
Engineering External Memory Induced Suffix Sorting∗

Juha Kärkkäinen† Dominik Kempa† Simon J. Puglisi† Bella Zhukova†

Abstract
Suffix sorting — determining the lexicographical order
of all the suffixes of a string — is one of the most
important problems in string processing. The resulting
data structure is called the suffix array (SA) and
underpins dozens of applications in bioinformatics, data
compression, and information retrieval. When the
size of the input string or the SA exceeds that of
internal memory (RAM), an external memory (EM)
suffix sorting algorithm must be used. The most
scalable of these EM methods is due to Bingmann et
al. (Proc. ALENEX 2013), and is essentially a careful
disk-based implementation of the so-called induced
sorting technique used by the fastest RAM suffix sorting
algorithms.

In this paper we show how to greatly improve the
efficiency of induced suffix sorting in external memory
via a non-trivial reorganization of the computation
involved. Our experiments show this new approach
to be twice as fast as state-of-the-art methods, while,
just as significantly, using a third of the disk memory.
We also demonstrate the efficacy of our implementation
for handling strings on large alphabets (with many
millions of distinct symbols), which is important, e.g.,
for applications in natural language processing and
information retrieval, but unaddressed by previous EM
suffix sorting implementations.

Our implementation uses a (EM) radix heap data
structure and, as a side result of independent interest,
we introduce a new operation for radix heaps and
other monotone priority queues called min-comp, which
we believe to be useful for many other applications,
including discrete event simulation and sweep line
algorithms, even in internal memory.

1 Introduction
Suffix sorting — determining the lexicographical order
of all the suffixes of a string — is one of the most
important problems in string processing. The resulting
data structure is called the suffix array (SA) and

∗This research is partially supported by Academy of Finland
through grant 294143.
†Helsinki Institute for Information Technology (HIIT), Depart-

ment of Computer Science, University of Helsinki, Finland.

underpins dozens of applications in bioinformatics, data
compression, and information retrieval. Suffix arrays
have become central to modern genomics, where they
are used for genome assembly and short read alignment,
data intensive tasks at the forefront of modern medical
and evolutionary biology [17].

Suffix sorting for the case where the input (string)
and output (SA) both fit in internal memory (RAM),
is now quite well understood. The many algorithms for
this scenario are surveyed in [20], and the fastest of these
— both in theory and in practice — use a technique called
induced sorting [11, 14, 19], in which the lexicographic
order of the majority of suffixes is derived (induced) from
the order of a special subset of suffixes.

When the size of the input string or the SA exceeds
that of RAM, an external memory (EM) suffix sorting
algorithm must be used. Two main approaches to EM
suffix sorting define the current state of the art. The
most scalable of these is the so-called eSAIS algorithm,
due to Bingmann et al. [4], which is essentially a careful
disk-based implementation of the above mentioned
induced sorting technique used by the fastest RAM-
based algorithms. A serious limiting factor of eSAIS is
high disk usage: about 24 times the size of the input.
Another disk-based implementation of induced sorting
DSA-IS [18] is slower than eSAIS and uses even more
disk space in our experiments.

The second main approach to EM suffix sorting is a
family of scan-based algorithms [9, 12, 13] that reduce
disk usage at some cost to runtime, asymptotically at
least. The basic idea of these methods is to divide the
text into blocks, construct suffix arrays for the blocks
and then merge these partial suffix arrays. The fastest
member of this family, called pSAscan [13], has disk
usage of about eight times the size of the input — about a
third that of eSAIS — and is faster than eSAIS when the
ratio of input size to RAM size is reasonable. However,
pSAscan slows down rapidly as the ratio grows larger,
which makes it ultimately less scalable than eSAIS.

1.1 Results. The main results in this paper are as
follows.

1. We show how to significantly improve the efficiency
of induced suffix sorting in external memory via
a non-trivial reorganization of the computation

98 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

5/
17

 to
 1

28
.2

14
.9

.9
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

involved. Our experiments show this new approach
to be twice as fast as eSAIS, the best previous
realisation of EM induced sorting, while, just as
significantly, using a third of the disk memory. This
level of disk usage brings our implementation in line
with pSAscan, and is close to optimal.

2. We also demonstrate the efficacy of our implemen-
tation for handling strings on large alphabets (with
many millions of distinct symbols), which is im-
portant, e.g., for applications in natural language
processing [21] and information retrieval [10]. Ef-
ficiency for large alphabets has been to date un-
addressed by previous studies on EM suffix sort-
ing [6, 7, 4, 12, 18, 13], in all of which a byte al-
phabet is assumed. While eSAIS could probably
be modified for large alphabets fairly easily, with
pSAscan this would require a major redesign.

3. We introduce a new monotone priority queue
operation min-comp, which determines if the the
smallest key stored in the priority queue is smaller
or equal than the key given as argument. Crucially,
this does not necessarily require the computation
of the smallest key. Using an external memory
radix heap augmented with min-comp is a valuable
optimization and simplification in our suffix sorting
algorithm. We believe that many other applications
of monotone priority queues – such as discrete event
simulation and sweep-line algorithms – could benefit
from this operation.

In §2 we provide a novel description of induced suffix
sorting and make several observations which enable our
efficient implementation. §3 and §4 provide the details
of our new approach. In particular, §4.2 describes the
min-comp operation and its advantages. §5 presents
and analyses experimental results. §6 suggests some
directions future work might take.

2 Induced Suffix Sorting
We begin with a detailed description of the induced suffix
sorting procedure [19], which can be easily implemented
in RAM but requires some modifications for external
memory implementation as described in the next section.
Our description differs from many others in the literature
in the following aspects:

• We sometimes use a different notation. In particular,
instead of L and S we use − and +, which we find
more descriptive (see Lemma 2.1 for example).

• We start inducing from −∗ (L*) positions instead
of +∗ (S*) positions. This makes Lemma 2.2 and
some implementation details simpler.

• We do not store the various position subsets into
subarrays of the suffix array but keep them in
separate queues or stacks, which is closer to the
external memory implementation.

