffer holds the top part of the stack to speed up
stack operations. When the buffer gets full, the bottom half of its contents is
discarded, and when the buffer gets empty, it is filled half way using the PSV
pointers. This version is called KKP2b.

All the algorithm variants have linear time complexity.
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Table 1. Files used in the experiments. They are from the standard (S) Pizza&Chili
corpus (http://pizzachili.dcc.uchile.cl/texts.html) and from the repetitive (R)
Pizza&Chili corpus (http://pizzachili.dcc.uchile.cl/repcorpus.html). We trun-
cated all files to 150MiB. The repetitive corpus files are either multiple versions of
similar data (R) or artificially generated (A). The value of n/z (the average length of
a phrase in the LZ factorization) is included as a measure of repetitiveness.

Name Abbr. σ n/z Source Description

proteins pro 25 9.57 S Swissprot database
english eng 220 13.77 S Gutenberg Project
dna dna 16 14.65 S Human genome
sources src 228 17.67 S Linux and GCC sources

coreutils cor 236 110 R/R GNU Coreutils sources
cere cer 5 112 R/R Baking yeast genomes
kernel ker 160 214 R/R Linux Kernel sources
einstein.en ein 124 3634 R/R Wikipedia articles

tm29 tm 2 2912K R/A Thue-Morse sequence
rs.13 rs 2 3024K R/A Run-Rich String sequence

6 Experimental Results

We implemented the algorithms described in this paper and compared their
performance in practice to algorithms from [13] and [9]. The main experiment
measured the time to compute the LZ factorization of the text. All algorithms
take the text and the suffix array as an input hence we omit the time to compute
SA. The data sets used in experiments are described in detail in Table 1. All al-
gorithms use the optimized version of LZ-Factor (Fig. 1), which slightly reduces
the time (e.g. for KKP3 by 2% on non-repetitive files). The implementations are
available at http://www.cs.helsinki.fi/group/pads/.

Experiments Setup. We performed experiments on a 2.4GHz Intel Core i5 CPU
equipped with 3072KiB L2 cache and 4GiB of main memory. The machine had
no other significant CPU tasks running and only a single thread of execution
was used. The OS was Linux (Ubuntu 10.04, 64bit) running kernel 2.6.32. All
programs were compiled using g++ version 4.4.3 with -O3 -static -DNDEBUG

options. For each combination of algorithm and test file we report the median
runtime from five executions.

Discussion. The LZ factorization times are shown in the top part of Table 2. In
nearly all cases algorithms introduced in this paper outperform the algorithms
from [9] (which are, to our knowledge, the fastest up-to-date linear time LZ
factorization algorithms) while using the same or less space. In particular the
KKP2 algorithms are always faster and simultaneously use at least n logn bits
less space. A notably big difference is observed for non-repetitive data, where
KKP3 significantly dominates all prior solutions.

https://www.vpn.helsinki.fi/,DanaInfo=pizzachili.dcc.uchile.cl+texts.html
https://www.vpn.helsinki.fi/,DanaInfo=pizzachili.dcc.uchile.cl+repcorpus.html
https://www.vpn.helsinki.fi/group/pads/,DanaInfo=www.cs.helsinki.fi+
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Table 2. Time and space consumption for computing LZ factorization/LPF array.
The timing values were obtained with the standard C clock function and are scaled
to seconds per gigabyte. The times do not include any reading from or writing to disk.
The second column summarizes the practical working space (excluding the output in
case of LZ factorization) of each algorithm assuming byte alphabet and 32-bit integers.
Note that LPF-online computes only the �i component of LPF array. If this is sufficient,
KKP2-LPF can be modified (without affecting the speed) to use only 9n bytes.

Alg. Mem pro eng dna src cor cer ker ein tm rs

L
Z
fa
ct
o
ri
za
ti
o
n

KKP3 13n 74.5 75.7 81.7 50.5 43.6 63.2 45.7 56.9 38.2 77.8
KKP2 9n 83.9 80.6 92.7 54.7 40.2 53.3 41.6 43.6 35.1 49.0
KKP2b 9n 84.1 80.6 92.7 54.8 40.2 53.2 41.5 43.5 35.1 49.4
KKP2n 9n 88.1 84.6 97.3 56.1 40.6 57.7 42.2 47.6 38.7 52.0
ISA6r 6n - - - - 43.3 51.8 39.2 31.1 34.2 34.8
ISA6s 6n 198.0 171.0 175.2 115.0 49.4 56.3 45.7 37.1 39.6 40.8
ISA9 9n 92.7 83.9 86.1 59.3 41.9 53.0 42.8 45.2 36.4 51.8
iBGS 17n 99.8 93.2 97.5 69.3 51.5 65.5 52.9 60.0 44.1 59.5
iBGL 17n 123.2 108.6 113.4 77.8 52.2 66.1 53.0 58.6 44.2 59.5
iBGT 13n 171.4 153.9 188.0 99.8 55.4 84.1 56.2 52.8 44.4 56.5

