
Hybrid Indexing Revisited∗

Héctor Ferrada† Dominik Kempa† Simon J. Puglisi†

Abstract
Hybrid indexing is a recent approach to text indexing
that allows the space-usage of conventional text indexes
(e.g., suffix trees, suffix arrays, FM-indexes) to scale well
with the text size, n, when z, the size of the Lempel-Ziv
parsing of the text, is small relative to n. The price
for this improved scalability is that an upper bound M
on the pattern length that can be searched for must
be declared at index construction time. Because the
size of the resulting index contains an O(Mz) term,
M must be kept reasonably small, though it has been
shown that M ≈ 100 leads to acceptable performance in
some genomic applications. However, despite its promise,
the practical performance of hybrid indexing relative
to other compressed index data structures is poorly
understood. This paper addresses that need, detailing
experiments that show hybrid indexing — when carefully
implemented — to be significantly smaller and faster
than alternative approaches on a broad range of data
of different levels of compressibility. We also describe
practical extensions to hybrid indexing that obviate
the restriction on M , supporting search for patterns
of arbitrary length.

1 Introduction
Compressed text indexes [26, 25] are data structures for
pattern matching that require significantly less space
than traditional indexes, such as the suffix tree and suffix
array [23], but have similar search times. Given a text T ,
a compressed index for T takes space similar to the size
of T when compressed, and allows all the occurrences of
a given pattern P to be located in time proportional to
the length of P .

Compressed and succinct text indexes have had an
especially deep and important impact in the field of
genomics [21], in particular for short-read alignment, a
fundamental and data intensive task at the forefront of
modern medical and evolutionary biology. All serious
short read aligners (see e.g., [19, 20, 6]) implement a kind
of compressed suffix array [23] called the FM-index [5],

∗This research was partially supported via the Academy of
Finland through grants 294143 and 2845984.
†Helsinki Institute for Information Technology (HIIT), Depart-

ment of Computer Science, University of Helsinki, Finland.

usually in n log σ bits of space (2n bits on DNA data), or
even near nHk bits, where Hk is the kth-order empirical
entropy of the underlying data1.

However, as genome sequencing becomes cheaper,
and the number of genome sequences in genomic
databases grows, indexes of linear size (even those tak-
ing around nHk bits) quickly become too large. Be-
cause two genome sequences of any two individuals of
the same species share many long, common substrings
these modern genomic databases are highly compressible.
Although many alternative compressed indexes with sig-
nificantly better space-usage than the FM-index have
been designed [22, 17, 2, 1], they are not generally in use
by bioinformaticians, for what are essentially cultural
reasons: implementations of the n log σ- and nHk-space
indexes are mature, well-established and trusted.

Recently, in an attempt to address this standoff,
Ferrada et al. [3] described hybrid indexing — an
algorithmic technique by which any conventional pattern
matching index (including any read aligner) can be made
to scale to large, highly compressible collections via
means of the Lempel-Ziv (LZ77) parsing [30, 14, 11],
a method from data compression (we give a formal
definition shortly). In particular, given an upper bound
M on the searchable pattern length, the first step of
hybrid indexing is to obtain a filtered string consisting of
the concatenation of the M -length substrings to the
left and right of each LZ77 phrase boundary. The
next step is to build a conventional index (e.g., an FM-
index) for the filtered string, and a 2D two-sided range
reporting structure on the start and end points of each
LZ77 phrase. The conventional index is used to find so-
called primary occurrences of the pattern, which are then
mapped using the structure of the LZ77 parse to locate
the remaining, so-called secondary, pattern occurrences
that are contained inside LZ77 phrases (we give a more
precise description of hybrid indexing in Section 3).

Valenzuela [28] has since demonstrated hybrid index-
ing to be very effective in practice for indexing massive
genomic data sets (in the terabyte range), and the tech-
nique now underlies tools for detecting genomic variants
in pangenomic data [29]. However, Valenzuela’s index is

1Hk is a lower bound on the compression achievable by any
statistical compressor that models symbol probabilities as a
function of the k letters preceding it in the text.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited1

D
ow

nl
oa

de
d

08
/1

9/
18

 to
 8

0.
22

0.
19

5.
17

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

tightly coupled to the DNA alphabet and still carries the
restriction that the maximum searchable pattern length
is M , meaning it cannot be applied to long, so-called
third generation DNA sequence reads (see, e.g. [24]) that
are gaining wider use.

