Information Elicitation for Bayesian Auctions *

Jing Chen Bo Li Yingkai Li
Department of Computer Science, Stony Brook University
Stony Brook, NY 11794, USA
{jingchen, boli2, yingkli}@cs.stonybrook.edu

Abstract

In this paper we design information elicitation mechanisms for Bayesian auctions. While in Bayesian mechanism design the distributions of the players’ private types are often assumed to be common knowledge, information elicitation considers the situation where the players know the distributions better than the decision maker. To weaken the information assumption in Bayesian auctions, we consider an information structure where the knowledge about the distributions is arbitrarily scattered among the players. In such an unstructured information setting, we design mechanisms for unit-demand auctions and additive auctions that aggregate the players’ knowledge, generating revenue that are constant approximations to the optimal Bayesian mechanisms with a common prior. Our mechanisms are 2-step dominant-strategy truthful and the revenue increases gracefully with the amount of knowledge the players collectively have.

Keywords. game theory, mechanism design, information elicitation, distributed knowledge, removing common prior

*The first author thanks Matt Weinberg for reading a draft of this paper and for helpful discussions. The authors thank Constantinos Daskalakis, János Flesch, Hu Fu, Pinyan Lu, Silvio Micali, Rafael Pass, Andrés Perea, Elias Tsakas, several anonymous reviewers, and the participants of seminars at Stony Brook University, Shanghai Jiaotong University, Shanghai University of Finance and Economics, Maastricht University, MIT, and IBM Thomas J. Watson Research Center for helpful comments. This work is partially supported by NSF CAREER Award No. 1553385.
1 Introduction

Bayesian auction design has been extremely flourishing since the seminal work of [37]. One of the main focuses is to generate revenue, by selling m heterogeneous items to n players. Each player has a private valuation function describing how much he values each subset of the items, and the valuations are drawn from prior distributions. An important assumption in Bayesian mechanism design is that the distributions are commonly known by the seller and the players—the common prior assumption. However, as pointed out by another seminal work [41], such common knowledge is “rarely present in experiments and never in practice”, and “only by repeated weakening of common knowledge assumptions will the theory approximate reality.”

In this paper, we weaken the information assumption about the seller and the players by adopting an information elicitation approach [35]. We consider a framework for auctions where the knowledge about the players’ value distributions are arbitrarily scattered among the players and the seller. The seller must aggregate pieces of information from all players to gain a good understanding about the distributions, so as to decide how to sell the items.

As in information elicitation, the players get rewards for reporting their knowledge. However, different from classic information elicitation where a player’s utility is exactly his reward, in our model a player’s utility comes not only from his knowledge, but also from participating in the auction (i.e., from buying items). Moreover, information elicitation usually assumes the prior distribution is correlated: each player observes a private signal and reports the corresponding posterior distribution. This means every player has information about every other player. In our model, following the convention in multi-item auctions, the players’ value distributions for individual items are assumed to be independent. A player may be totally ignorant about some players and only partially knows some other players’ distributions.

We focus on unit-demand auctions and additive auctions—two valuation types widely studied in the literature [15, 28]. In such auctions, a player’s valuation function is specified by m values, one for each item. For each player i and item j, the value v_{ij} is independently drawn from a distribution D_{ij}. Each player privately knows his own values and some (or none) of the distributions of some other players for some items, like long-time competitors in the market. There is no constraint about who knows which distributions. The seller may also know some of the distributions, but he does not know which player knows what. A player may or may not know his own value distributions. However, it is hard to elicit a player’s knowledge about his own distribution, and we are not aware of any such study in information elicitation. Thus we do not consider the players’ self-knowledge.

We introduce directed knowledge graphs to succinctly describe the players’ knowledge. Each player knows the distributions of his neighbors, different items’ knowledge graphs may be totally different, and the structures of the graphs are not known by anybody. Interestingly, the intuition behind such an information structure has long been considered by philosophers. In [31], the author discussed a world where “everything in the world might be known by somebody, yet not everything by the same knower.” Below we briefly state our main results.

1.1 Main Results

Under arbitrary knowledge graphs. Our goal is to design 2-step dominant strategy truthful (2-DST) information elicitation mechanisms whose expected revenue approximates that of the optimal Bayesian incentive compatible (BIC) mechanism, denoted by OPT. In order for the seller to aggregate the players’ knowledge about the distributions, it is natural for the mechanism to ask each player to report his knowledge to the seller, together with his own values. A 2-DST mechanism

1 A Bayesian mechanism is BIC if it is a Bayesian Nash equilibrium for all players to report their true values.
is such that, (1) no matter what knowledge the players may report about each other, it is dominant for each player to report his true values; and (2) given that all players report their true values, it is dominant for each player to report his true knowledge about others.

When the knowledge graphs are such that some distributions are not known by anybody, it is easy to see that no information elicitation mechanism can be a bounded approximation to OPT. Thus it is natural to consider the following benchmark: the optimal BIC mechanism applied to players and items for whom the distributions are indeed known by somebody, denoted by OPTK. This is a natural benchmark when considering players with limited knowledge and, if every distribution is known by somebody, then it is exactly OPT. We have the following, formalized in Section 3.

Theorems 1 and 3. (sketched) For any knowledge graph, there is a 2-DST information elicitation mechanism for unit-demand auctions with revenue $\geq \frac{OPT_K}{90}$, and such a mechanism for additive auctions with revenue $\geq \frac{OPT_K}{70}$.

To prove Theorem 1 we actually show a general result: any Bayesian mechanism for unit-demand auctions that is a good approximation in the COPIES setting (formally defined in Section 3.2) can be converted to information elicitation mechanisms; see Theorem 2. This applies to a large class of Bayesian mechanisms, including the ones in [15, 32, 16].

To prove Theorem 3 we have developed a novel approach for using the adjusted revenue. Although this concept is very useful in Bayesian auctions, it was unexpected that we found an interesting and highly non-trivial way of using it to analyze information elicitation mechanisms.

When everything is known by somebody. When the knowledge graphs become denser, the amount of knowledge increases and the seller may generate more revenue. Indeed, if every distribution is known by somebody, $OPT_K = OPT$. We show the revenue that can be generated by information elicitation mechanisms increases gracefully together with the amount of knowledge. More precisely, for any integer $k \geq 1$, let $\tau_k = \frac{k}{(k+1)^{k+1}}$. Note $\tau_1 = \frac{1}{4}$ and $\tau_k \to 1$ when k gets larger. We have the following theorems, formalized in Section 4.

Theorems 4 and 5. (sketched) $\forall k \in [n-1]$, when each distribution is known by at least k players, there is a 2-DST information elicitation mechanism for unit-demand auctions with revenue $\geq \frac{2k}{n}OPT$, and such a mechanism for additive auctions with revenue $\geq \max\{\frac{1}{11}, \frac{\tau_k}{6+2\tau_k}\}OPT$.

Finally, by exploring the knowledge graph’s combinatorial structure, we have the following for single-good auctions.

Theorem 6. (sketched) When the knowledge graph is 2-connected2, there is a 2-DST information elicitation mechanism for single-good auctions with revenue $\geq (1 - \frac{1}{n})OPT$.

1.2 Discussions

The use of scoring rules. Since our mechanisms elicit the players’ knowledge about each other’s value distributions, we will use scoring rules (see, e.g., [1]) to reward the players for their reported knowledge, as typical in information elicitation. However, the use of scoring rules does not solve the main problems in our auctions. Indeed, because a player’s utility comes both from the reward and from participating in the auction, the difficulties in designing information elicitation mechanisms are to guarantee that, even without rewarding the players for their knowledge, (1) it is dominant for each player to report his true values, (2) reporting his true knowledge never hurts him, and (3) the resulting revenue approximates the desired benchmark.

2A directed graph is 2-connected if for any node i, the graph with i and all adjacent edges removed is still strongly connected.
Accordingly, in Sections 3 and 4 we focus on designing information elicitation mechanisms without rewarding the players. Scoring rules are used later solely to break the utility-ties and make it strictly better for a player to report his true knowledge. In Appendix C we show how to add scoring rules to our mechanisms.

Extensions of our results. In our main results, the seller asks the players to report the distributions in their entirety, without being concerned with the communication complexity for doing so. This is common in information elicitation and allows us to focus on the main difficulties in aggregating the players’ knowledge. In Appendix D we show how to modify our mechanisms so that the players only report a small amount of information about the distributions.

Furthermore, in the main body of this paper we consider auction settings where a player i’s knowledge about another player $i’$ for an item j is exactly the prior distribution D_{ij}. This simplifies the description of the knowledge graphs. In Appendix E we consider settings where a player may observe private signals about other players and can further refine the prior.

Future directions. As Bayesian auctions require the seller (and the players under common-prior assumption) has correct knowledge about all distributions, in our main results we do not consider scenarios where players have “insider” knowledge. If the insider knowledge is correct (i.e., is a refinement of the prior), then our mechanisms’ revenue increases; see Appendix E. Still, how to aggregate even the incorrect information that the players may have about each other is a very interesting question for future studies.

Another important direction is to elicit players’ information for BIC mechanisms. For example, the BIC mechanisms in [23, 10] are optimal in their own settings, and it is unclear how to convert them to information elicitation mechanisms.

1.3 Related Work

Information elicitation. Following [35], information elicitation has become an important research area in the past decade [38, 44, 33]. A mechanism asks each player to report his private signal and his private knowledge about the prior distribution. The decision maker wants the mechanism to be BIC, and a player is rewarded based on his reported distribution and the other players’ reported signals. Different from auctions, there are no allocations or prices, and a player’s utility equals his reward. Proper scoring rules [9, 22] are widely used. In Appendix C we will formally define scoring rules and use them to reward the players for their knowledge.

Most studies on information elicitation require a common prior. Mechanisms without this assumption are considered by [12], and our work is information elicitation in auctions without a common prior. Moreover, information elicitation does not consider the players to have any cost for revealing their knowledge. It would be interesting to include such costs in the general model as well as in ours, to see how the mechanisms will change accordingly.