L
P
F

KKP3-LPF 13n 115.5 112.9 133.5 71.1 56.0 88.0 58.0 63.5 49.2 82.8
KKP2-LPF 13n 140.3 132.4 167.2 83.6 54.6 82.6 55.6 51.3 41.1 58.0
iOG 13n 210.1 188.0 243.7 121.3 66.8 104 66.4 60.6 50.3 62.7
LPF-online 13n 160.4 162.3 187.2 114.2 103 137 109 127 100 148

The new algorithms (e.g. KKP2b) also dominate in most cases the general
purpose practical algorithms from [13] (ISA9 and ISA6s), while offering stronger
worst case time guarantees, but are a frame slower (and use about 50% more
space in practice) than ISA6r for highly repetitive data.

The comparison of KKP2n to KKP2 reveals the expected slowdown (up to
16%) due to the non-local stack simulation. However, this effect is almost com-
pletely eliminated by buffering the top part of the stack (KKP2b). With a
256KiB buffer we obtained runtimes almost identical to KKP2 (< 1% differ-
ence in all cases). We observed a similar effect when applying this optimization
to the KKP3 algorithm but, for brevity, we only present the results for KKP2.

Full LPF array. All our algorithms can be modified to compute the full LPF ar-
ray, i.e. the set of longest previous factors (pi, �i) for i ∈ [1..n] in linear time. After
obtaining NSVtext and PSVtext values, instead of repeatedly calling LZ-Factor

to compute the LZ factorization, we compute all previous factors using the al-
gorithm of Crochemore and Ilie [4, Fig. 2]. We compared this approach to the
fastest algorithms for computing LPF array by Ohlebusch and Gog [16] (with
the interleaving optimization from [9]) and LPF-online from [5] (see [13] and [16]
for comparison). For LCP array computation we use the fastest version of Φ al-
gorithm consuming 13n bytes of space [12].

As shown in Table 2, modified KKP2 algorithm consistently outperforms old
methods. The LPF variant of KKP3 is even faster, when input is not repetitive.
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Table 3. Times for computing LZ factorization, taking into account the disk reading
time. The values are wallclock times scaled to seconds per gigabyte. KKP1s is a version
of KKP2b that streams the suffix array from disk, and so requires only n log n bits of
working space.

Alg. pro eng dna src cor cer ker ein tm rs

KKP1s 106.5 100.2 109.0 86.6 71.0 74.9 68.4 67.6 66.1 66.1
KKP2b 150.6 143.7 155.7 117.8 103.6 115.9 102.9 107.3 96.8 111.6

Streaming. As explained in Section 5 our new algorithms can be implemented
so that SA is only accessed sequentially in a read-only manner, allowing it to be
streamed from the disk. Furthermore, all algorithms (including full LPF variants)
can stream the output, which is produced in order, directly to disk. The stream-
ing versions of KKP2b andKKP2b-LPF, called KKP1s andKKP1s-LPF, use only
n lognbits ofworking space in addition to the text and small stack anddisk buffers.
We have implemented KKP1s and compared its performance to KKP2b under the
assumption that SA is stored on the disk and the disk reading time is included in
the total runtime.Reading from the diskwas performedwith the standardC fread

function, either as a single read (KKP2b) or using a 32KiB buffer (KKP1s).
Surprisingly, in such setting, KKP1s is significantly faster than KKP2b, as

shown in Table 3. Further investigation revealed that the advantage of the
streaming algorithm is apparently due to the implementation of I/O in the Linux
operating system. The Linux kernel performs implicit asynchronous read ahead
operations when a file is accessed sequentially, allowing an overlap of I/O and
CPU computation (see [17]).

7 Future Work

We have reduced the working memory of linear time LZ factorization to 2n logn
bits, but one wonders if only (1 + ε)n logn bits (for an arbitrary constant ε)
is enough, as it is for suffix array construction [11]. In [13] working space of
(1+ ε)n logn+n bits is achieved, but at the price of O(n log σ) runtime. We are
also exploring even more space efficient (but slower) approaches [10].

Our streaming algorithms are a first step towards exploiting external memory
in LZ factorization. We are currently exploring semi-external variants of these
algorithms that keep little else than the input string in memory. This is achieved
by permuting the NSV/PSV values from lex order to text order using external
memory. Fully external memory as well as parallel and distributed approaches
would also be of high interest, especially given the recent pattern matching
indexes which use LZ77.

Finally, another problem is to find a scalable way to accurately estimate the
size of the LZ factorization in lieu of actually computing it. Such a tool would
be useful for entropy estimation, and to guide the selection of appropriate com-
pressors and compressed indexes when managing massive data sets.

Acknowledgments. We thank Keisuke Goto and Hideo Bannai for an early
copy of their paper [9].
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