1.1 Our Contribution. The main results in this
paper are as follows.

1. We provide a careful, 64-bit implementation of
the hybrid index capable of indexing strings on
any integer alphabet (not only DNA). We show
experimentally that hybrid indexing significantly
outperforms the best alternative compressed indexes
in terms of space and time on a broad range of data
of different level of compressibility.

2. We describe extensions to the basic hybrid indexing
scheme to support efficient search for patterns of
arbitrary length m > M .

The remainder of this paper is structured as follows.
The next section reviews basic data structural tools on
which hybrid indexing depends. Section 3 then gives an
overview of hybrid indexing, as described by Ferrada et
al. [3]. We then describe our implementation of this basic
scheme in Section 4. Section 5 details our new method
for longer patterns. Section 6 presents and discusses the
results of our experiments comparing the hybrid index
to state-of-the-art compressed indexes. Conclusions and
reflections are offered in Section 7.

2 Preliminaries
The Lempel-Ziv (LZ) parsing [30] is a data compression
method based on the concept of longest previous factor
(LPF). The LPF at position i in a string X is a pair (pi, `i)
such that, pi < i, X[pi..pi + `i − 1] = X[i..i+ `i − 1] and
X[pi + `i] 6= X[i+ `i]. In other words, X[i..i+ `i − 1] is
the longest prefix of X[i..n] which also occurs at some
position pi < i in X. Note that there may be more than
one potential pi. Depending on application, it can be
advantageous to ensure that pi is either the leftmost (i.e.,
first) or rightmost (i.e., most recent) previous occurrence.
We return briefly to this idea in Section 4.

The LZ77 factorization (or LZ77 parsing) of a string
X is a greedy, left-to-right parsing of X into longest
previous factors. More precisely, if the jth LZ factor
(or phrase) in the parsing is to start at position i, then
we output (pi, `i) (to represent the jth phrase), and
then the (j + 1)th phrase starts at position i+ `i. The
exception is the case `i = 0, which happens iff X[i]
is the leftmost occurrence of a symbol in X. In this
case we output (X[i], 0) (to represent X[i..i]) and the
next phrase starts at position i+ 1. When `i > 0, the

substring X[pi..pi + `i − 1] is called the source of phrase
X[i..i+ `i − 1]. We denote the number of phrases in the
LZ77 parsing of X by z.

The above description of LZ77 allows pi + `i > i
and so X[i..i+ `i − 1] and X[pi..pi + `i − 1] can overlap
each other. This definition of LZ77 is sometimes called
self-referential in that it allows phrases to overlap their
sources in X. Sometimes it is preferable to produce
non-self-referential parsings, in which it is enforced that
pi + `i is not larger than i.

For the example string X = zzzzzapzap, the (self-
referential) LZ77 factorization produces the pairs:

(z, 0), (0, 4), (a, 0), (p, 0), (4, 3).

3 The Hybrid Index
As Kärrkäinen and Ukkonen observed [13], for strings P
and T , the LZ77 parsing of T , allows us to talk about two
distinct types of occurrence of P in T : those that cross
LZ phrase boundaries, and those that do not. We call
the first type of occurrences primary occurrences and the
remaining ones (which must necessarily be completely
contained inside LZ phrases) secondary occurrences. The
hybrid index [3] reports the primary and secondary
occurrences of a query pattern using separate structures,
which we now review (see also [7])2

3.1 Finding Primary Occurrences. For a given
upper bound M on pattern length, let TM be the string
containing the characters of T within distanceM of their
nearest LZ phrase boundaries; characters not adjacent
in T are separated in TM by a special character # not
in the alphabet of T . The crucial observation is that,
for any substring of T with length at most M that
contains the first occurrence of a distinct character in
T , or crosses a phrase boundary in the LZ parse of T ,
there is a corresponding and equal substring in TM .

Ferrada et al. [3] store a conventional patten match-
ing index3 IM on TM . The only assumption about IM is
that it can handle searches for pattern lengths up to M .
Since TM consists of at most 2M characters for each LZ
phrase, if T is highly repetitive and M is not too large,
IM is smaller than a conventional index on T .

In order to map between positions in T and positions
in TM , two data structures L and LM are stored. L
is a sorted list containing the positions of the first
character of each LZ phrase of T and LM is the sorted list
containing the positions of the corresponding characters

2Importantly, approximate pattern matching can also be
supported if we increase M by K, the maximum number of
errors/mismatches allowed. In this paper, for clarity, we consider
only exact pattern matching.

