
Lempel-Ziv Factorization: Simple, Fast, Practical∗

Dominik Kempa† Simon J. Puglisi†

Abstract

For decades the Lempel-Ziv (LZ77) factorization has
been a cornerstone of data compression and string pro-
cessing algorithms, and uses for it are still being un-
covered. For example, LZ77 is central to several re-
cent text indexing data structures designed to search
highly repetitive collections. However, in many applica-
tions computation of the factorization remains a bottle-
neck in practice. In this paper we describe simple and
fast algorithms for computing the LZ77 factorization.
These new methods consistently outperform all previ-
ous approaches in practice, use less memory, and still
offer strong worstcase performance guarantees. A com-
mon feature of the new algorithms is their avoidance of
the longest-common-prefix array, essential to nearly all
prior art.

1 Introduction

For more than three decades the Lempel-Ziv (LZ77) fac-
torization [33] has been a fundamental tool for com-
pressing data. While many aspects of LZ77 have been
heavily studied in that time, efficient computation of the
factorization remains a bottleneck in many applications.

A recent focus in the field of compressed full-
text indexing [27, 28] has been on indexing highly
repetitive collections. Several types of large, modern
data contain high amounts of duplication of relatively
long substrings, which indexes based on LZ77 exploit
particularly well [24, 13, 12]. Such data includes the
new and rapidly growing genomic collections produced
by high-throughput sequencing technology [9, 14, 25];
versioned collections of source code and multi-author
documents, such as Wikipedia [32]; and web crawls [10].
Efficient index construction is stated as an open problem
in both [24] and [13].

In a more traditional setting, compression of files
using the 7zip tool [31], which is based on LZ77, has
grown popular recently and is now bundled with most
Linux distributions. 7zip is also effective for storing
collections of files that later require fast random access,

∗Supported in part by Academy of Finland grant 118653

(ALGODAN).
†Helsinki Institute for Information Technology (HIIT), Depart-

ment of Computer Science, University of Helsinki.

as is the case in information retrieval systems [10, 16].
7zip, is capable of superior compression to gzip (which
is also LZ77-based) on large files because it factorizes
large blocks. However our own measurements (see also
those by Kreft and Navarro [23]) indicate that 7zip
has high memory overheads during factorization, with
a memory peak of around 11n bytes, for a block of n
bytes. More efficient factorization algorithms that allow
bigger blocks to be processed and in less time, are thus
of immediate practical benefit to systems and users.

Aside from compression and indexing, LZ77 factor-
ization finds multifarious uses as an algorithmic tool for
string processing, in particular for efficient detection of
periodicities in strings [2, 8, 15, 20, 21, 22]. Periodicities
in turn have diverse applications throughout computer
science, in the fields of bioinformatics, data mining, and
extremal combinatorics.

Our contribution. With the above applications
in mind, in this paper we describe several efficient
methods for computing the LZ77 factorization. Our aim
was to develop fast, practical algorithms that operate in
a memory range common with previous algorithms for
the problem: about 6n to 13n bytes, for an input string
of n symbols.

A common feature of our algorithms is their work
is always related (though in different ways) to the num-
ber of factors in the resulting LZ77 factorization. This
makes them particularly effective on highly repetitive
inputs which have small factorizations, though we con-
sistently outperform prior methods on all types of input,
repetitive or not.

Two highlights are: an algorithm that uses 6n
bytes of memory, and is 5-10 times faster than the
previous fastest algorithm at that memory level; and
an algorithm using 9n bytes which is faster than all
other algorithms in the literature (usually by a factor of
almost two). Finally, while our focus is on algorithms
that are efficient in practice, the new algorithms also
come with solid asymptotic guarantees on performance.

Previous work. A recent survey [1] outlines the
many (mostly recent) algorithms for LZ77 factorization,
nearly all of which make use of the suffix array (SA)
and longest-common-prefix (LCP) array as intermediate
data structures [26, 19]. The LZ77 factorization parses
a string of length n into z ≤ n longest previous factors

103 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

6/
16

 to
 8

4.
24

9.
19

0.
22

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

(we give a precise definition shortly). Almost all of the
algorithms in the survey, and the ones since in [29], first
compute the longest previous factor (LPF) for every
position in the string, and then in a final step select just
those involved in the LZ77 factorization. In many such
algorithms, computing the “extra” LPF values seems
unavoidable: the starting position of the jth factor
depends on the sum of the lengths of the j − 1 factors
prior to it, and so we cannot tell ahead of time which
positions will be involved in the factorization.

Both [1] and [29] contain experimental evaluations
of the various factorization algorithms described to date.
We used the results from those papers to guide our
experiments, in particular to select the best algorithms
for comparison. Along the way we also noticed some
anomalies in the performance of some algorithms, and
we discuss this further in Section 5.

2 Preliminaries

Strings. Throughout we consider a string X =
X[0..n] = X[0]X[1] . . .X[n] of |X| = n + 1 symbols. The
first n symbols of X are drawn from a constant ordered
alphabet, of size σ, and comprise the actual input. The
final symbol X[n] is a special “end of string” symbol, $,
distinct from and lexicographically smaller than all the
other characters in X.

In order to account for the practical memory usage
of our algorithms we assume σ ∈ 0..255 (corresponding
to, say, an ASCII alphabet) and n < 232; thus each
symbol requires 1 byte of storage and the length of X
and any pointers into it require 4 bytes each.