Bayesian auction design. In his seminal work [37], Myerson introduced the first optimal Bayesian mechanism for single-good auctions, which also applies to many single-parameter settings [1]. Since then, there has been a huge literature on designing (approximately) optimal Bayesian mechanisms that are either BIC or dominant-strategy truthful (DST); see [29] for an introduction to this literature. Mechanisms for multi-parameter settings have been constructed recently. In [10], the authors characterize optimal BIC mechanisms for combinatorial auctions. For unit-demand auctions, [15, 16, 32, 11] construct DST Bayesian mechanisms that are constant approximations. For additive auctions, [28, 41, 43, 11] provide logarithmic or constant approximations under different conditions. Finally, for subadditive auctions, logarithmic or constant approximations are provided in [5, 17, 12].
Removing the common prior assumption. Following [41], a lot of effort has been made to remove the common prior assumption. In DST Bayesian mechanisms it suffices to assume that the seller knows the prior distribution. In prior-free mechanisms [30, 24] the distribution is unknown and the seller learns it from the values of randomly selected players. In [21, 25, 36] the seller observes independent samples from the distribution before the auction begins. In [19, 20] the players have arbitrary possibilistic belief hierarchies about each other. In robust mechanism design [7] the players have arbitrary probabilistic belief hierarchies. In crowdsourced Bayesian auctions [4] each player privately knows all the distributions (or their refinements), which is a special case of our model. Indeed, all knowledge graphs will be complete graphs under their setting (that is, everybody knows everything), while we allow arbitrary knowledge graphs. In Appendixes [E and F] we further discuss how to elicit the players’ knowledge refinements, and how to handle correlated distributions in a setting that is a special case of our model but is still more general than that of [4].

2 Preliminaries

In this work, we focus on multi-item auctions with n players (denoted by N) and m items (denoted by M). A player i’s value for an item j, v_{ij}, is independently drawn from a distribution D_{ij}. Let $v_i = (v_{ij})_{j \in M}$, $D_i = \times_{j \in M} D_{ij}$, and $D = \times_{i \in N} D_i$. Player i’s value for a subset S of items is $\max_{j \in S} v_{ij}$ in unit-demand auctions, and is $\sum_{j \in S} v_{ij}$ in additive auctions. The players’ utilities, denoted by u_i, are quasi-linear, and the players are risk-neutral.

Knowledge graphs. It is illustrative to model the players’ knowledge graphically. We consider a vector of knowledge graphs, $G = (G_j)_{j \in M}$, one for each item. Each G_j is a directed graph with n nodes, one for each player. For any $i \neq i'$, an edge (i, i') is in G_j if and only if player i knows $D_{i'j}$. There is no constraint about the knowledge graphs: the same player’s distributions for different items may be known by different players, different players’ distributions for the same item may also be known by different players, and some distributions may not be known by anybody. Each player knows his own out-going edges, and neither the players nor the seller knows the whole graph.

We measure the amount of knowledge in the system by the number of players knowing each distribution. For any $k \in \{0, 1, \ldots, n - 1\}$, a knowledge graph is k-informed if each node has in-degree at least k: a player’s distribution is known by at least k other players. The vector G is k-informed if all knowledge graphs are so. Note that every knowledge graph is 0-informed, and “everything is known by somebody” when $k \geq 1$. A common prior would imply all knowledge graphs are complete directed graphs, or $(n - 1)$-informed, which is the strongest condition in our model. The seller’s knowledge can be naturally incorporated into the knowledge graphs by considering him as a special “player 0”. All our mechanisms can easily utilize the seller’s knowledge, and we will not further discuss this issue.

Information elicitation mechanisms. Let $\hat{I} = (N, M, D)$ be a Bayesian auction instance and $\hat{I} = (N, M, D, G)$ a corresponding information elicitation instance, where G is a knowledge graph vector. Different from Bayesian mechanisms, which has D as input, an information elicitation mechanism has neither D nor G as input. Instead, it asks each player i to report a valuation $b_i = (b_{ij})_{j \in M}$ and a knowledge $K_i = \times_{i' \neq i, j \in M} D_{i'j}$, a distribution for the valuation subprofile v_{-i}.

3We could have defined the players’ knowledge using the standard notion in epistemic game theory [27, 3, 26]: roughly speaking, the state space consists of all possible distributions of the valuation profile, and player i knows $D_{i'j}$ if he is in an information set where all distributions have the (i', j)-th component equal to $D_{i'j}$. However, the knowledge graph is a more succinct representation and is enough for the purpose of this work.
K_i may contain “⊥” at some places, indicating i does not know the corresponding distributions. K_i is i’s true knowledge if $D_{ij}^i = D_{ij}$ whenever $(i,i') \in G_j$, and $D_{ij}^i = ⊥$ otherwise. An information elicitation mechanism maps a strategy profile $(b_i, K_i)_{i \in N}$ to an allocation and a price profile, and may be randomized. To distinguish whether a mechanism M is a Bayesian or an information elicitation mechanism, we may explicitly write $M(\hat{I})$ or $M(I)$. The (expected) revenue of M is denoted by $Rev(M)$, and sometimes by $\mathbb{E}_D Rev(M)$ to emphasize the distribution.

An information elicitation mechanism is 2-step dominant strategy truthful (2-DST) if

1. For any player i, true valuation v_i, valuation b_i, knowledge K_i, and strategy subprofile $s_{-i} = (b_j, K_j)_{j \neq i}$ of the other players, $u_i((v_i, K_i), s_{-i}) \geq u_i((b_i, K_i), s_{-i})$.

2. For any player i, true valuation v_i, true knowledge K_i, knowledge K_i', and knowledge subprofile $K_{-i}'(v_{-i}) = (K_j'(v_j))_{j \neq i}$ of the other players, where each $K_j'(v_j)$ is a function of player j’s true valuation v_j, $\mathbb{E}_{v_{-i} \sim D_{-i}} u_i((v_i, K_i), (v_{-i}, K_{-i}'(v_{-i}))) \geq \mathbb{E}_{v_{-i} \sim D_{-i}} u_i((v_i, K_i'), (v_{-i}, K_{-i}'(v_{-i})))$.

3 Under Arbitrary Knowledge Graphs

3.1 Knowledge-Based Revenue Benchmark

When the knowledge graphs can be totally arbitrary, some distributions may not be known by anybody. It is not hard to see that in this case, no information elicitation mechanism can be a bounded approximation to OPT. Indeed, if all but one value distributions of the players are constantly 0, and if the only non-zero distribution, denoted by D_{ij}, is unknown by anybody, then a Bayesian mechanism can find the optimal reserve price based on D_{ij}, while an information elicitation mechanism can only set the price for player i based on the reported values of the other players, which are all 0.

Thus, for arbitrary knowledge graphs, we define a natural revenue benchmark: the optimal Bayesian revenue on players and items for which the distributions are known in the information elicitation setting. More precisely, let $\hat{I} = (N, M, D)$ be a Bayesian instance and $I = (N, M, D, G)$ a corresponding information elicitation instance. Let $D' = \times_{i \in N, j \in M} D_{ij}'$ be such that $D_{ij}' = D_{ij}$ if there exists a player i' with $(i', i) \in G_j$, and D_{ij}' is constantly 0 otherwise. We refer to D' as D projected on G. Letting $I' = (N, M, D')$ be the resulting Bayesian instance, the knowledge-based revenue benchmark is $OPT_K(I) \triangleq OPT(I')$, the optimal BIC revenue on I'. This is a demanding benchmark in information elicitation settings: it takes into consideration the knowledge of all players, no matter who knows what. When everything is known by somebody, even if G is only 1-informed, we will have $I' = \hat{I}$ and $OPT_K(I) = OPT(\hat{I})$.

3.2 Unit-Demand Auctions

For unit-demand auctions, sequential post-price Bayesian mechanisms have been constructed by [16, 32]. For information elicitation, if the seller asks the players to report both their values and knowledge, and directly uses the reported distributions in these mechanisms, then a player may want to withhold his knowledge about the other players. By doing so, a player may prevent the seller from selling the items to the others, so that the items are still available when it is his turn to buy.

A simple idea is to partition the players into two groups: a set of reporters who will not receive any item and is only asked to report their knowledge; and a set of potential buyers whose knowledge

4In Appendix C, we introduce scoring rules to our mechanisms so that the inequality is strict whenever $K_i' \neq K_i$.

is never used. It is possible that the reported knowledge may not contain a potential buyer’s value distributions on all items, thus the technical part is to prove that the seller generates a good revenue even though the players’ knowledge is only partially recovered.

Our mechanism M_{IEUD} is simple and intuitive; see Mechanism 1 where M_{UD} is the Bayesian mechanism of [32]. It’s worth pointing out that, although mechanism M_{UD} is used as a black-box, Mechanism 1 is not a reduction from arbitrary Bayesian mechanisms. Instead, we will prove a projection lemma that allows such a reduction from an important class of Bayesian mechanisms, where mechanism M_{UD} is an important example. We have the following theorem, whose proof is sketched below and formal proof is provided in Appendix A.1.

Mechanism 1. M_{IEUD}

1: Each player i reports to the seller a valuation $b_i = (b_{ij})_{j \in M}$ and a knowledge $K_i = (\mathcal{D}'_{ij})_{i' \neq i, j \in M}$.
2: Randomly partition the players into two sets, N_1 and N_2, where each player is independently put in each set with probability $\frac{1}{2}$.
3: Set $N_3 = \emptyset$.
4: for players $i \in N_1$ lexicographically do
5: For each player $i' \in N_2$ and item $j \in M$, if \mathcal{D}'_{ij} has not been defined yet and $\mathcal{D}'_{ij} \neq \perp$, then set $\mathcal{D}'_{ij} = \mathcal{D}'_{i'j}$ and add player i' to N_3.
6: end for
7: For each $i \in N_3$ and $j \in M$ such that \mathcal{D}'_{ij} is not defined, set $\mathcal{D}'_{ij} \equiv 0$ (i.e., 0 with probability 1) and $b_{ij} = 0$.
8: Run mechanism M_{UD} on the unit-demand Bayesian auction $(N_3, M, (\mathcal{D}'_{ij})_{i \in N_3, j \in M})$, with the players’ values being $(b_{ij})_{i \in N_3, j \in M}$. Let $x' = (x'_{ij})_{i \in N_3, j \in M}$ be the resulting allocation where $x'_{ij} \in \{0, 1\}$, and let $p' = (p'_{ij})_{i \in N_3}$ be the prices. Without loss of generality, $x'_{ij} = 0$ if $\mathcal{D}'_{ij} \equiv 0$.
9: For each player $i \not\in N_3$, i gets no item and his price is $p_i = 0$.
10: For each player $i \in N_3$, i gets item j if $x'_{ij} = 1$, and his price is $p_i = p'_{ij}$.