3For example, an FM-index.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2

D
ow

nl
oa

de
d

08
/1

9/
18

 to
 8

0.
22

0.
19

5.
17

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

in TM . Moreover, if T [i] is the first occurrence of a
distinct character in T and TM [j] is the corresponding
character in TM , then j is marked in LM .

Given the endpoints i and j of a substring TM [i..j]
of TM that does not include any occurrences of #, LM

can be used to determine whether the corresponding
substring T [i′..j′] of T contains the first occurrence of
a distinct character in T or crosses a phrase boundary
in the LZ77 parse of T . More precisely, binary search is
used on LM to find the successor of i, say LM [s]. There
are then three cases to consider:

• if i < LM [s] ≤ j then T [i′..j′] crosses a phrase
boundary;

• if i ≤ j < LM [s] then T [i′..j′] neither contains the
first occurrence of a distinct character nor crosses a
phrase boundary;

• if i = LM [s] ≤ j then T [i′..j′] contains the first
occurrence of a distinct character or crosses a
phrase boundary if and only if LM [s] is marked
or LM [s+ 1] ≤ j.

Also, if T [i′..j′] contains the first occurrence of a
distinct character or crosses a phrase boundary, then
i′ = L[s]− LM [s] + i and j′ = i′ + j − i. In this way L
and LM are used to map positions from TM to positions
in T .

Given a query pattern P [1..m] with m ≤ M , we
use IM , L and LM to find all primary occurrences in
T . First, we query IM to find all occurrences of P in
TM . We use binary search on LM , as described above,
to determine which of these occurrences correspond to
primary occurrences in T . Finally, we use L and LM , as
described above, to find the positions of those primary
occurrences in T .

3.2 Finding Secondary Occurrences. As noted
above, by definition, any secondary occurrence is com-
pletely contained in some LZ phrase. Moreover, a phrase
contains a secondary occurrence if and only if the source
of that phrase contains an earlier occurrence (primary or
secondary). It follows then that each secondary occur-
rence is an exact copy of some primary occurrence and
once we have found all the primary occurrences we can
locate all the secondary occurrences from the structure
of the LZ77 parse.

To do this, for each primary occurrence T [`..r], we
find each phrase T [i..j] that has source T [i′..i′+j−i] such
that i′ ≤ ` ≤ r ≤ i′ + j − i, i.e., T [i′..i′ + j − i] includes
T [`..r]. Notice T [`′..r′] = T [`..r], where `′ = i + ` − i′
and r′ = `′ + r − `. We record T [`′..r′] as a secondary
occurrence and recurse on it (as it may lead to further
secondary occurrences).

In order to efficiently locate all sources covering an
occurrence, we use a data structure for 2-sided range
reporting. Specifically, we store points at (i′, j′) for every
phrase’s source T [i′..j′], on an n × n grid. With each
point we associate satellite data indicating the start of
the phrase: if a phrase T [i..j] is encoded as (pi, `i) by
LZ77, then there is a point on the grid at (pi, pi + `i− 1)
with satellite data i.

The overall time taken by the hybrid index to find a
pattern of length m ≤M is O(tsearch(m) + occ log log n)
time, where tsearch(m) is the time to search for the
pattern using IM . The factor log log n comes from
the predecessor query incurred by each query to the
2-sided range reporting structure. In practice we use
a very simple predecessor data structure described in
Section 4.1.

4 Implementation Details
In this section we describe details of our implementation
of hybrid index. The first non-trivial implementation
detail is that in our implementation we employ the
idea described in [28] to reduce the number of LZ
phrases. Namely, for any maximal sequence of adjacent
phrases where each phrase has length ≤ M , we merge
them into one superphrase. Let z′ denotes the size of
the resulting parsing (containing normal phrases and
superphrases). By t we denote the number of normal
phrases left after the merging. To mark superphrases we
use a bitvector Bs[1..z

′]. We store this with the hybrid
bitvector representation of Kärkkäinen et al. [10].