• To our knowledge, the technique for computing lexi-
cographical names in §2.5 has never been described
in the literature. However, a similar technique is
used in the RAM-based induced sorting implemen-
tation by Yuta Mori.1

2.1 Basic Definitions. Let X = X[0..n) be a string
over an integer alphabet [0..σ). Here and elsewhere we
use [i..j) as a shorthand for [i..j − 1]. For i ∈ [0..n] we
write Xi to denote the suffix of X of length n− i, that is
Xi = X[i..n) = X[i]X[i+ 1] . . .X[n− 1]. More generally,
we write X[i..j) or X[i..j − 1] to denote the substring
X[i]X[i+ 1] . . .X[j − 1] of length j − i.

The suffix array SA of a string X contains the
starting positions of the non-empty suffixes of X in the
lexicographical order, i.e., it is an array SA[0..n) which
contains a permutation of the integers [0..n) such that
X[SA[0]..n) < X[SA[1]..n) < · · · < X[SA[n − 1]..n). In
other words, SA[j] = i iff X[i..n) is the (j + 1)th suffix of
X in ascending lexicographical order.

2.2 Categories of Positions. We divide suffixes and
their starting positions into two categories according to
whether they are smaller or larger than the suffix starting
at the next position. Formally, let

C− = {i ∈ [0..n) | Xi > Xi+1} ,
C+ = {i ∈ [0..n) | Xi < Xi+1} .

We are interested in runs of positions of the same type
and call the leftmost positions in runs ∗-positions:

C−∗ = {i ∈ C− | i− 1 ∈ C+} ,
C+∗ = {i ∈ C+ | i− 1 ∈ C−} .

An example showing the above classification is given in
Table 1. Notice that 0 is never a ∗-position. We also
categorize suffixes/positions by their first character, and
consider the intersections of the different categories. For
any c ∈ [0..σ) and α ∈ {−,+,−∗,+∗}, let

Cc = {i ∈ [0..n) | X[i] = c} ,
Cαc = Cc ∩ Cα .

The C−c - and C+
c -suffixes are lexicographically separated

as shown by the following lemma.

Lemma 2.1. For any c ∈ [0..σ), C−c = {i ∈ Cc | Xi <
ccc . . .} and C+

c = {i ∈ Cc | Xi > ccc . . .}.

1Available at https://sites.google.com/site/yuta256/sais

99 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

5/
17

 to
 1

28
.2

14
.9

.9
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://sites.google.com/site/yuta256/sais

2.3 Sorting Positions. For i ∈ [0..n), define
next(i) = min{k ∈ [i+ 1..n] | k ∈ {n} ∪ C−∗} and

X−∗i =

{
X[i..next(i)] if next(i) < n
X[i..n) if next(i) = n

The strings X−∗i are called −∗-ending substrings and
have the following property.

Lemma 2.2. For any i, j ∈ [0..n), Xi < Xj if and only
if X−∗i < X−∗j or X−∗i = X−∗j and Xnext(i) < Xnext(j).

Proof. The result is clearly true except when X−∗i is a
proper prefix of X−∗j . But then either next(i) = n and
the result is true, or i+ |X−∗i | − 1 = next(i) ∈ C− and
j+ |X−∗i | − 1 ∈ C+, and the result is true by Lemma 2.1.

For any set C ⊆ [0..n) of text positions, we will use
.
C

to denote C ordered by the characters at those positions,
C to denote C ordered by −∗-ending substrings starting
at those positions, and

−→
C to denote C ordered by the

suffixes starting at those positions.
By Lemma 2.1, we can now express the suffix array

as follows: SA =
−→
C−0
−→
C+

0

−→
C−1
−→
C+

1 . . .
−−−→
C−σ−1

−−−→
C+
σ−1. The

construction is done in three main phases:

1. Compute C−∗ from
.

C−∗ by inducing.
2. Compute

−−→
C−∗ from C−∗ by recursion.

3. Compute
−→
C+ and

−→
C− from

−−→
C−∗ by inducing.

2.4 Inducing. The basic idea of inducing is to use
information about the order of the suffix Xi (the
substring X−∗i) to induce the order of the suffix Xi−1 =
X[i− 1]Xi (the substring X−∗i−1 = X[i− 1]X−∗i).

The inducing is done in two phases:

1. PlusInduce: Given C−∗ in some order, induce C+

and, as a subsequence, C+∗.

2. MinusInduce: Given C+∗ in the order of the first
phase, induce C− and C−∗.

If the input to the first phase is
.

C−∗, the final output
we keep is C−∗. If the input is

−−→
C−∗, the final output is−→

C+ and
−→
C−. The inducing procedures are given Figure 1

(with a separation by the first character maintained at
all stages). Note that the inducing order is ascending
lexicographical order in MinusInduce and descending
lexicographical order in PlusInduce.

To prove the correctness of the inducing procedures,
we first show that they produce the correct sets of
positions using the following characterization of the
desired sets.

i 0 1 2 3 4 5 6 7 8 9 10
X[i] m i s s i s s i p p i
type − + − − + − − + − − −

Table 1: Illustration of sets C− and C+ for the example
string. We also have C−∗ = {2, 5, 8}, C+∗ = {1, 4, 7}.

Lemma 2.3. For all i ∈ [1..n), i − 1 ∈ C− if and only
if either i ∈ {n} ∪ C+∗ or i ∈ C− and X[i − 1] ≥ X[i];
and i− 1 ∈ C+ if and only if either i ∈ C−∗ or i ∈ C+

and X[i− 1] ≤ X[i].

Corollary 2.1. If the inputs to PlusInduce and Mi-
nusInduce are correct as sets, then the outputs are correct
as sets.

Next we characterize the order of the elements in
the output sets.