Theorem 1. Mechanism M_{IEUD} for unit-demand auctions is 2-DST and, for any instances $\hat{I} = (N, M, \mathcal{D})$ and $I = (N, M, \mathcal{D}, G)$, $\text{Rev}(M_{IEUD}(I)) \geq \frac{OPT_k(I)}{96}$.

Lemma 1. Mechanism M_{IEUD} is 2-DST.

Proof sketch. The key is that the use of the players’ values and the use of their knowledge are disentangled: for players in N_1, the mechanism only uses their knowledge but not their values; and the opposite holds for players in N_2. If a player i ends up in N_2, then whether he is in N_3 or not does not depend on his own strategy. As mechanism M_{UD} is DST and player i is assigned to N_2 with positive probability, it is dominant for him to report his true values in M_{IEUD}, no matter what the reported knowledge is. Moreover, if a player i ends up in N_1, then he is guaranteed to get no item and pay 0, thus reporting his true knowledge never hurts him.

In Appendix C we add scoring rules to mechanism M_{IEUD} to reward the players’ knowledge, so that a player’s utility will be strictly larger when he reports his true knowledge than when he lies about it.

To analyze the revenue of M_{IEUD}, note that it runs the Bayesian mechanism on a smaller (randomized) Bayesian instance: \hat{I} projected to the player-item pairs (i, j) such that $i \in N_3$ and \mathcal{D}_{ij} has been reported. To understand how much revenue is lost by the projection, we consider the COPIES instance [16], $\hat{I}^{CP} = (N^{CP}, M^{CP}, \mathcal{D}^{CP})$, as a bridge between the original Bayesian instance and the information elicitation instance. \hat{I}^{CP} is obtained from \hat{I} by replacing each player
with \(m \) copies and each item with \(n \) copies, where a player \(i \)'s copy \(j \) only wants item \(j \)'s copy \(i \), with the value distributed according to \(\mathcal{D}_{ij} \). Thus \(\mathcal{I}_{\mathsf{CP}} \) is a single-parameter auction, with \(N^{\mathsf{CP}} = N \times M \), \(M^{\mathsf{CP}} = M \times N \), and \(\mathcal{D}^{\mathsf{CP}} = \times_{(i,j) \in N^{\mathsf{CP}}} \mathcal{D}_{ij} \).

We now lower-bound the optimal BIC revenue in the projected COPIES instance. For any subset \(NM \subseteq N \times M \), let \(\mathcal{I}_{\mathsf{NM}} \) be \(\mathcal{I}_{\mathsf{CP}} \) projected to \(NM \). By definition, \(\text{OPT}(\mathcal{I}_{\mathsf{NM}}) \) is the optimal BIC revenue for \(\mathcal{I}_{\mathsf{NM}} \). Moreover, let \(\text{OPT}(\mathcal{I}_{\mathsf{CP}})_{NM} \) be the revenue of the optimal BIC mechanism for \(\mathcal{I}_{\mathsf{CP}} \) obtained from players in \(NM \).

Lemma 2 (The projection lemma). For any \(\mathcal{I} \) and \(NM \subseteq N \times M \), \(\text{OPT}(\mathcal{I}_{\mathsf{CP}})_{NM} \geq \text{OPT}(\mathcal{I}_{\mathsf{CP}})_{NM} \).

We elaborate the related definitions and prove Lemma 2 in Appendix A.1. Given mechanism \(\mathcal{M}_{\mathsf{IEUD}} \), the subset \(NM \) is the set of player-item pairs \((i,j)\) such that \(i \in N_3 \) and \(\mathcal{D}_{ij} \) is reported. Theorem 1 holds by combining the projection lemma, the randomized partition in Lemma 2 (to a player \(i \)) and the results on COPIES setting in Bayesian auctions \[32\] \[11\].

Note that Lemma 2 is only concerned with COPIES instances. Using this lemma and similar to our proof of Theorem 1 any Bayesian mechanism \(\mathcal{M} \) whose revenue can be properly lower-bounded by the COPIES instance can be converted to an information elicitation mechanism in a black-box way. We have the following theorem, with the proof omitted.

Theorem 2. Let \(\mathcal{M} \) be any DST Bayesian mechanism such that \(\text{Rev}(\mathcal{M}(\mathcal{I})) \geq \alpha \text{OPT}(\mathcal{I}_{\mathsf{CP}}) \) for some \(\alpha > 0 \). There exists a 2-DST information elicitation mechanism that uses \(\mathcal{M} \) as a black-box and is a \(\frac{1}{10} \)-approximation to \(\text{OPT}_K \).

By Theorem 2 the mechanisms in \[15\] and \[16\] automatically imply information elicitation mechanisms. For single-good auctions, replacing mechanism \(\mathcal{M}_{\mathsf{UD}} \) with Myerson’s mechanism, the information elicitation mechanism is a 4-approximation to \(\text{OPT}_K \).

3.3 Additive Auctions

Information elicitation mechanisms for additive auctions are harder to construct and analyze than for unit-demand auctions. First, randomly partitioning the players as before may cause a significant revenue loss, as the revenue of additive auctions may come from selling a subset of items as a bundle to a player \(i \). Even when \(i \)'s value distribution for each item is reported with constant probability, the probability that his distributions for all items in the bundle are reported may be very low, thus the mechanism may rarely sell the bundle to \(i \) at the optimal price. Second, the seller can no longer “throw away” player-item pairs whose distributions are not reported and focus on the projected instance. When the players are not partitioned into reporters and potential buyers, doing so may cause a player to lie and withhold his knowledge about others, so that they are thrown away.

To simultaneously achieve truthfulness and a good revenue guarantee, our mechanism is very stingy and never throws away any information. If a player \(i \)'s value distribution for an item \(j \) is reported by others, then \(j \) may be sold to \(i \) via the \(\beta \)-Bundling mechanism of \[13\], denoted by Bund. If \(i \)'s distribution for \(j \) is not reported, then \(j \) may still be sold to \(i \) via the second-price mechanism. Indeed, our mechanism handles the players neither solely based on the original Bayesian instance \(\mathcal{I} \) nor solely based on the projected instance \(\mathcal{I}' \). Rather, it works on a hybrid of the two.

Our mechanism \(\mathcal{M}_{\mathsf{IEA}} \) is still simple; see Mechanism \[2\] However, significant effort is needed to analyze its revenue. Indeed, note that in Mechanism \[2\] each \(M_i \) is defined according to the original Bayesian instance \(\mathcal{I} \), while the partition of \(M \) is done according to the knowledge graphs in the information elicitation instance \(\mathcal{I} \). The mechanism Bund is run on a hybrid instance, where \(\beta_i \) is based on \(\mathcal{I} \) and \(\mathcal{D}'_i \) is based on \(\mathcal{I} \). Finally, part of player \(i \)'s winning set is sold according to mechanism Bund and part of it is sold using second-price.
Mechanism 2. \mathcal{M}_{IEA}

1: Each player i reports a valuation $b_i = (b_{ij})_{j \in M}$ and a knowledge $K_i = (D_{ij})_{j \neq i, j \in M}$.
2: For each item j, set $i^*(j) = \arg \max_i b_{ij}$ (ties broken lexicographically) and $p_j = \max_{i \neq i^*} b_{ij}$.
3: for each player i
4: Let $M_i = \{ j \mid i^*(j) = i \}$ be player i’s winning set.
5: Partition M into M_i^1 and M_i^2 as follows: $\forall j \in M_i^1$, some i' has reported $D_{ij} \neq \bot$ (if there are more than one reporters, take the lexicographically first); and $\forall j \in M_i^2$, $D_{ij} = \bot$ for all i'.
6: $\forall j \in M_i^1$, set $D'_{ij} = D_{ij}$; and $\forall j \in M_i^2$, set $D'_{ij} = \bot$.
7: Compute the optimal entry fee e_i and reserve prices $(p_j^*)_{j \in M_i^1}$ according to mechanism $Bund$ with respect to (D_i', β_i), where $\beta_{ij} = \max_{i' \neq i} b_{ij}$ $\forall j \in M$. By the definition of $Bund$, we always have $p_j^* \geq \beta_{ij}$ for each j. If $e_i = 0$ then it is possible that $p_j^* > \beta_{ij}$ for some j; while if $e_i > 0$ then $p_j^* = \beta_{ij}$ for every j.
8: Sell $M_i^1 \cap M_i$ to player i according to $Bund$. That is, if $e_i > 0$ then do the following: if $\sum_{j \in M_i^1 \cap M_i} b_{ij} \geq e_i + \sum_{j \in M_i \cap M_i} p_j^*$, player i gets $M_i^1 \cap M_i$ with price $e_i + \sum_{j \in M_i \cap M_i} p_j^*$; otherwise the items in $M_i^1 \cap M_i$ are not sold. If $e_i = 0$ then do the following: for each item $j \in M_i^1 \cap M_i, if b_{ij} \geq p_j^*$, player i gets item j with price p_j^*; otherwise item j is not sold.
9: In addition, sell each item $j \in M_i^2 \cap M_i$ to player i with price $p_j = (\beta_{ij})$.
10: end for

Although running $Bund$ on \mathcal{T} achieves a constant approximation to $OPT(\mathcal{T})$, some items sold by $Bund$ under \mathcal{T} may end up being sold by \mathcal{M}_{IEA} using second-price, and the revenue of \mathcal{M}_{IEA} cannot be lower-bounded by that of $Bund$ on \mathcal{T}. To overcome this difficulty, we develop a novel way to use the adjusted revenue in our analysis; see Lemmas 4 and 6 in Appendix A.2 where we also recall the related definitions. As we show there, the adjusted revenue in a hybrid information setting, combined with the revenue of the second-price sale, eventually provides a desirable lower-bound to the revenue of \mathcal{M}_{IEA}. We have the following theorem, proved in Appendix A.2

Theorem 3. Mechanism \mathcal{M}_{IEA} for additive auctions is 2-DST and, for any instances $\hat{\mathcal{I}} = (N, M, D)$ and $\mathcal{I} = (N, M, D, G)$, $\text{Rev}(\mathcal{M}_{IEA}(\mathcal{I})) \geq \frac{\text{OPT}(\mathcal{I})}{10}$.