For i = 0, . . . , n we write X[i..n] to denote the suffix
of X of length n − i + 1, that is X[i..n] = X[i]X[i +
1] . . .X[n]. We will often refer to suffix X[i..n] simply as
“suffix i”. Similarly, we write X[0..i] to denote the prefix
of X of length i + 1. We write X[i..j] to represent the
substring X[i]X[i+ 1] . . .X[j] of X that starts at position
i and ends at position j.

Suffix Arrays. We make use of several standard
data structures built from X. The first of these is the
suffix array SA which is an array SA[0..n] containing a
permutation of the integers 0..n such that X[SA[0]..n] <
X[SA[1]..n] < · · · < X[SA[n]..n]. In other words,
SA[j] = i iff X[i..n] is the jth suffix of X in ascending
lexicographical order. The inverse suffix array ISA is
the inverse permutation of SA, that is ISA[i] = j iff
SA[j] = i. Conceptually, ISA[i] tells us the position of
suffix i in SA.

The Burrows-Wheeler Transform, denoted BWT is
a string BWT[0..n] is a permutation of X defined by SA,
such that BWT[i] = X[SA[i]−1], except when SA[i] = 0,
in which case BWT[i] = $. None of our algorithms
explicitly build the BWT, but it is used implicitly in

some places. We also make use of LF, the so-called
last-to-first mapping. LF is usually defined in terms of
BWT, but it will be convenient for us to define it the
following way: LF[i] = j iff SA[j] = SA[i] − 1, except
when SA[i] = 0, in which case LF[i] = ISA[n].

Finally, let lcp(i, j) denote the length of the longest-
common-prefix of suffix i and suffix j. For example, in
the string X = zzzzzapzap, lcp(1, 4) = 1 = |z|, and
lcp(4, 7) = 3 = |zap|.

LZ77. The LZ77 factorization uses the concept of
a longest previous factor (LPF). The LPF at position
i in string X is a pair (pi, `i) such that, pi < i,
X[pi..pi+`i−1] = X[i..i+`i−1] and X[pi+`i] 6= X[i+`i].
In other words, X[i..i + `i − 1] is the longest prefix of
X[i..n] which also occurs at some position pi < i in X.
Note that if X[i] is the leftmost occurrence of a symbol
in X then pi does not exist. In this case we adopt the
convention that pi = X[i] and `i = 0. Note also that
there may be more than one potential pi, and we do not
care which one is used.

The LZ77 factorization (or LZ77 parsing) of a string
X is then just a greedy, left-to-right parsing of X into
longest previous factors. More precisely, if the jth LZ
factor (or phrase) in the parsing is to start at position i,
then we output (pi, `i) (to represent the jth phrase), and
then the (j+1)th phrase starts at position i+ `i, unless
`i = 0, in which case the next phrase starts at position
i+1. We call a factor (pi, `i) normal if it satisfies li > 0
and special otherwise.

The above description of LZ77 allows pi+`i > i and
so X[i..i+ `i − 1] and X[pi..pi + `i − 1] can overlap each
other. This definition of LZ77 is sometimes called self-
referential. The LZ77 parsing algorithms we describe
can be adapted to produce non-self-referential parsing,
or more exotic forms (e.g. [23, 24]), though we will
assume the self-referential style throughout.

For the example string X = zzzzzapzap, the LZ77
factorization produces the pairs:

(z, 0), (0, 4), (a, 0), (p, 0), (4, 3).

3 Speeding up a lightweight LZ77 algorithm

Our first contribution is a series of optimizations to
a factorization algorithm due to Chen et al., called
CPS2 [5]. The original algorithm has two interesting
properties: firstly, it is unique among LZ77 factorization
algorithms in that it avoids computation of the LCP
array. For this reason it is one of the most space-
efficient algorithms known, even considering algorithms
that use compressed data structures [30, 29]. Secondly,
it produces LZ77 in order, one factor at a time, avoiding
computing longest previous factors for all n positions in
the input first.

104 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

6/
16

 to
 8

4.
24

9.
19

0.
22

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

plain I1 I2 I2
R8

I2
R10

I2
R12

I2
R14

I2
R16

kernel

0
20

40
60

80
10

0
12

0

Parsing
RMQ
Intervals

plain I1 I2 I2
R8

I2
R10

I2
R12

I2
R14

I2
R16

english

0
20

0
40

0
60

0
80

0
10

00
12

00

Parsing
RMQ
Intervals

Figure 1: Improvements to runtime for various optimizations to the CPS2 LZ77 factorization algorithm. We use typical
repetitive (kernel) and non-repetitive (english) files (details in Section 5). Times are seconds per gigabyte. Ix is the fast
interval computation optimization using x levels of lookup tables. Ry is the small ranges scanning trick with t = 2y.

CPS2 makes use of SA, which it preprocesses for fast
range minimum queries (RMQs) [11]. A range minimum
query rmq(i, j) returns the position of the minimum
value in SA[i..j]. Practical implementations of data
structures supporting fast rmq are now well established.