Lemma 2.4. Let C−∗ = C−∗0 . . . C−∗σ−1 denote the input
to PlusInduce. Suppose we run PlusInduce, and then
use the produced output as the input to MinusInduce.
For any i, j ∈ C+, i is induced (popped from a queue)
before j (in PlusInduce) if and only if X−∗i > X−∗j or
X−∗i = X−∗j and next(i) is after next(j) in C−∗. For any
i, j ∈ C−, i is induced before j (in MinusInduce) if and
only if X−∗i < X−∗j or X−∗i = X−∗j and next(i) is before
next(j) in n · C−∗.

Note that the above lemma is true for any order of
the sets used as input to PlusInduce, in particular for.
C−∗ and

−−→
C−∗. Thus, the correctness of inducing follows

directly from Lemma 2.4 when inducing C−∗ from
.

C−∗,
and from the combination of Lemmas 2.4 and 2.2 when
inducing

−→
C+ and

−→
C− from

−−→
C−∗.

2.5 Recursion. Let n′ = |C−∗| and let
{p0, p1, . . . , pn′−1} = C−∗ be the sequence of −∗-
positions with p0 < p1 < · · · < pn′−1. We sort
the substrings X−∗i , i ∈ C−∗, that start and end at
−∗-positions and assign them lexicographical names,
i.e., integers rj ∈ [0..n′), j ∈ [0..n′), such that for all
j, k ∈ [0..n′), rj ≤ rk iff X−∗pj ≤ X−∗pk .

The lexicographical names are computed while
inducing C−∗. Since inducing produces C−∗ in the
correct lexicographical order, all we need to know to
assign names is which consecutive elements represent
identical −∗-substrings. For this, we augment each
element with a bit that is zero if the element represents
the same −∗-substring as its predecessor in the queue
and one otherwise. In fact, we augment all the C and Q
queues (and stacks) used during the substring inducing
with such a bit. We will next describe how these bits are

100 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

5/
17

 to
 1

28
.2

14
.9

.9
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Procedure PlusInduce(C−∗0 , . . . , C−∗σ−1)
1: for c← σ − 1 downto 0 do
2: while Qc 6= ∅ do
3: i← Qc.popfront()
4: C+

c .pushfront(i)
5: if i > 0 and X[i− 1] ≤ c then
6: QX[i−1].pushback(i− 1)
7: else if i > 0 then
8: C+∗

c .pushfront(i)
9: for i ∈ C−∗c in reverse order do
10: QX[i−1].pushback(i− 1)
11: return C+

0 , . . . , C
+
σ−1 and C+∗

0 , . . . , C+∗
σ−1

Procedure MinusInduce(C+∗
0 , . . . , C+∗

σ−1)
1: QX[n−1].pushback(n− 1)
2: for c← 0 to σ − 1 do
3: while Qc 6= ∅ do
4: i← Qc.popfront()
5: C−c .pushback(i)
6: if i > 0 and X[i− 1] ≥ c then
7: QX[i−1].pushback(i− 1)
8: else if i > 0 then
9: C−∗c .pushback(i)
10: for i ∈ C+∗

c do
11: QX[i−1].pushback(i− 1)
12: return C−0 , . . . , C

−
σ−1 and C−∗0 , . . . , C−∗σ−1

Figure 1: The inducing procedures. The C and Q objects are simple queues (when inserting by pushback) or stacks (when
inserting by pushfront).

computed in MinusInduce assuming the input already
contains such bits. The computation in PlusInduce is
essentially symmetric.

We will assign a rank to each position i popped
from Qc on line 4 or from C+∗

c on line 10. If the bit
augmenting i in the queue is zero, the rank of i is the
same as the rank of its predecessor. Otherwise, the
rank of i is the smallest positive integer not yet used
as a rank. It is not difficult to see that the rank is a
lexicographical name among all −∗-substrings starting
in C− ∪C+∗. For each queue C−c and C−∗c , we keep the
rank of the last position inserted into the queue. When
inserting, we compare the rank of the new position to
the rank of the previously inserted position to determine
the augmenting bit of the new element. Insertions into
the queues Qc are processed similarly, except the rank
stored with the queue is the rank of position i + 1 if
the last inserted position is i (because we do not yet
know the rank of i). Since X[i] = c for all positions i
inserted into Qc, the augmenting bits are still correctly
computed.

Let R = r0r1 . . . rn′−1 be the concatenation of the
lexicographical names. Then:

Lemma 2.5. For any i, j ∈ [0..n′), Xpi < Xpj if and
only if Ri < Rj.

Therefore, we can sort the −∗-suffixes by sorting all
suffixes of R, which can be done recursively by induced
suffix sorting. Since n′ ≤ n/2, the length of the string
drops exponentially with the depth of the recursion, and
thus the recursive calls do not increase the asymptotic
time complexity.

2.6 Full Algorithm. The complete algorithm for
constructing the suffix array is the following. It can

be implemented to run in O(n) time in internal memory.

1. Construct
.

C−∗ by scanning X once.
2. Construct C−∗ by inducing from

.
C−∗.

3. Construct the string R.
4. Construct the suffix array of R recursively.
5. Construct

−−→
C−∗ from the suffix array of R.

6. Construct
−→
C+ and

−→
C− by inducing from

−−→
C−∗.

7. Merge
−→
C+ and

−→
C− into SA.

3 Induced Suffix Sorting in External Memory
The generic induced suffix sorting described above
involves a lot of sequential access to data, which is in
principle easy to perform efficiently even if the data is
in external memory. Some steps — specifically steps 3
and 5 — require external memory sorting/permuting to
get elements into an appropriate order. The problematic
operations for external memory implementation are
the accesses to the preceding characters X[i− 1] when
inducing, because those can be essentially random
accesses. Another difficulty, which we will consider first,
is dealing with too many sequences when the alphabet
is large.

3.1 Large Alphabet. During the inducing, the algo-
rithm deals with more than σ sequences simultaneously
and needs to keep at least a buffer of some minimum size,
say B, in RAM (of size M) for each sequence. When
σ > M/B, this is no more possible. Even if the original
string X has a small alphabet, the strings in the recursive
calls can have very large alphabets.