4 When Everything Is Known by Somebody

When the knowledge graph vector G is k-informed with $k \geq 1$, “everything is known by somebody” and $OPT_k = OPT$. Both mechanisms in Section 3 of course apply here, but we can do better when k gets larger: that is, when the amount of knowledge in the system increases.

4.1 Unit-Demand Auctions and Additive Auctions

For unit-demand auctions, mechanism \mathcal{M}_{IEUD}' here is almost the same as mechanism \mathcal{M}_{IEUD}, except it randomly partitions the players differently. The probability that each player is assigned to N_1 is now $q = 1 - (k + 1)^{-\frac{1}{k}}$, and the probability to N_2 is $1 - q$. When $k = 1$, we have $q = \frac{4}{5}$ and mechanism \mathcal{M}_{IEUD}' is exactly as before. The probability q is chosen to achieve the maximum probability for each distribution to be reported, and the latter is exactly $\tau_k = \frac{k}{(k+1)^{\frac{1}{k}}}$. We only state the theorem below, proved in Appendix B.1

Theorem 4. $\forall k \in [n-1]$, any unit-demand auction instances $\hat{\mathcal{I}} = (N, M, D)$ and $\mathcal{I} = (N, M, D, G)$ where G is k-informed, mechanism \mathcal{M}_{IEUD}' is 2-DST and $\text{Rev}(\mathcal{M}_{IEUD}'(\mathcal{I})) \geq \frac{7}{24} \cdot \text{OPT}(\hat{\mathcal{I}})$.
As k gets larger (although can still be much smaller than n), the approximation ratio of M_{IEUD}' approaches 24, the best known approximation to OPT by DST Bayesian mechanisms [32].

For additive auctions, to improve the approximation ratio when $k \geq 1$, following [11] we can divide the β-Bundling mechanism into the “bundling part” and the “individual sale part”. The former is referred to as the Bundle VCG mechanism, denoted by $BVCG$; and the latter is the individual 1-lookahead mechanism, denoted by M_{1LA}, which sells each item separately using the 1-lookahead mechanism of [30]. Mechanism M_{1LA} can also be replaced by the individual Myerson mechanism, denoted by IM, which sells each item separately using Myerson’s mechanism. By choosing the mechanism that generates a higher expected revenue between IM and $BVCG$, [11] provides a Bayesian mechanism that is an 8-approximation to OPT.

We design corresponding information elicitation mechanisms separately for mechanisms $BVCG$ and IM. The resulting mechanisms are denoted by M_{IEBVCG} and M_{IEIM}, which are defined in Appendix B.2. Because the seller does not know the prior D, he cannot compute the expected revenue of the two information elicitation mechanisms and choose the better one. Instead, we let him choose between the two mechanisms randomly, according to a probability distribution depending on k. It is worth pointing out that when $k \geq 1$, mechanism M_{IEBVCG} is able to recover all distributions in \hat{I}, thus its revenue equals the corresponding Bayesian revenue, which is lower-bounded in [11]. For M_{IEIM}, information elicitation is done by randomized partition depending on the value of k.

However, we can do even better. Indeed, although in Bayesian auctions the mechanism IM is optimal for individual item-sale and outperforms mechanism M_{1LA}, in information elicitation auctions there is a tradeoff between the two. In order for the players to report their knowledge truthfully for mechanism IM, we need to randomly partition them into reporters and potential buyers, thus each distribution is only recovered with probability τ_k. In contrast, no partition is needed for aggregating the players’ knowledge in mechanism M_{1LA}, and we can recover all distributions simultaneously with probability 1. The resulting information elicitation mechanism, M_{IE1LA}, is also defined in the appendix. As mechanism M_{1LA} is a 2-approximation to mechanism IM, sometimes it is actually more advantageous to use M_{IE1LA} rather than M_{IEIM}, depending on the value of k.

Properly combining the above gadgets together, our mechanism M_{IEA}' is defined as follows: when $k \leq 7$, it runs M_{IEBVCG} with probability $\frac{2}{7}$ and M_{IE1LA} with probability $\frac{5}{7}$; when $k > 7$, it runs M_{IEBVCG} with probability $\frac{3}{k+7}$ and M_{IEIM} with probability $\frac{k}{k+7}$. The choice of the two cases is to achieve the best approximation ratio for each k. We have the following theorem, proved in Appendix B.2.

Theorem 5. $\forall k \in [n-1]$, any additive auction instances $\hat{I} = (N, M, D)$ and $I = (N, M, D, G)$ where G is k-informed, M_{IEA}' is 2-DST and Rev($M_{IEA}'(I)$) $\geq \frac{1}{n} \left(\frac{2}{3} \right)^{2+\tau_k} OPT(\hat{I})$.

The same paradigm can be applied to arbitrary knowledge graphs. However, when not everything is known, the bundling part does not recover all distributions in \hat{I} and a more complex analysis is needed to lower-bound its revenue, essentially still via adjusted revenue.

4.2 Single-Good Auctions with 2-Connected Knowledge Graphs

As we have seen, the amount of revenue our mechanisms generate increases with k, the amount of knowledge in the system. If the knowledge graph is only k-informed for some small k, but reflects certain combinatorial structures, good revenue may also be generated by leveraging such structures. In this subsection we consider single-good auctions, so a player’s value v_i is a single number rather than a vector. Following Lemma 8 in Appendix B.2 for any $k \geq 1$, when there is a single item and the knowledge graph is k-informed, mechanism M_{IEIM} is a τ_k-approximation to the optimal
Bayesian mechanism of Myerson \[37\]. Below we construct an information elicitation mechanism that is nearly optimal under a natural structure of the knowledge graph.

More precisely, recall that a directed graph is strongly connected if there is a directed path from any node \(i \) to any other node \(i' \). Intuitively, in a knowledge graph this means that for any two players Alice and Bob, Alice knows a guy who knows a guy ... who knows Bob. Also recall that a directed graph is 2-connected if it remains strongly connected after removing any single node and the adjacent edges. In a knowledge graph, this means there does not exist a crucial player as an “information hub”, without whom the players will split into two parts, with one part having no information about the other. It is easy to see that a knowledge graph being strongly connected (or 2-connected respectively) implies it being 1-informed (or 2-informed respectively), but not vice versa. In fact, a graph of \(n \) nodes can be \((\lfloor \frac{n}{2} \rfloor - 1)\)-informed without being connected.

When the knowledge graph is 2-connected, we construct the information elicitation Myerson mechanism \(M_{\text{IEM}} \) in Mechanism \[3\] Recall that Myerson’s mechanism maps each player \(i \)'s reported value \(b_i \) to the (ironed) virtual value, \(\phi_i(b_i; D_i) \). It runs the second-price mechanism with reserve price \(0 \) on virtual values and maps the resulting “virtual price” back to the winner’s value space, as his price.

Mechanism 3 \(M_{\text{IEM}} \)

1. Each player \(i \) reports a value \(b_i \) and a knowledge \(K_i = (D^j_{i})_{j \in N \setminus \{i\}} \).
2. Randomly choose a player \(a \), let \(S = \{ j \mid D^j_a \neq \perp \} \), \(N' = N \setminus (\{a\} \cup S) \), and \(D'_j = D^j_a \forall j \in S \).
3. If \(S = \emptyset \), the item is unsold, the mechanism sets price \(p_i = 0 \) for each \(i \in N \) and stop here.
4. Set \(i^* = \arg \max_{j \in S} \phi_j(b_j; D'_j) \), with ties broken lexicographically.
5. while \(N' \neq \emptyset \) do
 6. Set \(S' = \{ j \mid j \in N', \exists i' \in S \setminus \{i^*\} \text{ s.t. } D'^j_i \neq \perp \} \).
 7. If \(S' = \emptyset \) then go to Step 12.
 8. For each \(j \in S' \), set \(D'_j = D'_j \), where \(i' \) is the first player in \(S \setminus \{i^*\} \) with \(D'_{i'} \neq \perp \).
 9. Set \(S = \{ i^* \} \cup S' \) and \(N' = N' \setminus S' \).
10. Set \(i^* = \arg \max_{j \in S} \phi_j(b_j; D'_j) \), with ties broken lexicographically.
11. end while
12. Set \(\phi_{\text{second}} = \max_{j \in (N \setminus \{\{a,i^*\} \cup N\})} \phi_j(b_j; D'_j) \) and the price \(p_i = 0 \) for each player \(i \).
13. If \(\phi_{i^*}(b; D'_{i^*}) < 0 \) then the item is unsold; otherwise, the item is sold to player \(i^* \) and \(p_{i^*} = \phi_{i^*}^{-1}(\max\{\phi_{\text{second}}, 0\}; D'_{i^*}) \).

To help understanding our mechanism, we illustrate in Figure 2 of Appendix B.3 the sets of players involved in the first round. We have the following theorem, proved in Appendix B.4

Theorem 6. For any single-good auction instances \(\hat{I} = (N, M, D) \) and \(I = (N, M, D, G) \) where \(G \) is 2-connected, \(M_{\text{IEM}} \) is 2-DST and \(\text{Rev}(M_{\text{IEM}}(I)) \geq (1 - \frac{1}{n})OPT(\hat{I}) \).

Proof. The mechanism disentangles the use of the players’ values and the use of their knowledge, but in a more subtle and stingy way than randomized partition. Indeed, when computing a player’s virtual value in Step \[10\] his knowledge has not been used yet. If he is player \(i^* \) then his knowledge will not be used in the next round either. Only when a player is removed from \(S \) — that is, when it is guaranteed that he will not get the item, will his knowledge be used. This is why it never hurts a player to report his true knowledge.