To compute the factor starting at position i, CPS2
works in `i rounds. In round 0 it computes the
range of the suffix array SA[s0..e0] containing all the
suffixes having X[i] as a prefix. In a generic round
j CPS2 maintains the invariant that its active range,
SA[sj ..ej], contains all the suffixes prefixed with X[i..i+
j]. However, it also enforces, via rmq(sj , ej), that at
least one suffix in SA[sj ..ej] begins at some position
p < i. Of course p is potentially an LPF for position i,
and as soon as the active range does not hold a suffix
less than i, the LZ77 factor for i is known.

CPS2 moves from one round to the next, and
from range SA[sj ..ej] to range SA[sj+1..ej+1], by binary
searching to find the extents sj+1 and ej+1, considering
the (j + 1)th symbols of the suffixes in SA[sj ..ej]. This
is correct because of the lexicographic ordering of the
SA. In effect the suffix X[i..n] is being searched for one
symbol at a time in SA.

3.1 Fast interval table computation An impor-
tant optimization to CPS2 which is not described in [5]
but that appears in the source code of the algorithm’s
implementation is the computation of a lookup table
storing the extents of the interval for each symbol in

the suffix array, and the minimum value in that inter-
val. More precisely, for each distinct symbol c in X the
table stores a triple (sc, ec,mc), such that all suffixes
prefixed with c lie in SA[sc..ec], and mc is the minimum
value in SA[sc..ec].

Assuming the alphabet is a small constant (the
usual 256 symbols say) this table is small and can
be accessed in constant time. For each factor looking
up the interval in the table allows the first round of
the successive binary search process to be bypassed,
avoiding some cache misses, and leading to a consistent
improvement in overall factorization times.

Because we are interested in total factorization
time, the time to initialize the lookup table matters.
In the above mentioned CPS2 code, sc and ec are
computed by scanning SA left-to-right and observing
where X[SA[i]] 6= X[SA[i− 1]] — as it is at these points
where one interval ends and another starts. However,
because of the unpredictable order of the values in SA,
computing intervals this way causes roughly one cache
miss each time we access the X to examine a symbol.

This leads us to our first optimization. Instead of
scanning SA and repeatedly accessing X in SA order, we
instead scan X, in a cache-friendly left-to-right manner.
During the scan we increment a counter for each symbol,
and later prefix sum these counters to obtain the correct
(sc, ec) intervals of the SA for each symbol. During the
scan of X we can also trivially compute the minimum
in each interval: mc is simply the position of the first

105 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

6/
16

 to
 8

4.
24

9.
19

0.
22

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

occurrence of c in X.
A further optimization is to compute two levels of

lookup tables: one for single symbols and one for symbol
pairs, of which there are at most 216 entries. This allows
us to skip two rounds of binary search instead of one,
and because the bigram table is still small enough to fit
in cache, it does not greatly increase initialization time
(the time spent scanning X to build the lookup tables).
For big files the increase in memory consumption from
the extra table is negligible.

3.2 Scanning small ranges A further improvement
to CPS2 makes use of the following easily proved lemma,
due to Crochemore and Ilie [6] (and later restated by
Ohlebusch and Gog [29]).

Lemma 1. Let i be the starting position of a normal
LZ77 factor and let i< (resp. i>) be the first value
smaller than i to the left (resp. right) of i in the SA.
If lcp(i<, i) > lcp(i>, i), then (pi, `i) = (i<, lcp(i<, i)),
otherwise, (pi, `i) = (i>, lcp(i>, i)).

During the binary search phase of CPS2, when the
size of the range drops below a predefined threshold t,
we stop using binary search further and instead scan the
range in O(t) time to find i< and i>. We then compute
lcp(i<, i) and lcp(i>, i), and depending on which is
greater, output i< or i> as the LZ77 factor starting
at i.

Setting t = O(log n) preserves the O(n log n) overall
runtime of CPS2, but the scanning scheme only requires
three cache misses and so should be faster than further
binary searching, which even on small ranges can still
attract two or more cache misses per round when
accessing X to narrow the current range. In practice
we found t = 4096 to give the best performance.

Our optimizations to CPS2 are summarized in
Figure 1, which shows the incremental improvement
to runtime achieved by cache-sensitive single-symbol
interval computation, two-symbol intervals, and finally
scanning of small ranges. The right of the figure
shows times for several different settings of t. By far
the biggest boost comes from the improved interval
computation, but the other tricks consistently improve
performance.

4 Factorization and the Inverse Suffix Array

Our last improvement to CPS2 used Lemma 1 as a way
to abandon further binary search steps in favour of fast
short sequential scans of SA and the text. The family of
algorithms in this section exploit Lemma 1 in a different
way: they use the inverse suffix array ISA to first locate
i in SA at position ISA[i], and then search out in SA in
either direction from that position, to locate i< and i>.

Algorithm LZ9

1: i← 0
2: while i < n do
3: scan SA[ISA[i]..n] to find i>
4: scan SA[0..ISA[i]] to find i<
5: if lcp(i<, i) > lcp(i>, i) then
6: (pi, `i)← (i<, lcp(i<, i))
7: else
8: (pi, `i)← (i>, lcp(i>, i))
9: output factor (pi, `i)
10: i← i+ `i

Figure 2: The LZ9 algorithm, which uses SA, ISA, and X to
compute the LZ factorization. For ease of presentation we
assume both i< and i> exist for each factor. This will not
always be the case (when, say, X[i] is the leftmost occurrence
of a symbol in X) but such cases are easily handled.