For a large alphabet, we will replace the individual
sequences C−c , C+

c , C−∗c , and C+∗
c , c ∈ [0..σ), with

their concatenations C−, C+, C−∗, and C+∗. The

101 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

5/
17

 to
 1

28
.2

14
.9

.9
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

accesses to these concatenations are still sequential
during the algorithm. We will also maintain the lengths
of individual sequences as a separate list so that we can
tell where one sequence ends and another begins.

This concatenation approach does not work with the
queues Qc as they are accessed simultaneously. Instead,
the queues Qc, c ∈ [0..σ), are replaced with a single
priority queue Q with the symbol c as the priority.
Using a minimum priority queue in MinusInduce and a
maximum priority queue in PlusInduce leads to the
correct order of extraction. Using an I/O-optimal
external memory priority queue [2] the I/O-complexity of
inducing becomes O(sort(n)) = O((n/B) logM/B(n/B)).

The technique for computing lexicographical names
for −∗-substrings still works with mostly minor changes.
In fact, essentially no change is needed for computing
the augmenting bits in the concatenated C sequences.
With the priority queue Q too, the augmenting bit of
each element is exactly the same as it was with separate
queues. To compute those bits, however, we will need
to keep a separate rank for each symbol c ∈ [0..σ)
corresponding to the rank associated with the separate
queue Qc. For extremely large alphabets (say, σ > M/2),
we may not have enough free RAM to store all those
ranks. In that case, we store the actual ranks instead of
the augmenting bits with each priority queue element.

3.2 Blockwise Preinducing. To deal with the es-
sentially random accesses to the text characters X[i− 1]
during inducing we use a technique we call blockwise
preinducing, where we divide the text into blocks of size
m and precompute the sequence of symbol accesses into
each block. When we need to know X[i− 1], we deter-
mine which block contains the position i− 1 and then
read the next symbol from the precomputed sequence
associated with that block. A more cumbersome form
of blockwise preinducing was introduced in [18].

Let Y be one of the blocks, and let k be the first
C−∗-position in X after the end of Y. Let Y′ be Y
extended to the right up to but not including X[k]. Let
D−∗ ⊆ C−∗ be the set of C−∗-positions in Y plus the
position k in the same relative order they are in C−∗.
We perform inducing on Y′ using D−∗ as the initial
input with one modification: line 1 in MinusInduce is
omitted because the position k, which is now the beyond-
the-end position instead of n, is included in D−∗ in its
appropriate position.

Lemma 3.1. If we perform inducing on Y′ using D−∗ as
the initial input, the preceding symbol accesses Y′[i− 1]
occur in the same relative order as they occur when
inducing on X using C−∗ as the initial input.

Proof. Follows directly from Lemma 2.4.

If |Y′| > 2|Y|, we truncate Y′ into length 2|Y| and
add the position after Y′ into D−∗ as dummy C−∗-
position with arbitrary ordering. This may change the
inducing order of some positions in Y′ but not those
in Y.

During the inducing of Y′, we store the symbol
accesses inside Y into a file. Then during the inducing
of X, when we need X[i− 1] which is inside Y, we simply
read the next symbol from the file. The maximum
number of active files, and thus the maximum number
of blocks, we can handle is O(M/B). If the resulting
(extended) blocks are too big to fit in RAM, we apply
the blockwise preinducing technique recursively. The
necessary number of recursive levels is O(logM/B(n/M)),
and thus the I/O complexity of the full algorithm is
O((n/B) log2

M/B(n/B)).

4 Radix Heap
A (minimum) priority queue is a data structure that
stores key-value pairs and supports at least the oper-
ations insert(k, v), which adds the pair (k, v) into the
queue, and extract-min(), which removes a pair with the
smallest key and returns it. A priority queue is stable if
extract-min() returns key-value pairs with the same key
in the order they were inserted into the priority queue.
A monotone priority queue has the additional restriction
that an inserted key may not be smaller than the last
extracted key. This restriction ensures that elements are
extracted in monotonic order.

A well-known monotone, stable priority queue is the
radix heap [1]. As a practical optimization, we use an
external memory radix heap as the priority queue in
inducing. The implementation is ours but it is similar
to the one by Brengel et al. [5] and we omit the details.
However, we want to highlight two aspects specific to
our implementation and usage.

4.1 Stability and PQ Element Size. The priority
queue used during inducing needs to be stable. Any
priority queue can be made stable by using a time stamp
representing the insertion time as a secondary key, and
this is how eSAIS [4] achieves stability, for example.
However, the radix heap is naturally stable, and no time
stamp is needed. This reduces the size of the elements
stored in the priority queue, which reduces I/O and disk
space usage substantially.

This saving is particularly significant because the
element size in our algorithm is smaller than in eSAIS
for other reasons too. In particular, eSAIS does not
use preinducing and instead carries several preceding
characters with each priority queue element to avoid
random accesses to those preceding characters.

As an additional optimization, we do not store text

102 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

5/
17

 to
 1

28
.2

14
.9

.9
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

positions with the elements but only the preinducing
block numbers. The text position, if needed, is stored
with the precomputed symbol sequence associated with
the block. We also store that position relative to the
beginning of the block, so that the combined space for the
block number and the relative position is about the same
as the space for the global position. This optimization is
particularly effective when inducing C−∗ from

.
C−∗, as

we need the exact text positions only for −∗-positions.

4.2 Monotonicity and Min-Comp Operation.
Consider a situation, where we have a monotone pri-
ority queue Q and a simple sorted queue S. At each step
we want extract the smallest element in either of the
two queues, and as a result may insert a new element
into Q that is no smaller than the extracted element.
This is exactly the situation in inducing, for example in
MinusInduce with S = C+∗. This kind of situation can
also arise in other applications including discrete event
simulation and sweep line algorithms. In discrete event
simulation, a sequence of events is processed in order
of time. Some events and their times may be known
in advance and can be stored as a sorted sequence S,
while other events are generated during the simulation
and stored in a priority queue Q. A sweepline algorithm,
such as the classical segment intersection algorithm [3],
processes points in a Euclidean space in order of one
dimension. Again some of the points (the input) are
known in advance while others are generated during the
computation.