The two lists, L and LM , used to map between
the original and reduced text, are not stored explicitly,
but as a sequence of differences between consecutive
elements augmented with original values evenly sam-
pled. The resulting lists stored using this encoding need
O(z′ log gmax + z′ log n/s) bits where gmax is the maxi-
mum difference and s is the sampling rate, and allow
random access to the arrays using O(s) time. In practice
we choose s adaptively, depending on gmax. Both L and
LM are further augmented with the predecessor data
structure used for navigating between T and TM .

Arguably most complex component of the index is
the 2D two-sided range reporting data structure. Given a
n×n grid we store t points, each with some satellite data,
such that for any query point (which is not necessarily
one of the represented points) we want to list all points
with the smaller x- and larger y-coordinate. To achieve
this we keep all points sorted by the x-coordinate and
build a range maximum query (RMQ) data structure on
y-coordinates of the points in this order. Furthermore,
we augment the list of points with the predecessor data
structure on the x-coordinates. To answer the query we
first locate the index of x-predecessor p′ of the query

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited3

D
ow

nl
oa

de
d

08
/1

9/
18

 to
 8

0.
22

0.
19

5.
17

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

point p. We then use the RMQ data structure to locate
the point p′′ with the maximum y-coordinate in the x-
range from 1 to the x-coordinate of p′. If the point lies
in the sought range we list it and then recurse on the
two subrange to the left and right of p′′.

To implement RMQ we use a data structure of [4].
The predecessor data structure is described next.

4.1 Predecessor Data Structure. Let A[1..k] be a
non-decreasing sequence of k integers from the range
[0, u]. To support predecessor queries over A we use the
following simple approach.

Consider a partition of the universe [0, u] into blocks
of size b = 2h for some h > 0. We store an array
As[0..bu/bc+ 1], where for i = 0, . . . , bu/bc, As[i] stores
the largest j ∈ [1, k] such that A[j] < ib. Assume now
that x is the argument of the predecessor query and
let ix = x/b. We first compute j` = As[ix − 1] and
jr = As[ix]. The task is then to find the predecessor
of x in the range A[j`..jr]. We do a binary search over
A (which is stored explicitly) that continues until the
range becomes smaller than some predefined threshold
τ . In practice we found a value τ = 256 to give good
performance.

This method works well in our application because
the universe size is bounded by the length of the string
n, and we can choose the sampling period b depending
on the ratio n/z to keep the space overhead within O(z).

5 Handling Long Patterns
When the pattern length m ≤M , we locate occurrences
in the same way as the original hybrid index. For the
case m > M we process the pattern with a heuristic
method described in this section. For ease of exposition
we assume that m = kM for some integer k ≥ 2.

To support finding longer patterns we add to our
index an additional array Sr[1..t], where Sr[i] stores
the starting position of the source of the ith non-literal
LZ phrase. By carefully coupling Sr to the 2D range
reporting data structure described earlier, it can be
stored in just O(t log t) bits (with constant time access
to its elements).

We begin by splitting the pattern P into k segments,
each of length M . Let Pi denote the ith segment of
the pattern, so that P = P1P2 . . . Pk. For each segment
Pi, we use IM to locate all the occurrences of Pi in the
filtered text. Because these occurrences are in TM they
are either primary or occur inside a literal phrase. We
map each of them to their corresponding positions in T .
Let Ai[1..ni] be an array containing these positions for
segement Pi in increasing order.

With the sorted arrays Ai thus obtained, we process
each of them in turn, starting with A1. For each

x1j ∈ A1, 1 ≤ j ≤ n1, we need to determine whether P2

occurs at positon u2 = x1j + M , P3 occurs at positon
u3 = x1j + 2M , and in general whether Pi occurs at
position ui = x1j +((i−1)M), for all i ∈ [2..k]. It is easy
to see that, when this happens, P occurs at position x1j
in T .

The easy case is when we have u2 ∈ A2, u3 ∈ A3,
..., uk ∈ Ak. Clearly, this happens only when every
segment Pi occurs as a primary occurrence or is inside
a literal phrase. More generally we will have ui ∈ Ai

only for some i. For those other segments, i.e., those
segments Pi for which ui /∈ Ai, we need to determine
if Pi occurs as a secondary occurrence at position ui.
This is done recursively as follows. We determine the LZ
phrase covering position ui and via Sr obtain the source
of that phrase. Denote by s the start of that source and
let d be the offset of ui from the start of its covering
phrase. If text positions [s+ d..s+ d+M] are inside the
filtered text then we have that (s+ d) ∈ Ak′ (for some
k′) and Pi therefore occurs (as a secondary occurrence)
at position ui. If positions [s+ d..s+ d+M] are not in
the filtered text, then we recurse, determining the LZ
phrase covering position s+d, looking up its source with
Sr, and so on. To ensure the chain of phrases/sources
that need to be followed is shorter in practice, we make
use of the leftmost LZ parsing (see Section 2).