Now consider the revenue when the players report their true values and true knowledge. Note that \(|S| \geq 2 \) in Step \[2\] due to 2-connectedness, so the mechanism does not stop in Step \[3\]. In the iterative steps, because player \(i^* \) is excluded from the set of reporters, we need that there is still a
reporter who knows a distribution for players in N': that is, there is an edge from $N \setminus (N' \cup \{i^*\})$ to N', and player i^* is not an "information hub" between $N \setminus N'$ and N'. This is again guaranteed by 2-connectedness (note that strong connectedness alone is not enough). Accordingly, \mathcal{M}_{IEM} does not stop until $N' = \emptyset$ and all players’ distributions have been reported (excluding, perhaps, that of player a). Therefore \mathcal{M}_{IEM} recovers \hat{I} and runs Myerson's mechanism on it after randomly excluding a player a, and the revenue guarantee follows.

If the seller knows at least two distributions, the mechanism can use him as the starting point and the revenue will be exactly OPT. Since no information elicitation mechanism can be a $(\frac{1}{2} + \delta)$-approximation for any constant $\delta > 0$ when $n = 2$ [4], our result is tight. Interestingly, after obtaining our result, we found that 2-connected graphs have been explored several times in the game theory literature [6, 39], for totally different problems.

For additive auctions, when the knowledge graphs are 2-connected, instead of using mechanism \mathcal{M}_{IE1LA} or \mathcal{M}_{IEIM}, one can use \mathcal{M}_{IEM} for each item j. We thus have the following corollary, where the mechanism $\mathcal{M}_{IEA}^{''}$ runs \mathcal{M}_{IEM} with probability $\frac{3}{4}$ and \mathcal{M}_{IEBVCG} with probability $\frac{1}{4}$.

Corollary 1. For any additive auction instances $\hat{I} = (N, M, \mathcal{D})$ and $I = (N, M, \mathcal{D}, G)$ where each G_j is 2-connected, mechanism $\mathcal{M}_{IEA}^{''}$ is 2-DST and $\mathbb{E}_{\mathcal{D}} Rev(\mathcal{M}_{IEA}^{''}(I)) \geq \frac{1}{8}(1 - \frac{1}{n})OPT(\hat{I})$.

It would be very interesting to see if other combinatorial structures of knowledge graphs can be leveraged in information elicitation mechanisms and facilitate the aggregation of the players’ knowledge.
Appendix

A Proofs for Section 3

A.1 Proof of Theorem 1

Lemma 1 (restated) Mechanism \mathcal{M}_{IUD} is 2-DST.

Proof. We start with the first requirement in the solution concept: it is the best for a player to report his true values, no matter what knowledge he reports and what strategies the others use.

Claim 1. For any player i, true valuation v_i, valuation b_i, knowledge K_i, and strategy subprofile $s_{−i} = (b_j, K_j)_{j \neq i}$ of the other players, $\mathbb{E}_{\mathcal{M}_{IUD}} u_i((v_i, K_i), s_{−i}) \geq \mathbb{E}_{\mathcal{M}_{IUD}} u_i((b_i, K_i), s_{−i})$, where the expectation is taken over the mechanism’s random coins.

Proof. If player i is not in N_3 given the mechanism’s randomness and the reported knowledge of all players, then his reported valuation is never used to compute his allocation or price, and he gets the same utility for reporting any valuation. Thus $u_i((v_i, K_i), s_{−i}) = u_i((b_i, K_i), s_{−i})$ conditional on $i \notin N_3$.

If player i is in N_3, then his utility is determined by \mathcal{M}_{UD}. If \mathcal{D}_{ij} is defined to be 0 with probability 1 in Step i then i’s reported value for item j is not given to \mathcal{M}_{UD} as input, and i gets the same utility for reporting any value for j, including v_{ij}. Moreover, because i does not get such an item j, his utility is the same as an imaginary player i whose valuation is the same as i’s, except that the true value of i for j is 0. Since \mathcal{M}_{UD} is DST, no matter what the distributions are and what values the other players report, it is the best for i to report his true valuation. Accordingly, it is the best for i to report his true valuation v_i as well. That is, $u_i((v_i, K_i), s_{−i}) \geq u_i((b_i, K_i), s_{−i})$ conditional on $i \in N_3$.

Combining these two cases, Claim 1 holds.

We now prove the second requirement in the solution concept: given that all players report their true valuations, it is the best for a player to report his true knowledge.

Claim 2. For any player i, true valuation v_i, true knowledge K_i, knowledge K'_i, and knowledge subprofile $K'_{−i}(v_{−i}) = (K'_{ij}(v_{ij}))_{j \neq i}$ of the other players, where each $K'_{ij}(v_{ij})$ is a function of player j’s true valuation v_{ij}, $\mathbb{E}_{v_{−i} \sim \mathcal{D}_{−i}} u_i((v_i, K_i), (v_{−i}, K'_{−i}(v_{−i}))) \geq \mathbb{E}_{v_{−i} \sim \mathcal{D}_{−i}} u_i((v_i, K'_i), (v_{−i}, K'_{−i}(v_{−i})))$.

Proof. If player i is in N_1, then he is guaranteed to get no item and pay 0, so his utility is 0 no matter which knowledge he reports. If player i is in N_2, then his knowledge is never used, and he again gets the same utility no matter which knowledge he reports. Thus $\mathbb{E}_{v_{−i} \sim \mathcal{D}_{−i}} u_i((v_i, K_i), (v_{−i}, K'_{−i}(v_{−i}))) = \mathbb{E}_{v_{−i} \sim \mathcal{D}_{−i}} u_i((v_i, K'_i), (v_{−i}, K'_{−i}(v_{−i})))$ and Claim 2 holds.

Lemma 1 follows directly from Claims 1 and 2.

The COPIES setting. Before analyzing the revenue of mechanism \mathcal{M}_{IUD}, we first recall the COPIES setting for reducing multi-parameter settings to single-parameter settings [16]. Given a unit-demand auction instance $\tilde{I} = (N, M, \mathcal{D})$, the corresponding COPIES instance is constructed as follows. We make m copies for each player, called player copies, and denote the resulting player set by $N^{CP} = N \times M$. We make n copies for each item, called item copies, and denote the resulting item set by $M^{CP} = M \times N$. Each player copy (i, j) has value $v_{ij} \sim \mathcal{D}_{ij}$ for the item copy (j, i), and 0 for all the other item copies.
The set of feasible allocations in the original unit-demand auction naturally defines the set of feasible allocations in the COPIES auction: for any feasible allocation \(A \) in the original setting, if player \(i \) gets item \(j \), then in the corresponding allocation in the COPIES setting, player \(i \)'s copy \(j \) gets item \(j \)'s copy \(i \), and all other copies of \(i \) get nothing. Since in the original setting each item is sold to at most one player, in the COPIES setting, for all copies of the same item, at most one of them is sold. Moreover, since each player gets one item in the original setting, in the COPIES setting, for all copies of the same player, at most one of them gets an item copy. We denote by \(\hat{I}^{CP} = (N^{CP}, M^{CP}, D^{CP}) \) the COPIES instance, with \(D^{CP} = \times_{(i,j) \in N^{CP}} D_{ij} \).

The projected setting. Next, we consider the optimal Bayesian revenue for the COPIES setting when “projected” to smaller instances. Let \(N'M \subseteq N \times M \) be a subset of player-item pairs and \(N' \) be \(N'M \) projected to \(N \). The unit-demand instance \(\hat{I}_{NM} = (N', M, D'_{N'}) \), referred to as \(\hat{I} \) projected to \(N'M \), is such that \(D'_{ij} = D_{ij} \) if \((i,j) \in N'M \), and \(D'_{ij} \equiv 0 \) otherwise.

Let \(\hat{I}^{CP}_{NM} = (N^{CP}, M^{CP}, D^{CP}_{N'M}) \) be the COPIES instance corresponding to \(\hat{I}_{NM} \). It can also be considered as \(\hat{I}^{CP} \) projected to \(N'M \). That is, when projecting a COPIES instance to a set of player-item pairs, we still want the resulting instance to be a COPIES instance, thus we patch it up with the missing player-item pairs but with values constantly 0. The relations of these instances are illustrated in Figure 1. We are interested in the optimal Bayesian revenue under \(\hat{I}^{CP}_{NM}, OPT(\hat{I}^{CP}_{NM}) \).

![Figure 1: Relations of the COPIES and the projected instances](image)

Let \(OPT(\hat{I}^{CP}_{NM}) \) be the revenue of the optimal Bayesian mechanism for \(\hat{I}^{CP} \) obtained from \(N'M \): that is, for any pair \((i,j) \notin N'M \), the price paid by the \(j \)-th copy of player \(i \) is not counted, even though this player copy may get the \(i \)-th copy of item \(j \) according to the optimal mechanism for \(\hat{I}^{CP} \). We have the following lemma, where we explicitly write out the distributions for different Bayesian instances.

Lemma 2. (The projection lemma, restated) For any \(\hat{I} \) and \(N'M \subseteq N \times M \),

\[
\mathbb{E}_{D^{CP}_{N'M}} OPT(\hat{I}^{CP}_{NM}) \geq \mathbb{E}_{D^{CP}} OPT(\hat{I}^{CP}_{NM}).
\]

Proof. Given the instance \(\hat{I}^{CP}_{NM} \), consider a Bayesian mechanism \(M' \) as follows:

- Patch up the instance to be exactly \(\hat{I}^{CP} \), including changing the distribution \(D'_{ij} \) from 0 to \(D_{ij} \) for any \((i,j) \in N' \) and \((i,j) \notin N'M \);
- For any \((i,j) \in NM \), let \(i \)'s copy \(j \) report his value, while for any \((i,j) \notin NM \), sample the value of \(i \)'s copy \(j \) from \(D_{ij} \);
- Run the optimal DST Bayesian mechanism on \(\hat{I}^{CP} \), with the reported and the sampled values.

\(^{5} \)Since COPIES is a single-parameter setting, Myerson’s mechanism is both the optimal BIC mechanism and the optimal DST mechanism here. In particular, the optimal BIC revenue equals the optimal DST revenue.
• Project the resulting outcome to \(NM \).