Suppose we extract an element x from Q and
compare it to the smallest element y in S. If y < x,
we process y and might then want to insert an element
z ∈ [y..x) into Q, but the monotonicity of Q prevents
this. Instead of extracting x, we might fetch x without
deleting it using a min()-operation. However, a min()-
operation is not a natural operation for monotone
priority queues as the minimum can increase as well as
decrease. An efficient implementation of min() requires
some non-trivial additional data structures, and many
implementations do not support min(). Without a min(),
we could (i) use a non-monotone priority queue, (ii)
keep a prematurely extracted value x in a separate data
structure — possibly a non-monotone priority queue —
or (iii) insert the elements of S into Q at the beginning,
but all options can increase costs.

We propose an alternative operation to min() called
min-comp(k), which returns true if the minimum element
in the priority queue is smaller or equal to k. The
operation min-comp(k) also sets the insertion lower
bound to min{k,m}, where m is the current minimum
value in the priority queue. In our example scenario, we
would call min-comp(y) to determine that y is smaller

than (an unknown) x. Since this sets the insertion lower
bound to y, an insertion of z ≥ y is not a problem.
For a monotone priority queue, min-comp is much more
natural and simpler to implement than min, and does
not require additional data structures. Our radix heap
implementation has min-comp (and no min) and it is
used during inducing.

5 Experimental Results
5.1 Setup. We performed experiments on a machine
equipped with two six-core 1.9GHz Intel Xeon E5-2420
CPUs (capable, via hyper-threading, of running 24
threads) with 15MiB L3 cache and 120GiB of DDR3
RAM. For experiments we limited the RAM in the
system to 4GiB (with the kernel boot flag) and all
algorithms were allowed to use 3.5GiB. The machine
had 6.8TiB of free disk space striped with RAID0 across
four identical local disks achieving a (combined) transfer
rate of about 480MiB/s (read/write). All disks used in
the experiments were formatted to ext4 using default
settings. All programs except eSAIS (which uses the
STXXL library [8] for file I/O) allocate disk space usage
on demand, i.e., no fallocate() optimizations were
performed. The STXXL block size was set in preliminary
experiments to 1MiB. All kernel, disk cache and the I/O
scheduler configuration were otherwise unaltered.

The OS was Linux (Ubuntu 12.04, 64bit) running
kernel 3.13.0. All programs were compiled using g++
version 5.2.1 with -O3 -DNDEBUG -march=native options.
All reported runtimes are wallclock (real) times. The
machine had no other significant CPU tasks running and
for all algorithms except pSAscan only a single thread
of execution was used for computation (we permit a
constant number of extra threads as long as they do
not perform computation, e.g., threads responsible for
scheduling I/O requests are allowed). For pSAscan we
used the full parallelism on the machine (24 threads).

5.2 Data Set. For the experiments we used the
following files, including both artificial data and inputs
from real-world applications (see Table 2 for more
detailed statistics).

• wiki: recent English, German and French
Wikipedia dumps (http://dumps.wikimedia.
org/) in the XML format concatenated, and
truncated to 120GiB. This file represents natural
text.

• kernel: a concatenation of ∼5.3 million source files
from over 150 versions of Linux kernel. This is
an example of highly repetitive file (http://www.
kernel.org/).

103 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

5/
17

 to
 1

28
.2

14
.9

.9
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://dumps.wikimedia.org/
http://dumps.wikimedia.org/
http://www.kernel.org/
http://www.kernel.org/

• dna: a collection of DNA reads (produced by a
sequencing machine) from multiple human genomes
(http://www.1000genomes.org/) filtered of sym-
bols other than {A, C, G, T, N} and newline.

• skyline: an artificial, highly repetitive sequence
of length 2k − 1 generated by the grammar {S →
Tk, Tk → Tk−1kTk−1, T1 → 1} for which exactly
half of all suffixes at each recursion level are −∗-
suffixes. This is the worst case input for induced
suffix sorting algorithms [4].

• words: a large collection of natural language
text (Turkish) parsed into words and converted
into integers (using minimal alphabet) so that all
occurrences of the same word in the original text
are represented with the same integer, distinct from
those assigned to other words; the file is from
the collection of training datasets for the machine
translation competition (http://www.statmt.org/
wmt16/translation-task.html).

Smaller files in experiments are prefixes of full test
files. For skyline, we generated the input separately
for each size. The input symbols are encoded using the
minimal number of bytes, i.e., for all files we use byte
encoding, except for the words file, for which we use 32
bits per symbol. All algorithms encode the output suffix
array using 40-bit integers.

5.3 Algorithms. In our experiments we use the
following algorithms and implementations:

• fSAIS: the new (faster) EM SACA based on
induced sorting principle described in this paper.
This is the main contribution of this paper.2

• eSAIS (v0.5.2):3 the first external-memory imple-
mentation of induced suffix sorting by Bingmann et
al. [4]. The implementation is fully scalable (i.e., it
does not have any serious restriction on the input
size) due to the use of the STXXL library [8] which
handles all fundamental I/O tasks (scanning, sort-
ing) and implements the scalable EM priority queue.
More importantly, however, until now it remained
unchallenged in terms of speed, and thus we use it
as a baseline in our experiments.4

• DSA-IS (v11): an external-memory implementa-
tion of induced suffix sorting described in Nong et

2Available at https://www.cs.helsinki.fi/group/pads/
3We use version 0.5.2 rather than 0.5.4 (latest), because we

found the latest version to get stuck indefinitely on some testfiles.
4Code available at https://panthema.net/2012/1119-eSAIS-

Inducing-Suffix-and-LCP-Arrays-in-External-Memory/

Input n/230 |Σ|
wiki 120.0 213
kernel 192.0 229
dna 192.0 6
skyline 128.0 blog2 nc
words 12.5 97 002 175

Table 2: Statistics of data used in the experiments.

al. [18].5 It uses a technique similar to our preinduc-
ing, but the algorithm and implementation assume
that n = O(M2/B), and thus the algorithm is less
scalable than eSAIS.6

• pSAscan (v0.1.0): a parallel external-memory suf-
fix array construction algorithm described in [13].7
pSAscan is currently the fastest way to compute
the suffix array if n/M (the ratio between text size
and RAM size) is not very large, which is a com-
mon situation in practice. The I/O complexity of
pSAscan is O(sort(n) + n2/(MB logσ n)), i.e., for
sufficiently large value of n/M a SACA with sorting
I/O complexity will always be faster.