The simplest implementation of this scheme is to
store ISA explicitly, using 4n bytes, and to sequentially
scan SA to find i< and i>. We call this algorithm
LZ9 — it uses 9n bytes in total for SA, ISA, and X.
Pseudocode is given in Figure 2. To compute the LZ77
factor starting at position i, we use ISA to locate i in
SA in constant time. We then scan left and right in SA
to find i< and i>. The sum of the lengths of the scans
is clearly at most n, the size of SA. Over all z factors
the runtime is thus O(nz) in the worst case.

We had initially hoped that a tighter analysis of
LZ9 would lead to a faster worstcase bound, but the
following string illustrates that things can indeed get
quite bad for the algorithm. Let Nv be the log n-bit
binary code of the number v ∈ [0..n). For example, if
log n = 2, N0 = 00, N1 = 01, N2 = 10, and N3 = 11.
Now, let u = log n+1 and consider the following binary
string:

Y = 0u1N010u1N11 . . . 0u1Nj1 . . . 0
u1Nn1.

The initial segment of the SA of Y contains suffixes
prefixed with 0u. There are O(n/ log n) of these suffixes,
and they occur in increasing order in SA, that is, the seg-
ment of SA in which they lie looks like: 0, k, 2k, 3k, . . .
where k = 2 log n+ 3.

Now consider the operation of LZ9n when factoriz-
ing Y. When a factor starts at a position i = 0(mod k)
then the algorithm will scan SA left and right from posi-
tion ISA[i]. Because the elements in this segment of SA
are increasing, the scan left for i< will stop immediately,
however the scan right from i> will go (at least) to the
right end of the segment, and so will require O(n/ log n)
time. If we have to do this for every j = 0(mod k), over-
all runtime will be O((n/ log n)2).

106 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

6/
16

 to
 8

4.
24

9.
19

0.
22

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Although this analysis is not rigorous, it does
suggest a bad case exists, and prompted us to generate
a 90 megabyte instance of string Y. CPS2 factorized
the file in 86 seconds, while LZ9 laboured away for 4
minutes and 23 seconds.

4.1 Adding asymptotic guarantees The dismal
performance of LZ9 on string Y is a result of the
algorithm sequentially scanning SA from ISA[i] to find
i< and i>. This scanning can be avoided if we first
preprocess SA and build and data structure to answer
next-smaller-value (NSV) and and previous-smaller-
value (PSV) queries. We found the NSV/PSV data
structure of Cánovas and Navarro [4] was perfect for
our needs, being space efficient, fast to answer queries,
and fast to initialize. Without getting into too many
details, the data structure offers a space-time tradeoff,
namely: it requires 4n/b̂ bytes and answers queries in

O(b̂+ log(n/b̂)) time.
We call this version of LZ9 with an auxiliary

NSV/PSV data structure ISA9. Setting b̂ = O(log n)
ensures ISA9 runs in O(n+z log n) time overall. In prac-

tice we found a higher value of b̂ led to faster runtimes,
and allowed us to reduce space overheads to a negligi-
ble level. When using the NSV/PSV data structure to
find i< and i> the runtime for ISA9 on string Y above is
reduced to a very respectable 4.9 seconds. For brevity
from this points onwards we assume b̂ = O(log n).

4.2 Reducing space requirements We now show
how to reduce the space requirements of ISA9 by a more
careful representation of ISA, which does not adversely
effect runtime. A well known property of suffix arrays,
and the Burrows-Wheeler transform, is ISA[i − 1] =
LF[ISA[i]]. This property is the essence of the BWT
inversion algorithm [3, 18] and the FM-index [28]. With
this property in mind, our approach is to sparsify ISA
and store only every kth value in it. These sample
values are stored in an array of n/k values and can still
be accessed in constant time. Any non-sample value
i 6= 0(mod k) can be recovered when needed by looking
up the first sample larger than i, j = ISA[(i/k) + 1],
and then following the LF mapping k − i mod k times
starting from LF[j].

The problem is now to represent LF compactly.
Below we describe two approaches we found to be
effective in practice. The first one implements LF with
rank queries on the BWT. The second uses a sparse
representation of LF and exploits the presence of SA.

rle-LF. LF can be implemented by answering rank
queries on the BWT of the input string (see, e.g. [18]).
In particular, LF[i] = C[BWT[i]] + rank(i), where C[c]
is the total number of symbols less than symbol c in

the whole of X, and rank(i) tells us the number of
occurrences of symbol BWT[i] before position i in BWT.
Data structures for supporting rank are well studied,
and we implemented and tested many of them. As with
the NSV/PSV data structure, we require a solution that
answers queries quickly, but is also fast to initialize and
memory efficient. We found the following approach to
be best for highly repetitive inputs.