The key is to show that \(\mathcal{M}' \) is a DST Bayesian mechanism for \(\hat{\mathcal{I}}_{NM}^{CP} \). Indeed, for any \((i, j)\) such that \(i \in N' \) and \((i, j) \notin NM \), the value of \(i \)'s copy \(j \) in \(\hat{\mathcal{I}}_{NM}^{CP} \) is 0 with probability 1, his reported value is not used by \(\mathcal{M}' \), and at the end this player copy gets nothing and pays 0. Therefore it is dominant for this player copy to report his true value 0. For any \((i, j) \in NM \), the utility of \(i \)'s copy \(j \) under \(\mathcal{M}' \) is the same as that under the optimal DST Bayesian mechanism on \(\mathcal{I}^{CP} \). As it is dominant for this player copy to report his true value in the latter, so is it in \(\mathcal{M}' \). Accordingly,

\[
\mathbb{E}_{\mathcal{D}^{CP}_{NM}} \text{OPT}(\hat{\mathcal{I}}_{NM}^{CP}) \geq \mathbb{E}_{\mathcal{D}^{CP}_{NM}} \text{Rev}(\mathcal{M}'(\hat{\mathcal{I}}_{NM}^{CP})) \]

by the definition of \(\text{OPT} \). By construction we have

\[
\mathbb{E}_{\mathcal{D}^{CP}_{NM}} \text{Rev}(\mathcal{M}'(\hat{\mathcal{I}}_{NM}^{CP})) = \mathbb{E}_{\mathcal{D}^{CP}} \text{OPT}(\hat{\mathcal{I}}^{CP})_{NM},
\]

thus Lemma 2 holds. \(\square \)

Note that the projection lemma is not true for non-COPIES settings in general, because the corresponding mechanism \(\mathcal{M}' \) is not DST. Indeed, when the same player \(i \) has \((i, j) \in NM \) and \((i, j') \notin NM \) for some items \(j \) and \(j' \), he prefers receiving \(j \) to receiving \(j' \) in the patched-up auction, even if the former leads to a smaller utility: his projected utility will be 0 under the latter.

Now we are ready to finish the proof of Theorem 1.

Theorem 1 (restated) Mechanism \(\mathcal{M}_{IEUD} \) for unit-demand auctions is 2-DST and, for any instances \(\mathcal{I} = (N, M, D) \) and \(\mathcal{I} = (N, M, D, G) \), \(\mathbb{E}_{v \sim D} \text{Rev}(\mathcal{M}_{IEUD}(\mathcal{I})) \geq \frac{\text{OPT}_K(\mathcal{I})}{96} \).

Proof. Letting \(\mathcal{I}' = (N, M, D') \) be the Bayesian instance where \(D' \) is \(D \) projected on the knowledge graph \(G \), the COPIES instance \(I^{CP} \) is respectively defined. Following Lemma 1 and by the definition of \(\text{OPT}_K \), it remains to show

\[
\mathbb{E}_{v \sim D} \text{Rev}(\mathcal{M}_{IEUD}(\mathcal{I})) \geq \frac{\text{OPT}(\mathcal{I}')}{96}.
\]

For any player \(i \) and item \(j \) with \(D_{ij} \) known by some other players, we have

\[
\Pr(\text{\(D_{ij} \) is reported in the mechanism}) = \Pr(i \in N_2) \Pr(\exists i' \in N_1 \text{ s.t. } (i', i) \in G_j \mid i \in N_2) \\
\geq \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4},
\]

where the inequality is because there exists at least one player \(i' \) with \((i', i) \in G_j \), and players \(i \) and \(i' \) are partitioned independently. Below we use \(NM_3 \) to denote the set of player-item pairs whose distribution is reported in the mechanism: that is, the set of players \(N_3 \) together with their reported items. Accordingly,

\[
\Pr((i, j) \in NM_3) \geq \frac{1}{4}. \tag{1}
\]

Also, we use \(D_{NM_3} = \times_{(i, j) \in NM_3} D_{ij} \) and \(v_{NM_3} = (v_{ij})_{(i, j) \in NM_3} \) to denote the vector of distributions and the vector of true values for \(NM_3 \), respectively. Let \(\hat{\mathcal{I}}_{NM_3} = (N_3, M, D'_{N_3}) \) be the unit-demand instance given to \(\mathcal{M}_{UD} \) in Step 4. Note that it is exactly \(\mathcal{I}' \) projected to \(NM_3 \): that is, \(D'_{ij} = D_{ij} \) for any \((i, j) \in NM_3 \) and \(D'_{ij} = 0 \) for any \((i, j) \notin NM_3 \). Accordingly,
Let $\hat{I}_{NM_3}^{CP} = (N_3^{CP}, M^{CP}, D_{NM_3}^{CP})$ be the COPIES instance corresponding to \hat{I}_{NM_3}. Following [32], given any set NM_3, the revenue of M_{UD} under the unit-demand Bayesian instance \hat{I}_{NM_3} is a 6-approximation to the optimal revenue for the COPIES instance. That is, for any NM_3,

$$E_{v \sim D} Rev(M_{UD}(\hat{I}_{NM_3})) \geq \frac{1}{6} E_{D_{NM_3}^{CP}} OPT(\hat{I}_{NM_3}^{CP}).$$

(3)

Combining Inequalities 2 and 3, we have

$$E_{v \sim D} Rev(M_{IEUD}(\mathcal{I})) = E_{NM_3} E_{v_{NM_3} \sim D_{NM_3}} Rev(M_{UD}(\hat{I}_{NM_3})).$$

(2)

Let $\hat{I}_{CP}^{CP} = (N_3^{CP}, M_{CP}, D_{NM_3}^{CP})$ be the COPIES instance corresponding to $\hat{I}_{NM_3}^{CP}$. Following [32], given any set NM_3, the revenue of M_{UD} under the unit-demand Bayesian instance \hat{I}_{NM_3} is a 6-approximation to the optimal revenue for the COPIES instance. That is, for any NM_3,

$$E_{v_{NM_3} \sim D_{NM_3}} Rev(M_{UD}(\hat{I}_{NM_3})) \geq \frac{1}{6} E_{D_{NM_3}^{CP}} OPT(\hat{I}_{NM_3}^{CP}).$$

(3)

Combining Inequalities 2 and 3, we have

$$E_{v \sim D} Rev(M_{IEUD}(\mathcal{I})) \geq \frac{1}{6} E_{NM_3} E_{D_{NM_3}^{CP}} OPT(\hat{I}_{NM_3}^{CP}).$$

(4)

By Lemma 2

$$E_{D_{NM_3}^{CP}} OPT(\hat{I}_{NM_3}^{CP}) \geq E_{D_{NM_3}^{CP}} OPT(\hat{I}_{NM_3}^{CP})_{NM_3},$$

thus

$$E_{NM_3} E_{D_{NM_3}^{CP}} OPT(\hat{I}_{NM_3}^{CP}) \geq E_{NM_3} E_{D_{NM_3}^{CP}} OPT(\hat{I}_{NM_3}^{CP})_{NM_3}.$$

(5)

Let $P_{ij}(OPT(\hat{I}_{CP}^{CP}))$ be the price paid by player i’s copy j under the optimal mechanism for \hat{I}_{CP}^{CP}. We can rewrite the right-hand side of Equation 5 as follows.

$$E_{NM_3} E_{D_{NM_3}^{CP}} OPT(\hat{I}_{NM_3}^{CP})_{NM_3} = E_{NM_3} E_{D_{NM_3}^{CP}} \sum_{(i,j) \in NM_3} P_{ij}(OPT(\hat{I}_{CP}^{CP}))$$

$$= E_{D_{NM_3}^{CP}} E_{(i,j) \in NM_3} P_{ij}(OPT(\hat{I}_{CP}^{CP}))$$

$$= E_{D_{NM_3}^{CP}} \sum_{(i,j) \in N \times M} \Pr((i,j) \in NM_3 \cdot P_{ij}(OPT(\hat{I}_{CP}^{CP}))),$$

(6)

where the first equality is by the definition of the projection, the second is because sampling from $D_{NM_3}^{CP}$ is done independently from NM_3, and the third is because $P_{ij}(OPT(\hat{I}_{CP}^{CP}))$ does not depend on NM_3. We can further lower-bound the last term of Equation 6 as follows:

$$E_{D_{NM_3}^{CP}} \sum_{(i,j) \in N \times M} \Pr((i,j) \in NM_3 \cdot P_{ij}(OPT(\hat{I}_{CP}^{CP})))$$

$$= E_{D_{NM_3}^{CP}} \sum_{(i,j) \in N \times M : \exists \cdot P_{ij}(OPT(\hat{I}_{CP}^{CP})))$$

$$\geq \frac{1}{4} E_{D_{NM_3}^{CP}} \sum_{(i,j) \in N \times M : \exists \cdot P_{ij}(OPT(\hat{I}_{CP}^{CP})))$$

$$= \frac{1}{4} OPT(\hat{I}_{CP}^{CP}) \geq \frac{1}{16} OPT(\hat{I}').$$

(7)
Here the first equality is because \(P_{ij}(OPT(\mathcal{I}^{CP})) = 0 \) for every \((i, j)\) such that \(\mathcal{D}_{ij} \) is unknown, the first inequality is by Equation 4 the second equality is by the definition of revenue, and the second inequality is because \(OPT(\mathcal{I}^{CP}) \geq \frac{OPT(\mathcal{I})}{6} \) by [11].

Combining Equations 4, 5, 6 and 7 we have

\[
\mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(\mathcal{M}_{IEUD}(\mathcal{I})) \geq \frac{1}{6} \cdot \frac{1}{16} \cdot OPT(\mathcal{I}') = \frac{OPT(\mathcal{I}')}{96},
\]

and Theorem 1 holds. \(\square \)

A.2 Proof of Theorem 3

Lemma 3. Mechanism \(\mathcal{M}_{IEA} \) is 2-DST.

Proof. The structure of a detailed proof for Lemma 3 will be following the two requirements in the solution concept and similar to that of Lemma 1. Thus we only highlight the key points here.