5.4 Comparison of Algorithms Based on In-
duced Sorting. In the first experiment, we compare
the scalability of the new algorithm described in this
paper to eSAIS and DSA-IS. For now we restrict our
attention to texts over a byte alphabet. We executed
all three algorithms on increasing length prefixes of all
testfiles and measured the runtime and I/O volume. The
results are given in Figure 2.

Due to the limited scalability of DSA-IS we were only
able to run the algorithm on small inputs (for larger texts
the program terminates abnormally or exits without any
error message). However, in the experiments reported
in [18], DSA-IS is only ever “marginally faster” than
eSAIS, which is also confirmed in our experiments.

Compared to eSAIS, the new algorithm described in
this paper is about two times faster on all types of data.
The difference in runtime is consistent with the I/O
volume. The mean I/O throughput (in MB/s; obtained
by dividing the normalized I/O volume by the normalized
runtime) of eSAIS is between about 80MB/s (wiki) and
120MB/s (skyline). For fSAIS the I/O throughput is

5Available from http://code.google.com/p/ge-nong/
6We note that Liu et at. [16] and a subset of the authors of [18]

describe yet another EM variant based on induced sorting. In the
experiments in [16], the algorithm outperforms eSAIS on a single
testfile by about 35%. The runtime, however, is not consistent with
the I/O volume and on all remaining testfiles used in experiments,
their algorithm is slower than eSAIS by a factor 1.4–2.0.

7Available at https://www.cs.helsinki.fi/group/pads/

104 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

5/
17

 to
 1

28
.2

14
.9

.9
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.1000genomes.org/
http://www.statmt.org/wmt16/translation-task.html
http://www.statmt.org/wmt16/translation-task.html
https://www.cs.helsinki.fi/group/pads/
https://panthema.net/2012/1119-eSAIS-Inducing-Suffix-and-LCP-Arrays-in-External-Memory/
https://panthema.net/2012/1119-eSAIS-Inducing-Suffix-and-LCP-Arrays-in-External-Memory/
http://code.google.com/p/ge-nong/
https://www.cs.helsinki.fi/group/pads/

0 16 32 48 64 80 96 112 128
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

●● ●
●

●
●

T
im

e
 

µ
s

sy
m

bo
l 

● fSAIS eSAIS DSA−IS

0 16 32 48 64 80 96 112 128
0

50
100
150
200
250
300
350
400
450
500

●● ● ● ● ●

I
O

 v
ol

um
e

 
by

te
s

sy
m

bo
l 

w
iki

● fSAIS eSAIS DSA−IS

0 16 32 48 64 80 96 112 128
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

●● ●
● ●

●

T
im

e
 

µ
s

sy
m

bo
l 

● fSAIS eSAIS DSA−IS

0 16 32 48 64 80 96 112 128
0

50
100
150
200
250
300
350
400
450
500

●● ● ● ● ●

I
O

 v
ol

um
e

 
by

te
s

sy
m

bo
l 

kernel

● fSAIS eSAIS DSA−IS

0 16 32 48 64 80 96 112 128
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

●● ●
● ●

●

T
im

e
 

µ
s

sy
m

bo
l 

● fSAIS eSAIS DSA−IS

0 16 32 48 64 80 96 112 128
0

50
100
150
200
250
300
350
400
450
500

●● ● ● ● ●

I
O

 v
ol

um
e

 
by

te
s

sy
m

bo
l 

dna

● fSAIS eSAIS DSA−IS

0 16 32 48 64 80 96 112 128
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

●● ●
●

●
●

T
im

e
 

µ
s

sy
m

bo
l 

Input size n 230

● fSAIS eSAIS DSA−IS

0 16 32 48 64 80 96 112 128
0

50
100
150
200
250
300
350
400
450
500

●● ● ● ● ●

I
O

 v
ol

um
e

 
by

te
s

sy
m

bo
l 

skyline

Input size n 230

● fSAIS eSAIS DSA−IS

Figure 2: Runtime (left; in µs per input symbol) and I/O volume (right; in bytes per input symbol) of the external-memory
suffix array construction algorithm presented in this paper (fSAIS) compared to previously fastest implementation (eSAIS) on
increasing length prefixes of testfiles. In the comparison we also include the DSA-IS algorithm. The existing implementation,
however, managed to process only small prefixes. All algorithms were allowed to use 3.5GiB of RAM for all prefixes.

105 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

5/
17

 to
 1

28
.2

14
.9

.9
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

0 32 64 96 128 160 192
0.0

0.5

1.0

1.5

2.0

2.5

3.0

● ●
●

●

●
●

T
im

e
 

µ
s

sy
m

bo
l 

● fSAIS pSAscan

0 32 64 96 128 160 192
0

25
50
75

100
125
150
175
200
225
250

● ● ● ● ● ●

I
O

 v
ol

um
e

 
by

te
s

sy
m

bo
l 

kernel
● fSAIS pSAscan

0 32 64 96 128 160 192
0.0

0.5

1.0

1.5

2.0

2.5

3.0

●
●

● ●
●

●

T
im

e
 

µ
s

sy
m

bo
l 

● fSAIS pSAscan

0 32 64 96 128 160 192
0

25
50
75

100
125
150
175
200
225
250

● ● ● ● ● ●

I
O

 v
ol

um
e

 
by

te
s

sy
m

bo
l 

dna

● fSAIS pSAscan

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

● ● ●
● ●

T
im

e
 

µ
s

sy
m

bo
l 

Input size n 230

● fSAIS pSAscan

0 2 4 6 8 10 12 14
0

25
50
75

100
125
150
175
200
225
250
275
300

●
●

●
● ●

I
O

 v
ol

um
e

 
by

te
s

sy
m

bo
l 

w
ords

Input size n 230

● fSAIS pSAscan

Figure 3: Comparison of the new sequential algorithm described in this paper (fSAIS) to the currently fastest parallel
external-memory suffix sorting algorithm (pSAscan) on the small-alphabet (top two rows) and large-alphabet (bottom row)
input. Both algorithms use 3.5GiB of RAM. pSAscan uses the full parallelism on experimental platform (24 threads).

between 65MB/s (dna) and 90MB/s (skyline). We note
that this means both algorithms achieve less than 25%
of the maximum I/O throughput of the experimental
platform, indicating they are largely compute-bound
rather than I/O-bound.