A high degree of repetition in X is manifest as runs
of equal letters in the BWT of X. Let r be the number of
runs in BWT. For each run we store its starting position
in BWT, say j, and the number of occurrences of BWT[j]
before position j in BWT. To answer rank(i) we binary
search over the starting positions of the runs, to locate
the starting position of the run which i falls in, say j.
The answer to rank(i) is then rank(j), which is stored
earlier with j, plus j − i, the number of occurrences of
BWT[i] between i and j. This solution requires 8r bytes
and answers rank(i) in O(log r) time, and so factorizes
in O(n+ zk log r + z log n) time overall.

sparse-LF. Our second approach to computing LF
makes no assumption about the repetitiveness of the
input, and exploits the presence of SA. This is different
from the usual contexts in which LF is computed:
in inversion and indexing only the BWT is available.
For each symbol c we store the position of every bth
occurrence of c in BWT, storing n/b integers in total
over all symbols. When we want to compute LF[i] we
first inspect c = BWT[i] = X[SA[i] − 1] (note: we
do not store BWT explicitly), and then binary search
symbol c’s list to find the largest position in the list
less than i, say j. We call j an approximate rank value
— it allows us to estimate LF[i], and points us to a
place in SA which must be within b positions of the
position we seek (i.e. the true LF[i] value). Finally
we scan SA to the right of the approximate value of
LF[i] until we find the suffix with value SA[i] − 1. The
position of this value is ISA[SA[i] − 1] — which is our
goal. This approach avoids scanning BWT (which we
would like to avoid computing on-the-fly because of
cache misses). At query time, scanning of SA is fast, and
causes no extra cache misses. We found this approach
was almost as fast as rle-LF for repetitive data, but its
space requirements are stable and tunable on all types
of data. It uses 4n/b bytes on top of SA and X, and
factorizes in O(n + zkb + zk log(n/b) + z log n) time.
Setting b = O(log n) yields O(n + zk log n) complexity.
In practice we set k = O(1) and so expect the running
time O(n+ z log n).

We refer to the algorithm using rle-LF for rank
queries as ISA6r, and the algorithm that uses sparse-
LF instead as ISAs. Figure 3 gives an overview of the
performance of these algorithms relative to ISA9 on the

107 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

6/
16

 to
 8

4.
24

9.
19

0.
22

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

same files as used in Figure 1. For the ISAs algorithm
we sampled ISA array at different rates to illustrate the
space-time tradeoff. A version of ISAs with sampling
rate set so that memory usage stays below 6n bytes in
total is used in our experiments in Section 5 and is called
ISA6s.

While on the non-repetitive file (english) the space-
time curve smoothly drops down as the available mem-
ory increases, the time for kernel file actually increases
around 6n when the algorithm is sampling ISA at a
higher rate. This is because highly repetitive files do
not benefit from having the full ISA available — the
majority of parsing time is spent in NSV/PSV calcula-
tions and symbols comparisons. Sampling the ISA at a
higher rate increases preprocessing time, but this is not
repaid in the parsing phase.

5 Experiments

For testing we used the files listed in Table 1. All
tests were conducted on a 3.30GHz Intel Xeon CPU
with 8GB main memory and 8192K L2 Cache. Only a
single thread of execution was used in all experiments.
The machine had no other significant CPU tasks run-
ning. The OS was Linux (Ubuntu 12.04, 64bit) run-
ning kernel 3.2.0. The compiler was g++ (gcc version
4.6.3) executed with the -O3 -static -DNDEBUG op-
tions. The times given are the minima of three runs
and were recorded with the standard C clock function.
All data structures reside in main memory during com-
putation.

To compute the suffix array we use Yuta
Mori’s divsufsort algorithm and implementation
(http://code.google.com/p/libdivsufsort/). In
the algorithms that require the LCP array we compute
it using our own implementation of the Φ algorithm [17],
which is the fastest LCP array construction algorithm
we know of. Φ has a memory peak of 13n bytes, which
did not increase the peak memory for any algorithm
that used it.

Experiments measured the time to compute the
LZ factorization. Some algorithms, such as all those
introduced in this paper, compute it directly, and
others, as we noted earlier, must first compute all
the LPF values. In the latter case we only include
the time to compute the LPF values, as some of
the implementations produce only the ` component
of each LPF value, which is insufficient for full LZ
factorization. Note that this slightly disadvantages our
new algorithms.

The algorithms and their memory requirements are
listed in Table 2. The experiments are summarized
in Table 3 (runtimes) and Table 4 (memory usage).
Implementations of our algorithms are available at

http://www.cs.helsinki.fi/en/gsa/lz77. We have
found the values b̂ = 4096 and b = 64 to be a good
compromise between space and time and use them in
our experiments.

The proposed CPS2 optimizations significantly im-
prove the runtime. A particularly big change for repeti-
tive files can be attributed to fast interval computation.
The parsing phase of CPS2 strongly benefits from long
phrases (binary searching in a small range) hence the
factorization of files with small z is very fast. It is there-
fore beneficial for total runtime if the preceding phase
(computation of intervals) takes little time as well.

Our new ISA9 algorithm is consistently faster than
all previous algorithms, and simultaneously use 4n bytes
less space. The improvement in all cases is at least 28%
(42% on average). For non-repetitive files the difference
is even bigger (at least 40%). Interestingly ISA9 is
always faster than LCP computation, for which we used
the best available solution.

We also note a minor inconsistency with [29]: in
our experiments algorithm OG is slower than algorithms
based on LPF array for some files (in [29] it is always
faster). This is because in [29] a slower LCP con-
struction algorithm ([19]) was used (see the comparison
in [17]) and the time to compute LCP dominates the
total runtime of LPF-based algorithms.