Having processed A1, we then process each position
in the other arrays A2, A3, ..., Ak in turn, taking into
account that we must add or subtract the appropriate
multiple of M to each position in order to obtain the
correct u values.

We note that this approach for longer patterns
introduces a new tradeoff between index size and pattern
matching time. The tension is to find an M that keeps
the filtered text TM reasonably small, but at the same
time is large enough so that patterns are not split into too
many segments (because for each one of these k = m/M
segments we have to perform a locate operation with
IM , and then sort and intersect the results).

6 Experimental Results
6.1 Setup. We performed experiments on a 2.1GHz
Intel Xeon E7-4830 CPU equipped with 1.2TiB of DDR3
main memory. The machine had no other significant
CPU tasks running and only a single thread of execution
was used. The OS was Linux (Ubuntu 16.04, 64bit)
running kernel 4.8.0. All programs were compiled using
g++ version 5.4.0 with -O3 -DNDEBUG -march=native
options. All given runtimes are real (wallclock) times.
The data sets used for experiments are described in
Table 1.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited4

D
ow

nl
oa

de
d

08
/1

9/
18

 to
 8

0.
22

0.
19

5.
17

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

6.2 Tested Indexes. As baselines for our hybrid
index, denoted HI4, we used the following state-of-the-
art indexes in our experiments:

• RLCSA (version 05-2016):5 a member of the
compressed suffix array family based on run-length
encoding [22, 27]. It is currently one of the fastest
and simultaneously smallest indexes for highly
repetitive data.

• LZI:6 the LZ77-based index of Kreft and
Navarro [17]. We use the latest and most optimized
version of the code from [1].

• LZEI: another index of Kreft and Navarro [17]. The
main difference compared to LZI is that LZEI is
based on the modification of LZ77 (called LZend,
and introduced in [16, 15]), that restricts the sources
of all phrases to end at another phrase boundary.

• FMI: the most recent variant of the FM-index by
Gog et al. [8] based on the fixed-block boosting
technique [12] with the hybrid bivector [10] as
the underlying bitvector implementation. This is
fastest (and simultaneously smallest) FM-index we
are aware of. The implementation is part of the
SDSL library [9], which contains state-of-the-art
implementations of compressed data structures.7

The FM-index inside our HI is the same FMI as
above. This ensures the comparison of our hybrid index
with the standalone FM-index is fair and highlights the
improvements achievable with hybrid indexing.

6.3 Experiments. In the first experiment we com-
pare the performance of our hybrid index to that of the
baseline indexes using locate queries. To test each index
we randomly extract 3 000 patterns from the text and
report the average time per occurrence of the pattern.
For brevity, in this experiment we fix a pattern length
m = 20 for non-repetitive texts in our data set and
m = 80 for highly repetitive data. We believe these val-
ues to be representative of most practical applications,
however we also investigate the effect of m on the query
performance in the next experiment. The results are
given in Fig. 1.

For highly repetitive data in nearly all cases the
hybrid index significantly outperforms all other indexes
both in time and space. For the influenza testfile the

4The implementation is available at: https://github.com/
hferrada/HydridSelfIndex

5Available at: https://jltsiren.kapsi.fi/rlcsa
6Code available from: https://github.com/migumar2/uiHRDC/
7The library is available from: https://github.com/simongog/

sdsl-lite

Input |Σ| n/220 n/z
dna 16 386 15.75
proteins 27 512 13.04
english 226 512 14.60
sources 230 202 18.17
cere 5 440 271.2
influenza 15 148 200.9
kernel 160 247 324.7
einstein 139 446 5136.7

Table 1: Files used in the experiments. The files are
from the Pizza & Chili standard and repetitive corpus
(http://pizzachili.dcc.uchile.cl/). The value of n/z
is the average length of phrase in the LZ77 parsing.

index matches the space of other indexes (this is not
clearly visible in the graph, however, as we only used
the suffix array sampling of 32 and 64 for HI, while
FMI uses higher values) while still being the fastest.
The results for non-repetitive data show that the index
achieves a smooth transition: as the data becomes less
repetitive, the hybrid index essentially becomes the FM-
index (that is, of course, the case here since we choose
to use FMI on the filtered text; in general the transition
occurs towards the chosen index type). A particularly
attractive property of the hybrid index is that it always
performs well, irrespective of the type of data. This is in
contrast to other indexes, for which there always exists
an input on which its performance decreases dramatically
or the resulting index is orders of magnitude bigger than
other indexes.