5.5 Comparison with pSAscan. In the experimen-
tal comparison in [13] (using the same experimental
platform and setup, e.g., amount of RAM available for
algorithms, as here) the text-to-RAM ratio at which
eSAIS becomes faster than pSAscan is around 75. We

now revise this experiment to determine the crossover
point of fSAIS and pSAscan. It should be kept in mind
that fSAIS is not parallelized, while pSAscan is.

The results are presented in Figure 3. On the dna
testfile (which is the same testfile as used in [13]), the
point where fSAIS overtakes pSAscan is achieved for
prefix of size n = 104× 230, i.e., when the text-to-RAM
ratio is around 30. On the highly repetitive kernel
testfile, where pSAscan is usually faster, the crossover is
achieved for prefix of size n = 136× 230, i.e., when the
text-to-RAM ratio is around 38.

106 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

5/
17

 to
 1

28
.2

14
.9

.9
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

5.6 Large Alphabet. Even if the input string con-
sists of symbols from a small alphabet, the strings created
in recursive calls of the induced suffix-sorting algorithm
usually have millions of different symbols. Thus, the
algorithms based on the inducing principle natively deal
with large alphabets. Unfortunately all implementations
we know of do not provide clean interfaces for large
alphabets.

An alternative method to compute the suffix array
for a string over large alphabet is to split each symbol
into a group of symbols over a smaller alphabet. If the
splitting is done appropriately (so that next symbol in a
group in left-to-right order is created by removing most
significant byte from the original symbol), one can apply
a byte-based suffix sorter, e.g., pSAscan, and then select
the subset of suffixes to obtain the suffix array of the
original string.

The drawback of this approach is that the process of
reducing the alphabet increases the length of the string.
For example, if the symbols of the original string of
length n were encoded using 32-bit integers and we wish
to obtain a string over byte alphabet, the resulting string
has length 4n.

In this experiment, we compare these two ap-
proaches. Namely, we compare the performance of fSAIS
to pSAscan. We ran both algorithms on the increasing
length prefixes of the words testfile using 3.5GiB of
RAM and measured time and I/O volume. fSAIS takes
the input without modifications (each symbol encoded
using 32-bit integer), and pSAscan splits each symbol
into four bytes, computes the suffix array of the modified
string and in the final step only outputs the positions i
such that i mod 4 = 0. We scaled the runtime (and I/O
volume) of pSAscan with respect to the original string.

The results are given in Figure 3. The point at
which fSAIS overtakes pSAscan is significantly smaller
than for inputs over byte-alphabet. In particular, fSAIS
is the more efficient algorithm already for n = 7.5× 230,
which means a text-to-RAM ratio of about 8.5.

5.7 Disk Space Usage. Lastly, we have a look at
the disk space usage of all algorithms. We measured
the peak disk space usage (including input text and the
output suffix array) on the 32GiB prefixes of all testfiles
over byte alphabet. The text-to-RAM ratio for such
prefix is around 10 hence it is representative for real
world usage. All algorithms were allowed to use 3.5GiB
of RAM. The results are given in Table 3.

The peak disk usage of fSAIS is over three times
smaller than for eSAIS and over four times smaller than
DSA-IS. It is also very close to pSAscan, and since the
space for input and output is n (text) + 5n (suffix array
encoded using 40-bit integers) = 6n bytes, the disk usage

Algorithm wiki kernel dna skyline
fSAIS 7.7n 7.7n 7.7n 8.1n
eSAIS 23.6n 23.5n 23.4n 28.0n
DSA-IS 34.5n 34.2n 32.8n 40.1n
pSAscan 7.5n 7.5n 7.5n 7.5n

Table 3: Peak disk space usage (in bytes) for all algorithms
on the 32GiB prefixes of byte-alphabet testfiles. The numbers
include the input text and the output suffix array. All values
are reported by our own measurements (the disk usage of
DSA-IS in our measurements was much higher than reported
in [18]). For DSA-IS we report the disk usage for largest
prefix we were able to process (see Figure 2).

of fSAIS is close to optimal. The results on the skyline
input for the algorithms based on inducing principle show
the extremal disk allocation, as skyline is the worst-case
input for such algorithms.

The small disk usage of fSAIS is largely due
to the reduced size of priority queue elements as
described in §4.1. Furthermore, whenever possible,
the algorithm stores the temporary data using multiple
files. In many stages of the computation the output is
produced gradually, allowing to simultaneously delete
the temporary input files. By carefully choosing the
size of a single file, the algorithm suffers only negligible
slowdown but has a significantly smaller disk usage. A
similar technique is also used in pSAscan. It could in
principle be used to reduce the disk space usage of other
algorithms but for example in the case of eSAIS this
is not as straightforward, as it uses the STXXL library
which preallocates all the necessary disk space at the
beginning of execution.

Finally, we also measured the peak disk usage
for larger prefixes of testfiles. We do not give a full
report here, but point out that the above results are
representative, i.e., the peak disk usage for larger prefixes
does not increase significantly. For example, the peak
disk usage of fSAIS on 128GiB prefix of skyline is 8.2n
bytes. The peak disk usage of pSAscan on 192GiB
prefixes also increases only up to 8.2n bytes. The peak
disk usage of eSAIS essentially does not change for larger
prefixes.