Our ISA6s algorithm which uses ISA sampling is
very competitive with ISA9 on repetitive files despite
low memory usage. The explanation of this phenomena
can be found in section 4.2. A very reasonable slowdown
compared to ISA9 on non-repetitive files demonstrates
the effectiveness of sparse-LF representation.

Lastly, note that although using the rle-LF repre-
sentation (in place of sparse-LF) restricts the applica-
bility of ISA6r to repetitive files, it allows the algorithm
to outperform ISA6s and sometimes even beat ISA9.

6 Conclusions and Future Work

In this paper we have shown that in practice the
fastest way to compute the LZ77 factorization seems
to be to compute the factors in an online manner
(after SA construction), one after the other, rather than
computing all LPF values and then selecting only those
involved in the parsing. Computation of the LCP array
also seems unnecessary: all our algorithms use the SA
with alternative supporting data structures, which are
smaller and faster to initialize than the LCP array.

All LZ77 factorization algorithms to date, including
the ones in this paper, make use of the suffix array,
and so require memory at least sufficient to store n
integers. An important open problem, especially for
text indexes based on LZ77, is to develop scalable
factorization algorithms that completely avoid suffix

108 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

6/
16

 to
 8

4.
24

9.
19

0.
22

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

●

●

●
●

●

●

●

5 6 7 8 9

0
10

20
30

40
50

Memory (bytes/char)

T
im

e
(s

ec
on

ds
/g

ig
ab

yt
e)

kernel

● ISA6s
ISA6r
ISA9

●
●

●

●

●

●

●

●

5 6 7 8 9
0

50
10

0
15

0
20

0
25

0
30

0
35

0

Memory (bytes/char)

T
im

e
(s

ec
on

ds
/g

ig
ab

yt
e)

english

● ISA6s
ISA9

Figure 3: Space-time tradeoff for the family of ISA-based LZ77 factorization algorithms.

Name σ n/220 n/r n/z Source Description

dna 16 200 1.63 15.01 S Human genome
proteins 25 200 1.93 8.54 S Swissprot database
english 225 200 2.91 15.01 S Gutenberg Project
sources 230 200 4.40 18.30 S Linux and GCC sources
dblp.xml 96 200 7.09 29.88 S DBLP bibliography

cere 5 350 33 226 R/R 36 × yeast genome
coreutils 236 195 44 141 R/R 9 × GNU Coreutils source
world leaders 89 44 82 267 R/R 84 × CIA World Leaders
kernel 160 246 93 324 R/R 36 × Linux Kernel sources
einstein.en 139 350 1461 4682 R/R Wikipedia

english.001.2 106 100 73 312 R/PR 100 × 1MB english
proteins.001.1 21 100 82 295 R/PR 100 × 1MB protein
dblp.xml.00001.1 89 100 608 1760 R/PR 100 × 1MB dblp.xml

rs.13 2 206 2889K 4168K R/A Run-Rich String Sequence
tm29 2 256 3314K 4793K R/A Thue-Morse sequence

Table 1: Files used in the experiments. The files are from (S) the Pizza-Chili standard
corpus (http://pizzachili.dcc.uchile.cl/texts.html) and (R) the Pizza-Chili repetitive corpus
(http://pizzachili.dcc.uchile.cl/repcorpus.html). The repetitive corpus contains artificially generated se-
quences (A), files with several variants of the same data (R), and files created from standard corpus files by concatenating
100 copies of a 1MB prefix and mutating them randomly (PR). The values of n/r (average length of run in BWT) and
n/z (average length of phrase in LZ factorization) are included as measures of repetitiveness.

109 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

6/
16

 to
 8

4.
24

9.
19

0.
22

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Algorithm Space Output ISA s/r LF Description
ISA9 9n+ LZ 1.0 n/a Full ISA array
ISA6s 6n LZ 0.2 sparse ISA sampling, general
ISA6r 6n LZ 0.125 rle ISA sampling, specialized
CPS2I 6n LZ Improved version of [5]
CPS2 6n LZ Original algorithm from [5]
CI 13n LZ ComputeLPF from [6]
OG 13n+ LPF Ultra-Fast algorithm from [29]
LPF1 13n LPF LPF-optimal in [7]
LPF2 13n+ LPF LPF-online in [7]

Table 2: Algorithms and their space requirements (n = text length). Space requirements include the space for SA and
text but exclude space for output, unless it is necessary during computation. ISA s/r - the fraction of ISA array that is
stored. LF column gives the LF representation used. ”+” in the space column marks that the algorithm requires some
extra memory (stack for OG and LPF2 and PSV/NSV for ISA9), which in practice is negligible. Note that the space
requirement of ISA6r holds only if the number of runs in the BWT satisfies r ≤ n/16.