For each player \(i \), given the distributions and values reported by the other players, the subsets \(M^1_i \) and \(M^2_i \) do not depend on player \(i \)'s strategy, neither do the entry fee \(e_i \) and reserve prices \((p^i_j)_{j \in M^1_i} \). As far as player \(i \) is concerned, the other players’ values are always taken to be \(b_{-i} \), even if some of their value distributions are not reported. Computing \(i \)'s winning sets \(M_i \cap M^1_i \) and \(M_i \cap M^2_i \) is just part of the two mechanisms, Bund and second-price, again with the other players’ values taken to be \(b_{-i} \). Thus, it is dominant for \(i \) to report his true values for \(M^1_i \), following the truthfulness of Bund; and it is dominant for him to report his true values for \(M^2_i \), following the truthfulness of the second-price mechanism.

Moreover, given that all players truthfully report their values, for each player \(i \), reporting his true knowledge never hurts him, no matter what knowledge the other players report. Indeed, the winning set \(M_i \) only depends on the players’ reported values. Player \(i \)'s reported knowledge may affect how \(M \) is partitioned into \(M^1_i \) and \(M^2_i \) for another player \(i' \), but does not affect the sets \(M^1_i \) and \(M^2_i \), or whether he gets some items or not, or the prices he pays. Thus \(\mathcal{M}_{IEA} \) is 2-DST as desired. \(\square \)

The adjusted revenue. To lower-bound the expected revenue of \(\mathcal{M}_{IEA} \), we first introduce several important concepts following [33].

For any single-player Bayesian instance \(\hat{\mathcal{I}}_i = (\{i\}, M, \mathcal{D}_i) \) and any non-negative reserve-price vector \(\beta_i = (\beta_{ij})_{j \in M} \), a single-player DST Bayesian mechanism is \(\beta_i \)-exclusive if it never sells an item \(j \) to \(i \) whenever his bid for \(j \) is no larger than \(\beta_{ij} \). Denote by \(\text{Rev}^X(\hat{\mathcal{I}}_i, \beta_i) \) the optimal \(\beta_i \)-exclusive revenue for \(\hat{\mathcal{I}}_i \): that is, the superior over the revenue of \(\beta_i \)-exclusive mechanisms.

For any single-player DST Bayesian mechanism, its \(\beta_i \)-adjusted revenue on \(\hat{\mathcal{I}}_i \) is its revenue minus its social welfare generated from player-item pairs \((i, j)\) such that \(i \)'s bid for \(j \) is no larger than \(\beta_{ij} \). Denote by \(\text{Rev}^A(\hat{\mathcal{I}}_i, \beta_i) \) the optimal \(\beta_i \)-adjusted revenue for \(\hat{\mathcal{I}}_i \): that is, the superior over the \(\beta_i \)-adjusted revenue of all single-player DST Bayesian mechanisms. Note that if a mechanism is \(\beta_i \)-exclusive, then its \(\beta_i \)-adjusted revenue is exactly its revenue.

Given a Bayesian instance \(\hat{\mathcal{I}} = (N, M, \mathcal{D}) \), for each player \(i \) and valuation subprofile \(v_{-i} \sim \mathcal{D}_{-i} \), let \(\beta_i(v_{-i}) = (\beta_{ij}(v_{-i}))_{j \in M} \) be such that \(\beta_{ij}(v_{-i}) = \max_{i' \neq i} v_{ij} \) for each item \(j \). Note that we are slightly abusing notations here: each \(\beta_{ij} \) is now a function rather than a value. The optimal \(\beta \)-adjusted revenue for \(\hat{\mathcal{I}} \) is

\[
\mathbb{E}_\mathcal{D} \text{Rev}^A(\hat{\mathcal{I}}, \beta) = \mathbb{E}_{v \sim \mathcal{D}} \sum_i \text{Rev}^A(\hat{\mathcal{I}}_i, \beta_i(v_{-i})) = \sum_i \mathbb{E}_{v_{-i} \sim \mathcal{D}_{-i}} \mathbb{E}_{v_i \sim \mathcal{D}_i} \text{Rev}^A(\hat{\mathcal{I}}_i, \beta_i(v_{-i})).
\]
When \(v_{-i} \) is clear from the context, we may simply write \(\beta_i \) and \(\beta_{ij} \).

Because we also consider the projected Bayesian instance \(T = (N, M, \mathcal{D}') \), let \(v' \) be \(v \) projected on the knowledge graph \(G \): that is, \(v'_{ij} = v_{ij} \) if there exists a player \(i' \) with \((i', i) \in E \), and \(v'_{ij} = 0 \) otherwise. As \(v \) is distributed according to \(\mathcal{D} \), \(v' \) is distributed according to \(\mathcal{D}' \). Thus we sometimes directly sample \(v' \sim \mathcal{D}' \) rather than sample \(v \) first and then map it to \(v' \). Let \(\beta'_{ij}(v'_{ij}) = \max_{v_{ij} \neq v'_{ij}} \beta_{ij}(v_{ij}) \) for each player \(i \) and item \(j \). The optimal \(\beta' \)-adjusted revenue for \(T' \) is defined respectively:

\[
\mathbb{E}_{\mathcal{D}'} Rev^A(T', \beta') = \mathbb{E}_{v' \sim \mathcal{D}'} \sum_i Rev^A(T'_i, \beta'_i(v'_{-i})) = \sum_i \mathbb{E}_{v' \sim \mathcal{D}_i} \mathbb{E}_{v' \sim \mathcal{D}'_i} Rev^A(T'_i, \beta'_i(v'_{-i})).
\]

It is important to emphasize that, given \(v_{-i} \) and \(\beta_i(v_{-i}) \), the optimal \(\beta_i \)-exclusive revenue and the optimal \(\beta_i \)-adjusted revenue are well defined for any Bayesian instance for player \(i \), whether it is \(\hat{T}_i \) or \(T'_i \). In particular, we will consider \(Rev^X(T'_i, \beta_i) \) and \(Rev^A(T'_i, \beta_i) \), which are on the hybrid of \(\hat{T}_i \) and \(T'_i \). The optimal \(\beta \)-adjusted revenue on the hybrid of \(\hat{T} \) and \(T' \) are similarly defined:

\[
\mathbb{E}_{\mathcal{D}} Rev^A(T', \beta) = \sum_i \mathbb{E}_{v \sim \mathcal{D}_i} \mathbb{E}_{v' \sim \mathcal{D}'_i} Rev^A(T'_i, \beta_i(v_{-i})).
\]

To highlight that in the inner expectation, player \(i \)’s value is \(v'_i \) even if it is obtained by first sampling \(v_i \sim \mathcal{D}_i \) and then projecting on \(G \), we may also write it as \(\mathbb{E}_{v \sim \mathcal{D}_i} Rev^A(T'_i, \beta_i(v_{-i}); v'_i) \) and

\[
\mathbb{E}_{\mathcal{D}} Rev^A(T', \beta) = \sum_i \mathbb{E}_{v \sim \mathcal{D}_i} \mathbb{E}_{v \sim \mathcal{D}_i} Rev^A(T'_i, \beta_i(v_{-i}); v'_i) = \mathbb{E}_{v \sim \mathcal{D}} \sum_i Rev^A(T'_i, \beta_i(v_{-i}); v'_i).
\]

Finally, denote by \(IM \) the individual Myerson mechanism, which sells each item separately using Myerson’s mechanism [37]. The revenue of \(IM \) under the projected Bayesian instance \(T' \), denoted by \(IM(T') \), is thus the optimal revenue by selling each item separately.

Having defined the notions and notations needed in our proof, we prove Theorem 3 via the following two technical lemmas. For each lemma, note that on the left-hand side the values are drawn from the original Bayesian instance, and on the right-hand side the values are drawn from the projected instance.

Lemma 4. \(\mathbb{E}_{v \sim \mathcal{D}} Rev(\mathcal{M}_{IEA}(\mathcal{I})) \geq \frac{1}{68} \mathbb{E}_{v' \sim \mathcal{D}'} Rev^A(T', \beta') \).

Lemma 5. \(\mathbb{E}_{v \sim \mathcal{D}} Rev(\mathcal{M}_{IEA}(\mathcal{I})) \geq \frac{1}{7} \mathbb{E}_{v' \sim \mathcal{D}'} IM(T') \).

Theorem 3 (restated) Mechanism \(\mathcal{M}_{IEA} \) for additive auctions is 2-DST and, for any instances \(\hat{T} = (N, M, \mathcal{D}) \) and \(\mathcal{I} = (N, M, \mathcal{D}, G) \), \(\mathbb{E}_{v \sim \mathcal{D}} Rev(\mathcal{M}_{IEA}(\mathcal{I})) \geq \frac{OPT_K(\mathcal{I})}{70} \).

Proof. By Theorem 8.1 of [33], \(\mathbb{E}_{v \sim \mathcal{D}'} Rev^A(T', \beta') + \mathbb{E}_{v \sim \mathcal{D}'} IM(T') \geq OPT(T') \). Combining this inequality with Lemmas 4 and 5 we have

\[
\mathbb{E}_{v \sim \mathcal{D}} Rev(\mathcal{M}_{IEA}(\mathcal{I})) \geq \frac{OPT(T')}{70} = \frac{OPT_K(\mathcal{I})}{70},
\]

and Theorem 3 holds. \(\square \)

Below we prove the two lemmas.

17
Proof of Lemma 1. For each player \(i \), the set \(M_i^1 \) of items for which \(i \)'s distributions are reported and the set \(M_i^2 \) of items for which \(i \)'s distributions are not reported are uniquely determined by the knowledge graph \(G \) in \(\mathcal{I} \). Let \(\mathcal{I}_{i,M_i^1} = (\{i\}, M_i^1, D'_{i,M_i^1}) \) be the single-player Bayesian instance obtained by projecting \(\mathcal{I}' \) on \(i \) and \(M_i^1 \), with \(D'_{i,M_i^1} = \times_{j \in M_i^1} D'_{i,j} \). We have

\[
\mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(\mathcal{M}_{IEA}(\mathcal{I})) = \mathbb{E}_{v \sim \mathcal{D}} \sum_i \left(\text{Rev}(\text{Bund}_i(D'_{i,M_i^1}, v_{i,M_i^1}, \beta_i(v_{i-}))) + \sum_{j \in M_i^2 \cap M_i} \max_{v'_{ij}} v'_{ij} \right)
\]

\[
= \mathbb{E}_{v \sim \mathcal{D}} \sum_i \left(\text{Rev}(\text{Bund}_i(D'_{i,M_i^1}, v_{i,M_i^1}, \beta_i(v_{i-}))) + \sum_{j \in M_i^2 \cap M_i} \max_{v'_{ij}} v'_{ij} \right),
\]

where \(\text{Bund}_i \) is \(\text{Bund} \) applied to player \(i \) in Steps 7 and 8. The first equality is by the construction of \(\mathcal{M}_{IEA} \). The second equality holds because in the execution of \(\text{Bund}_i \) the items in \(M_i^2 \) do not affect anything, as player \(i \)'s values for them are constantly 0 in \(D'_{i}' \).