6 Concluding Remarks
We have described a highly scalable external memory im-
plementation of induced suffix sorting that is about two
times faster than previous approaches, and simultane-
ously has close to optimal disk space usage. A promising
direction to further speed up the algorithm is parallelism,
since our experiments suggests that it is more compute-
bound than I/O-bound. Inducing is rather sequential
by nature and may be difficult to parallelize, but Labeit

107 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

5/
17

 to
 1

28
.2

14
.9

.9
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

et al. [15] have shown that some speed up is possible.
Furthermore, there are easy possibilities for parallelism
such as preinducing multiple blocks simultaneously.

Acknowledgements
We thank Matthias Petri for providing us with a large
alphabet data set at short notice.

References

[1] Ravindra K. Ahuja, Kurt Mehlhorn, James B. Orlin,
and Robert E. Tarjan. Faster algorithms for the shortest
path problem. Journal of the ACM, 37(2):213–223,
1990.

[2] Lars Arge. The buffer tree: A technique for designing
batched external data structures. Algorithmica, 37(1):1–
24, 2003.

[3] Jon L. Bentley and Thomas Ottmann. Algorithms for
reporting and counting geometric intersections. IEEE
Transactions on Computers, 28(9):643–647, 1979.

[4] Timo Bingmann, Johannes Fischer, and Vitaly Osipov.
Inducing suffix and LCP arrays in external memory.
In Proc. 15th Meeting on Algorithm Engineering and
Experiments (ALENEX), pages 103–112. SIAM, 2013.

[5] Klaus Brengel, Andreas Crauser, Paolo Ferragina, and
Ulrich Meyer. An experimental study of priority queues
in external memory. ACM Journal of Experimental
Algorithmics, 5:Article 17, 2000.

[6] Andreas Crauser and Paolo Ferragina. A theoretical
and experimental study on the construction of suffix
arrays in external memory. Algorithmica, 32(1):1–35,
2002.

[7] Roman Dementiev, Juha Kärkkäinen, Jens Mehnert,
and Peter Sanders. Better external memory suffix
array construction. ACM Journal of Experimental
Algorithmics, 12:Article 3.4, 2008.

[8] Roman Dementiev, Lutz Kettner, and Peter Sanders.
STXXL: standard template library for XXL data sets.
Software: Practice and Experience, 38(6):589–637, 2008.

[9] Paolo Ferragina, Travis Gagie, and Giovanni Manzini.
Lightweight data indexing and compression in external
memory. Algorithmica, 63(3):707–730, 2012.

[10] Simon Gog and Matthias Petri. Compact indexes for
flexible top-k retrieval. In Proc. 26th Symposium on
Combinatorial Pattern Matching (CPM), LNCS 9133,
pages 207–218. Springer, 2015.

[11] Hideo Itoh and Hozumi Tanaka. An efficient method
for in memory construction of suffix arrays. In Proc.
6th Symposium on String Processing and Information
Retrieval (SPIRE), pages 81–88. IEEE, 1999.

[12] Juha Kärkkäinen and Dominik Kempa. Engineering a
lightweight external memory suffix array construction
algorithm. In Proc. 2nd International Conference on
Algorithms for Big Data (ICABD), pages 53–60. CEUR,
2014.

[13] Juha Kärkkäinen, Dominik Kempa, and Simon J.
Puglisi. Parallel external memory suffix sorting. In

Proc. 26th Symposium on Combinatorial Pattern Match-
ing (CPM), LNCS 9133, pages 329–342. Springer, 2015.

[14] Pang Ko and Srinivas Aluru. Space efficient linear
time construction of suffix arrays. Journal of Discrete
Algorithms, 3(2–4):143–156, 2005.

[15] Julian Labeit, Julian Shun, and Guy E. Blelloch.
Parallel lightweight wavelet tree, suffix array and
FM-index construction. In Proc. Data Compression
Conference (DCC), pages 33–42. IEEE, 2016.

[16] Weijun Liu, Ge Nong, Wai Hong Chan, and Yi Wu.
Induced sorting suffixes in external memory with better
design and less space. In Proc. 22nd Symposium on
String Processing and Information Retrieval (SPIRE),
LNCS 9309, pages 83–94. Springer, 2015.

[17] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial,
and Alexandru I. Tomescu. Genome-Scale Algorithm
Design: Biological Sequence Analysis in the Era of High-
Throughput Sequencing. Cambridge University Press,
2015.

[18] Ge Nong, Wai Hong Chan, Sheng Qing Hu, and Yi Wu.
Induced sorting suffixes in external memory. ACM
Transactions on Information Systems, 33(3):12:1–12:15,
2015.

[19] Ge Nong, Sen Zhang, and Wai Hong Chan. Two efficient
algorithms for linear time suffix array construction.
IEEE Transactions on Computers, 60(10):1471–1484,
2011.

[20] Simon J. Puglisi, William F. Smyth, and Andrew
Turpin. A taxonomy of suffix array construction
algorithms. ACM Computing Surveys, 39(2):Article
4, 2007.

[21] Ehsan Shareghi, Matthias Petri, Gholamreza Haffari,
and Trevor Cohn. Compact, efficient and unlimited
capacity: Language modeling with compressed suffix
trees. In Proc. Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 2409–
2418. The Association for Computational Linguistics,
2015.

108 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

01
/0

5/
17

 to
 1

28
.2

14
.9

.9
8.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

	Introduction
	Results.

	Induced Suffix Sorting
	Basic Definitions.
	Categories of Positions.
	Sorting Positions.
	Inducing.
	Recursion.
	Full Algorithm.

	Induced Suffix Sorting in External Memory
	Large Alphabet.
	Blockwise Preinducing.

	Radix Heap
	Stability and PQ Element Size.
	Monotonicity and Min-Comp Operation.

	Experimental Results
	Setup.
	Data Set.
	Algorithms.
	Comparison of Algorithms Based on Induced Sorting.
	Comparison with pSAscan.
	Large Alphabet.
	Disk Space Usage.

	Concluding Remarks