In the second experiment we examine the perfor-
mance of indexes with varying value of m, the pattern
length. Inevitably, when the pattern length m exceeds
the threshold M , the performance of hybrid index starts
to deteriorate. The previous experiment (where all hy-
brid indexes used either M = 20 or M = 40) demon-
strates that for highly repetitive inputs, the performance
of hybrid index is very good even for m = 80. Here we
study this effect in more depth and compare to other
indexes.

Fig. 2 compares the performance of FMI, LZI (the
space-efficient variant of the LZ-based index), and HI
(the hybrid index) with M = 20 on four testfiles: two
from the standard corpus, and two from the repetitive
corpus. For the hybrid index, the trend for non-repetitive
files depends on the structure of occurrences: while for
the proteins testfile there is essentially no slowdown, for
the dna testfile the performance deteriorates dramatically
already for m = 40. On the other hand, the performance
of the hybrid index on highly repetitive files deteriorates
very slowly. Lastly, we point out that LZI exhibits a
notable slowdown as m increases, which is explained

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited5

D
ow

nl
oa

de
d

08
/1

9/
18

 to
 8

0.
22

0.
19

5.
17

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://github.com/hferrada/HydridSelfIndex
https://github.com/hferrada/HydridSelfIndex
https://jltsiren.kapsi.fi/rlcsa
https://github.com/migumar2/uiHRDC/
https://github.com/simongog/sdsl-lite
https://github.com/simongog/sdsl-lite
http://pizzachili.dcc.uchile.cl/

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2 3 4 5 6 7 8 9 10 11

T
im

e
p

er
 o

cc
u

rr
en

ce
 [

µ
s]

dna, m = 20

HI
FMI
LZI

LZEI
RLCSA

 0

 50

 100

 150

 200

 250

 300

 350

 400

 3 4 5 6 7 8 9 10 11

T
im

e
p

er
 o

cc
u

rr
en

ce
 [

µ
s]

proteins, m = 20

HI
FMI
LZI

LZEI
RLCSA

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 3 4 5 6 7 8 9 10 11 12 13

T
im

e
p

er
 o

cc
u

rr
en

ce
 [

µ
s]

english, m = 20

HI
FMI
LZI

LZEI
RLCSA

 0

 50

 100

 150

 200

 250

 300

 3 4 5 6 7 8 9 10 11

T
im

e
p

er
 o

cc
u

rr
en

ce
 [

µ
s]

sources, m = 20

HI
FMI
LZI

LZEI
RLCSA

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0.2 0.4 0.6 0.8 1 1.2 1.4

T
im

e
p

er
 o

cc
u

rr
en

ce
 [

µ
s]

cere, m = 80

HI
FMI
LZI

LZEI
RLCSA

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

T
im

e
p

er
 o

cc
u

rr
en

ce
 [

µ
s]

influenza, m = 80

HI
FMI
LZI

LZEI
RLCSA

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
im

e
p

er
 o

cc
u

rr
en

ce
 [

µ
s]

Space per symbol [bits]

kernel, m = 80

HI
FMI
LZI

LZEI
RLCSA

 0

 4

 8

 12

 16

 20

 24

 28

 0 0.2 0.4 0.6 0.8 1 1.2

T
im

e
p

er
 o

cc
u

rr
en

ce
 [

µ
s]

Space per symbol [bits]

einstein, m = 80

HI
FMI
LZI

LZEI
RLCSA

Figure 1: Time/space tradeoffs of the indexes for locate queries. For non-repetitive collections we set m = 20 and for
highly-repetitive we use m = 80. The four data points for FMI correspond to suffix array sampling rate of {32, 64, 128, 256}.
In HI we use {(20, 64), (20, 32), (40, 64), (40, 32)}, with each pair corresponding to, respectively, M and SA sampling rate
of the FMI of the filtered text. The data points for RLCSA correspond to different block size and sampling of the suffix
arrays: {(256, 512), (128, 256), (32, 128)}. Finally, for LZ-based indexes we used the fastest and the smallest variants.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited6