Testfile SA LCP ISA9 ISA6s ISA6r CPS2I CPS2 CI OG LPF1 LPF2

dna 141.4 72.1 44.4 84.6 - 1141.4 1478.7 110.8 147.4 94.3 90.5
proteins 152.0 61.6 47.9 107.5 - 697.4 1112.8 112.3 122.9 83.2 79.7
english 132.5 61.8 43.4 81.7 - 658.8 1056.9 110.8 106.0 83.1 80.7
sources 88.5 45.1 33.8 58.8 - 356.3 611.4 108.0 72.9 68.5 64.0
dblp.xml 93.4 44.6 29.8 47.0 - 231.1 452.7 106.5 60.1 68.3 64.5

cere 131.7 62.9 33.4 30.3 27.4 148.4 251.4 121.7 56.8 98.3 94.6
coreutils 97.1 37.4 21.3 26.5 22.9 52.8 138.3 96.7 36.4 60.3 56.5
world leaders 52.8 33.8 18.7 22.7 19.8 36.8 121.9 65.1 32.5 54.9 50.2
kernel 96.5 41.7 22.7 25.4 21.7 40.2 115.3 103.4 36.5 66.4 62.6
einstein.en 130.1 55.0 28.4 24.2 20.5 19.1 109.9 122.5 39.3 87.0 82.3

english.001.2 104.6 41.0 21.8 26.9 23.4 40.1 151.5 81.7 50.7 75.9 61.8
proteins.001.1 103.1 41.4 22.4 27.8 24.2 37.0 265.0 79.0 39.1 73.3 62.1
dblp.xml.00001.1 102.2 42.2 21.3 24.4 21.3 20.4 240.0 76.1 36.4 74.3 62.1

rs.13 254.2 42.3 20.9 25.6 22.8 12.1 110.3 88.3 29.2 62.4 61.6
tm29 269.4 42.5 21.1 26.4 23.3 12.3 152.1 93.9 38.2 84.0 61.1

Table 3: Times for computing LZ factorization. The times are seconds per gigabyte and do not include any reading
from or writing to disk. The time to precompute the SA (which is a prerequisite for all algorithms) is not included in the
runtime. We also separately present the time to compute the LCP array but, unlike SA, it is included in the total runtime
for algorithms that use it (LPF1 and LPF2).

Testfile ISA9 ISA6s ISA6r CPS2I CPS2 CI OG LPF1 LPF2

dna 9.03 5.91 - 5.84 5.83 13.01 13.01 13.01 13.01
proteins 9.03 5.93 - 5.84 5.83 13.01 13.01 12.01 13.01
english 9.03 6.03 - 5.84 5.83 13.01 13.01 13.01 13.01
sources 9.03 6.03 - 5.84 5.83 13.01 13.01 13.01 13.01
dblp.xml 9.03 5.97 - 5.84 5.83 13.01 13.01 13.01 13.01

cere 9.02 5.90 5.94 5.84 5.84 13.00 13.01 13.00 13.00
coreutils 9.03 6.04 5.98 5.84 5.83 13.01 13.01 13.01 13.01
world leaders 9.05 5.99 5.85 5.89 5.86 13.03 13.05 13.04 13.04
kernel 9.02 6.00 5.78 5.83 5.83 13.00 13.01 13.01 13.01
einstein.en 9.02 5.98 5.65 5.84 5.84 13.00 13.00 13.00 13.00

english.001.2 9.03 5.98 5.82 5.84 5.83 13.01 13.02 13.02 13.02
proteins.001.1 9.03 5.93 5.82 5.84 5.83 13.01 13.01 13.02 13.02
dblp.xml.00001.1 9.03 5.97 5.68 5.84 5.83 13.01 13.02 13.02 13.02

rs.13 9.03 5.90 5.65 5.84 5.83 13.01 13.01 13.01 13.01
tm29 9.02 5.88 5.65 5.85 5.84 13.00 13.01 13.01 13.01

Table 4: Peak memory usage in bytes per character for all algorithms.

110 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

6/
16

 to
 8

4.
24

9.
19

0.
22

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

sorting the entire input.
Acknowledgments. Thanks go to Golnaz Bad-

kobeh, Maxime Crochemore, Juha Kärkkäinen, and
Travis Gagie for inspiring discussions on the topic of
LZ77 factorization; to Simon Gog and German Tischler
for sharing source code, and for explicating details of
their experiments; and to the anonymous referees whose
comments materially improved this paper.

References

[1] A. Al-Hafeedh, M. Crochemore, L. Ilie, E. Kopylov,
W. F. Smyth, G. Tischler, and M. Yusufu. A compar-
ison of indexed-based Lempel-Ziv LZ77 factorization
algorithms. ACM Computing Surveys, 45(1), 2012. to
appear.

[2] G. Badkobeh, M. Crochemore, and C. Toopsuwan.
Computing the maximal-exponent repeats of an
overlap-free string in linear time. In Proc. Sympo-
sium on String Processing and Information Retrieval
(SPIRE), LNCS 7608, pages 61–72, 2012.

[3] M. Burrows and D.J. Wheeler. A block sorting lossless
data compression algorithm. Technical Report 124,
Digital Equipment Corporation, Palo Alto, California,
1994.

[4] R. Cánovas and G. Navarro. Practical compressed
suffix trees. In Proc. 9th International Symposium
on Experimental Algorithms (SEA), LNCS 6049, pages
94–105, 2010.

[5] G. Chen, S. J. Puglisi, and W. F. Smyth. Lempel-Ziv
factorization using less time and space. Mathematics
in Computer Science, 1(4):605–623, 2008.

[6] M. Crochemore and L. Ilie. Computing longest previ-
ous factor in linear time and applications. Information
Processing Letters, 106(2):75–80, 2008.

[7] M. Crochemore, L. Ilie, C. S. Iliopoulos, M. Kubica,
W. Rytter, and T. Walen. LPF computation revisited.
In Proc. International Workshop on Combinatorial
Algorithms (IWOCA), LNCS 5874, pages 158–169,
2009.

[8] J.-P. Duval, R. Kolpakov, G. Kucherov, T. Lecroq, and
A. Lefebvre. Linear-time computation of local periods.
Theoretical Computer Science, 326(1-3):229–240, 2004.

[9] R. Durbin et al. The 1000 genomes project.
http://www.1000genomes.org/, 2010.

[10] P. Ferragina and G. Manzini. On compressing the
textual web. In Proc. Conference on Web Search and
Data Mining (WSDM), pages 391–400, New York, NY,
USA, 2010. ACM.

[11] J. Fischer and V. Huen. Space-efficient preprocessing
schemes for range minimum queries on static arrays.
SIAM Journal on Computing, 40(2):465–492, 2011.

[12] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich,
and S. J. Puglisi. A faster grammar-based self-index.
In Proc. Conference on Language and Automata The-
ory and Applications (LATA), LNCS 7183, pages 240–
251, 2012.

[13] T. Gagie, P. Gawrychowski, and S. J. Puglisi. Faster
approximate pattern matching in compressed repeti-
tive texts. In Proc. Symposium on Algorithms and
Computation (ISAAC), pages 653–662, 2011.

[14] Genome 10K Community of Scientists. A proposal to
obtain whole-genome sequence for 10,000 vertebrate
species. Journal of Heredity, 100:659–674, 2009.

[15] D. Gusfield and J. Stoye. Linear time algorithms for
finding and representing all the tandem repeats in a
string. Journal of Computer and System Sciences,
69(4):525–546, 2004.

[16] C. Hoobin, S. J. Puglisi, and J. Zobel. Relative
Lempel-Ziv factorization for efficient storage and re-
trieval of web collections. Proceedings of the VLDB
Endowment, 5(3):265–273, 2011.

[17] J. Kärkkäinen, G. Manzini, and S. J. Puglisi. Per-
muted Longest-Common-Prefix array. In Proc. Sym-
posium on Combinatorial Pattern Matching (CPM),
LNCS 5577, pages 181–192, 2009.

[18] J. Kärkkäinen and S. J. Puglisi. Medium-space algo-
rithms for BWT inversion. In Proc. European Sympo-
sium on Algorithms (ESA), volume LNCS 6346, page
451462, 2010.

[19] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and
K. Park. Linear-time longest-common-prefix compu-
tation in suffix arrays and its applications. In Proceed-
ings of the 12th Annual Symposium on Combinatorial
Pattern Matching (CPM ’01), volume 2089 of LNCS,
pages 181–192. Springer-Verlag, Berlin, 2001.

[20] T. Kociumaka, M. Kubica, J. Radoszewski, W. Rytter,
and T. Walen. A linear time algorithm for seeds com-
putation. In Proc. Symposium on Discrete Algorithms
(SODA), pages 1095–1112, 2012.

[21] R. Kolpakov, G. Bana, and G. Kucherov. mreps: effi-
cient and flexible detection of tandem repeats in DNA.
Nucleic Acids Research, 31(13):3672–3678, 2003.

[22] R. Kolpakov and G. Kucherov. Finding approximate
repetitions under hamming distance. Theoretical Com-
puter Science, 303(1):135–156, 2003.

[23] S. Kreft and G. Navarro. LZ77-like compression with
fast random access. In Proc. Data Compression Con-
ference (DCC), pages 239–248, 2010.

[24] S. Kreft and G. Navarro. Self-indexing based on
LZ77. In Proc. Symposium on Combinatorial Pattern
Matching (CPM), LNCS 6661, pages 41–54, 2011.

[25] V. Mäkinen, G. Navarro, J. Sirén, and N. Valimäki.
Storage and retrieval of highly repetitive sequence col-
lections. Journal of Computational Biology, 17(3):281–
308, 2010.

[26] U. Manber and G. W. Myers. Suffix arrays: a new
method for on-line string searches. SIAM Journal on
Computing, 22(5):935–948, 1993.

[27] G. Navarro. Indexing highly repetitive collections.
In Proc. International Workshop on Combinatorial
Algorithms (IWOCA), LNCS 7643, pages 274–279,
2012.

[28] G. Navarro and V. Mäkinen. Compressed full-text
indexes. ACM Computing Surveys, 39(1):article 2,

111 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

6/
16

 to
 8

4.
24

9.
19

0.
22

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

2007.
[29] E. Ohlebusch and S. Gog. Lempel-Ziv factorization re-

visited. In Proc. Symposium on Combinatorial Pattern
Matching (CPM), LNCS 6661, pages 15–26, 2011.

[30] D. Okanohara and K. Sadakane. An online algorithm
for finding the longest previous factors. In Proc.
European Symposium on Algorithms (ESA), LNCS
5193, pages 696–707, 2008.

[31] I. Pavlov. 7-zip. http://www.7-zip.org/, 2012.
[32] J. Sirén, N. Välimäki, V. Mäkinen, and G. Navarro.

Run-length compressed indexes are superior for highly
repetitive sequence collections. In Proc. Symposium on
String Processing and Information Retrieval (SPIRE),
LNCS 5280, 2008.

[33] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on
Information Theory, 23(3):337–343, 1977.

112 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

05
/0

6/
16

 to
 8

4.
24

9.
19

0.
22

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