D
ow

nl
oa

de
d

08
/1

9/
18

 to
 8

0.
22

0.
19

5.
17

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 20 40 60 80 100 120 140 160

T
im

e
p

er
 o

cc
u

rr
en

ce
 [

µ
s]

kernel

HI
LZI
FMI

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 10 15 20 25 30 35 40

T
im

e
p

er
 o

cc
u

rr
en

ce
 [

µ
s]

proteins

HI
LZI
FMI

 1

 4

 16

 64

 256

 1024

 4096

 16384

 20 40 60 80 100 120 140 160

T
im

e
p

er
 o

cc
u

rr
en

ce
 [

µ
s]

Pattern length

cere

HI
LZI
FMI

 4

 16

 64

 256

 1024

 4096

 16384

 10 15 20 25 30 35 40

T
im

e
p

er
 o

cc
u

rr
en

ce
 [

µ
s]

Pattern length

dna

HI
LZI
FMI

Figure 2: Performance of locate queries for different pattern lengths. HI uses threshold M = 20. The suffix array sampling
of FMI is 64 (both for the standalone index as well as for the FMI used in HI). The experiments use the space-efficient
variant of LZ-index.

by the non-linear dependence of its query time on the
pattern length.

7 Conclusions and Future Work
We have provided the first proper experimental analysis
of hybrid indexing that compares it to other compressed
indexes designed for highly repetitive text collections.
Our results show that hybrid indexing is a versatile ap-
proach, and usually the best alternative among currently
available methods, irrespective of the compressibility of
the underlying data. We have also extended the func-
tionality of hybrid indexes to support pattern matching
for arbitrary length patterns.

The FM-index of the filtered text is a time and space
bottleneck in our index, and alleviating this is an avenue
for future work. We note that we are not compelled to
use an FM-index — any fast, small index for relatively
incompressible text (an inherent property of the filtered
text) will do. Another potentially fruitful (and relatively
straightforward) direction is to use alternatives to the LZ
parsing — for example, relative Lempel-Ziv parsing [18]
— that are more easily constructed in external memory
and parallel settings.

References

[1] Francisco Claude, Antonio Fariña, Miguel A. Martínez-
Prieto, and Gonzalo Navarro. Universal indexes for
highly repetitive document collections. Information
Systems, 61:1–23, 2016.

[2] Huy Hoang Do, Jesper Jansson, Kunihiko Sadakane,
and Wing-Kin Sung. Fast relative Lempel-Ziv self-index
for similar sequences. Theoretical Computer Science,
532:14–30, 2014.

[3] Héctor Ferrada, Travis Gagie, Tommi Hirvola, and
Simon J. Puglisi. Hybrid indexes for repetitive datasets.
Philosophical Transactions of the Royal Society A, 372,
2014.

[4] Héctor Ferrada and Gonzalo Navarro. Improved range
minimum queries. Journal of Discrete Algorithms,
43:72–80, 2017.

[5] Paolo Ferragina and Giovanni Manzini. Indexing
compressed text. Journal of the ACM, 52(4):552–581,
2005.

[6] Paul Flicek and Ewan Birney. Sense from sequence
reads: Methods for alignment and assembly. Nature
Methods, 6(11):6–12, 2009.

[7] Travis Gagie and Simon J. Puglisi. Searching and
indexing genomic databases via kernelization. Frontiers
in Bioengineering and Biotechnology, 3:Article 12, 2015.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited7

D
ow

nl
oa

de
d

08
/1

9/
18

 to
 8

0.
22

0.
19

5.
17

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

[8] Simon Gog, Juha Kärkkäinen, Dominik Kempa,
Matthias Petri, and Simon J. Puglisi. Faster, Min-
uter. In Proc. Data Compression Conference (DCC),
pages 53–62. IEEE, 2016.

[9] Simon Gog and Matthias Petri. Optimized succinct
data structures for massive data. Software, Practice
and Experience, 44(11):1287–1314, 2014.

[10] Juha Kärkkäinen, Dominik Kempa, and Simon J.
Puglisi. Hybrid compression of bitvectors for the FM-
index. In Proc. Data Compression Conference (DCC),
pages 302–311. IEEE, 2014.

[11] Juha Kärkkäinen, Dominik Kempa, and Simon J.
Puglisi. Lempel-Ziv parsing in external memory. In
Proc. Data Compression Conference (DCC), pages 153–
162. IEEE, 2014.

[12] Juha Kärkkäinen and Simon J. Puglisi. Fixed block
compression boosting in FM-indexes. In Proc. 18th

Symposium on String Processing and Information Re-
trieval (SPIRE), LNCS 7024, pages 174–184. Springer,
2011.

[13] Juha Kärkkäinen and Esko Ukkonen. Lempel-Ziv
parsing and sublinear-size index structures for string
matching. In Proc. 3rd South American Workshop on
String Processing (WSP), pages 141–155, 1996.

[14] Dominik Kempa and Simon J. Puglisi. Lempel-Ziv
factorization: Simple, fast, practical. In Proc. 15th

Meeting on Algorithm Engineering and Experiments
(ALENEX), pages 103–112. SIAM, 2013.

[15] Sebastian Kreft and Gonzalo Navarro. LZ77-like
compression with fast random access. In Proc. Data
Compression Conference (DCC), pages 239–248. IEEE,
2010.

[16] Sebastian Kreft and Gonzalo Navarro. Self-indexing
based on LZ77. In Proc. 22nd Symposium on Combi-
natorial Pattern Matching (CPM), LNCS 6661, pages
41–54. Springer, 2011.

[17] Sebastian Kreft and Gonzalo Navarro. On compressing
and indexing repetitive sequences. Theoretical Com-
puter Science, 483:115–133, 2013.

[18] Shanika Kuruppu, Simon J. Puglisi, and Justin Zobel.
Relative Lempel-Ziv compression of genomes for large-
scale storage and retrieval. In Proc. 17th Symposium on
String Processing and Information Retrieval (SPIRE),
LNCS 6393, pages 201–206. Springer, 2010.

[19] Heng Li and Richard Durbin. Fast and accurate
short read alignment with Burrows-Wheeler transform.
Bioinformatics, 25(14):1754–1760, 2009.

[20] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-
Ming Yiu, Karsten Kristiansen, and Jun Wang. SOAP2:
An improved ultrafast tool for short read alignment.
Bioinformatics, 25(15):1966–1967, 2009.

[21] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial,
and Alexandru I. Tomescu. Genome-Scale Algorithm
Design: Biological Sequence Analysis in the Era of High-
Throughput Sequencing. Cambridge University Press,
2015.

[22] Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko
Välimäki. Storage and retrieval of highly repetitive

sequence collections. Journal of Computational Biology,
17(3):281–308, 2010.

[23] Udi Manber and Eugene W. Myers. Suffix arrays: A
new method for on-line string searches. SIAM Journal
on Computing, 22(5):935–948, 1993.

[24] Eugene W. Myers. A history of DNA sequence assembly.
it - Information Technology, 58(3):126–132, 2016.

[25] Gonzalo Navarro. Compact Data Structures - A
Practical Approach. Cambridge University Press, 2016.

[26] Gonzalo Navarro and Veli Mäkinen. Compressed full-
text indexes. ACM Computing Surveys, 39(1):Article 2,
2007.

[27] Jouni Sirén. Compressed full-text indexes for highly
repetitive collections. PhD thesis, University of Helsinki,
2012.

[28] Daniel Valenzuela. CHICO: A compressed hybrid index
for repetitive collections. In Proc. 15th Symposium
on Experimental Algorithms (SEA), LNCS 9685, pages
326–338. Springer, 2016.

[29] Daniel Valenzuela, Niko Välimäki, Esa Pitkänen, and
Veli Mäkinen. On enhancing variation detection
through pan-genome indexing. bioRxiv, 2015.

[30] Jacob Ziv and Abraham Lempel. A universal algorithm
for sequential data compression. IEEE Transactions on
Information Theory, 23(3):337–343, 1977.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited8

D
ow

nl
oa

de
d

08
/1

9/
18

 to
 8

0.
22

0.
19

5.
17

2.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

	Introduction
	Our Contribution.

	Preliminaries
	The Hybrid Index
	Finding Primary Occurrences.
	Finding Secondary Occurrences.

	Implementation Details
	Predecessor Data Structure.

	Handling Long Patterns
	Experimental Results
	Setup.
	Tested Indexes.
	Experiments.

	Conclusions and Future Work

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