By Theorem 6.1 of [43], for any single-player Bayesian instance for a player \(i \) and any \(\beta_i \), \(\text{Bund}_i \) is an 8.5-approximation to the optimal \(\beta_i \)-exclusive revenue for this instance. Moreover, by Theorem 1 of [43], the optimal \(\beta_i \)-exclusive revenue is an 8-approximation to the optimal \(\beta_i \)-adjusted revenue for the same instance. Accordingly, we have

\[
\sum_i \mathbb{E}_{v \sim \mathcal{D}} \sum_i \text{Rev}(\text{Bund}_i(D'_{i,M_i^1}, v_{i,M_i^1}, \beta_i,M_i^1))
\]

\[
= \sum_i \mathbb{E}_{v \sim \mathcal{D}} \sum_i \mathbb{E}_{v \sim \mathcal{D}_i} \text{Rev}(\text{Bund}_i(D'_{i,M_i^1}, v_{i,M_i^1}, \beta_i,M_i^1))
\]

\[
= \sum_i \mathbb{E}_{v \sim \mathcal{D}} \sum_i \mathbb{E}_{v' \sim D'_i} \text{Rev}(\text{Bund}_i(D'_{i,M_i^1}, v_{i,M_i^1}, \beta_i,M_i^1))
\]

\[
= \sum_i \mathbb{E}_{v \sim \mathcal{D}} \sum_i \mathbb{E}_{v' \sim D'_i} \text{Rev}(\text{Bund}_i(T'_i,M_i^1, \beta_i,M_i^1))
\]

\[
\geq \frac{1}{8.5} \sum_i \mathbb{E}_{v \sim \mathcal{D}} \sum_i \mathbb{E}_{v' \sim D'_i} \text{Rev}^X(T'_i,M_i^1, \beta_i,\beta_i)
\]

\[
= \frac{1}{8.5} \sum_i \mathbb{E}_{v \sim \mathcal{D}} \sum_i \mathbb{E}_{v' \sim D'_i} \text{Rev}^X(T'_i, \beta_i)
\]

\[
\geq \frac{1}{8.5 \times 8} \sum_i \mathbb{E}_{v \sim \mathcal{D}} \sum_i \mathbb{E}_{v' \sim D'_i} \text{Rev}^A(T'_i, \beta_i)
\]

\[
= \frac{1}{68} \sum_i \mathbb{E}_{v \sim \mathcal{D}} \sum_i \mathbb{E}_{v \sim \mathcal{D}_i} \text{Rev}^A(T'_i, \beta_i, v'_i)
\]

\[
= \frac{1}{68} \sum_i \mathbb{E}_{v \sim \mathcal{D}} \sum_i \text{Rev}^A(T'_i, \beta_i, v'_i) = \frac{1}{68} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}^A(T'_i, \beta).
\]

The second equality above is because \(D'_i \) and \(D_i \) are the same when only \(M_i^1 \) is concerned, and \(v'_{ij} = v_{ij} \) for all \(j \in M_i^1 \). The first inequality is by the relation between \(\text{Bund}_i \) and \(\text{Rev}^X \). The next equality is because \(i \)'s values for items in \(M_i^2 \) are always 0 under \(T'_i \), thus even when these items are available, a \(\beta \)-exclusive mechanism does not sell them to \(i \) anyway. The second inequality is by
the relation between \(\text{Rev}^X \) and the \(\text{Rev}^A \). The next equality is because, as mentioned before, when sampling \(v_i \) from \(\mathcal{D}_i \) and then projecting it on \(G \), the resulting \(v'_i \) is distributed according to \(\mathcal{D}'_i \).

Now we state the key lemma in our analysis, which connects the hybrid adjusted revenue with that for \(\mathcal{T}' \). Recall that each \(\beta'_i \) is defined based on \(v'_{-i} \sim \mathcal{D}'_{-i} \).

Lemma 6.

\[
\mathbb{E}_{v \sim \mathcal{D}} \text{Rev}^A(\mathcal{T}', \beta) + \mathbb{E}_{v \sim \mathcal{D}} \sum_{i} \sum_{j \in M_i^1 \cap M_i^1} \max_{v'_{ij} \neq v_{ij}} \mathbb{E}_{v' \sim \mathcal{D}} \text{Rev}^A(\mathcal{T}', \beta').
\]

Before proving Lemma 6, note that combining it with Equations 8 and 9 we have

\[
\mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(\mathcal{M}_{IEA}(\mathcal{I})) \geq \frac{1}{68} \mathbb{E}_{v \sim \mathcal{D}'} \text{Rev}^A(\mathcal{T}', \beta').
\] (10)

Thus Lemma 4 holds.

Next we prove Lemma 6.

Proof of Lemma 6. Arbitrarily fixing a player \(i \) and \(v'_{-i} \sim \mathcal{D}'_{-i} \), let \(\mathcal{M}^* \) be the single-player DST Bayesian mechanism with the optimal \(\beta'_i \)-adjusted revenue for \(\mathcal{T}'_i \). Accordingly, \(\mathcal{M}^* \) maximizes the following quantity:

\[
\mathbb{E}_{v' \sim \mathcal{D}'} \text{Rev}^A(\mathcal{T}'_i, \beta'_i) = \mathbb{E}_{v' \sim \mathcal{D}'} [\text{Rev}(\mathcal{M}^*(\mathcal{T}'_i)) − \sum_{j:v'_{ij} \leq \beta'_ij} q_{ij} v'_{ij}],
\]

where \(q_{ij} \) is the probability for \(i \) to get item \(j \) in \(\mathcal{M}^* \) under \(v'_i \). By definition,

\[
\mathbb{E}_{v' \sim \mathcal{D}'} \text{Rev}^A(\mathcal{T}'_i, \beta'_i) = \mathbb{E}_{v \sim \mathcal{D}'} [\text{Rev}(\mathcal{M}^*(\mathcal{T}'_i)) − \sum_{j:v'_{ij} \leq \beta'_ij} q_{ij} v'_{ij}].
\] (11)

Again because sampling \(v \) from \(\mathcal{D} \) and projecting it on \(G \) induces the same distribution for \(v' \) as \(\mathcal{D}' \), we have

\[
\mathbb{E}_{v' \sim \mathcal{D}'} [\text{Rev}(\mathcal{M}^*(\mathcal{T}'_i)) − \sum_{j:v'_{ij} \leq \beta'_ij} q_{ij} v'_{ij}] = \mathbb{E}_{v \sim \mathcal{D}'} [\text{Rev}(\mathcal{M}^*(\mathcal{T}'_i; v'_i)) − \sum_{j:v'_{ij} \leq \beta'_ij} q_{ij} v'_{ij}],
\] (12)

where we explicitly include \(v'_i \) in the input of \(\mathcal{M}^* \) to emphasize the projection.

Arbitrarily fix \(v_{-i} \) and let \(\mathcal{U}_i = \{j | j \in M_i^1, \beta'_ij \neq \beta_{ij}\} \). It is clear that \(\beta'_ij < \beta_{ij} \) for each \(j \in \mathcal{U}_i \), as \(v'_{-i} \leq v_{-i} \) (component-wise). For any \(v_i \) and the corresponding \(v'_i \), as \(v'_{ij} = 0 \) for any \(j \not\in M_i^1 \), we have

\[
\sum_{j:v'_{ij} \leq \beta'_ij} q_{ij} v'_{ij} = \sum_{j:v'_{ij} \leq \beta_{ij}} q_{ij} v'_{ij} = \sum_{j \in M_i^1 \setminus \mathcal{U}_i:v'_{ij} \leq \beta_{ij}} q_{ij} v'_{ij} + \sum_{j \in \mathcal{U}_i:v'_{ij} \leq \beta_{ij}} q_{ij} v'_{ij} = \sum_{j \in M_i^1:v'_{ij} \leq \beta_{ij}} q_{ij} v'_{ij} = \sum_{j \in \mathcal{U}_i:v'_{ij} < \beta_{ij}} q_{ij} v'_{ij} + \sum_{j \in \mathcal{U}_i:v'_{ij} \leq \beta_{ij}} q_{ij} v'_{ij} = \sum_{j:v'_{ij} \leq \beta_{ij}} q_{ij} v'_{ij} + \sum_{j:v'_{ij} < \beta_{ij}} q_{ij} v'_{ij}.
\] (13)

6If the superior is not achieved by any mechanism, one can take a sequence of mechanisms whose \(\beta'_i \)-adjusted revenue approaches the superior in the limit.
Combining Equations 11, 12, 13 and taking summation over all players, we have

\[
\mathbb{E}_{v' \sim D'} \text{Rev}^A(\mathcal{I}', \beta') = \sum_i \mathbb{E}_{v' \sim D'} \text{Rev}^A(\mathcal{I}'_i, \beta'_i) \\
= \sum_i \mathbb{E}_{v \sim D} \left[\text{Rev}(\mathcal{M}^*(\mathcal{I}'_i; v'_i)) - \sum_{j: v'_{ij} \leq \beta'_i} q_{ij} v'_{ij} \right] \\
= \sum_i \mathbb{E}_{v \sim D} \left(\text{Rev}(\mathcal{M}^*(\mathcal{I}'_i; v'_i)) - \sum_{j: v'_{ij} \leq \beta'_i} q_{ij} v'_{ij} + \sum_{j \in U; \beta'_i < v'_{ij} \leq \beta_i} q_{ij} v'_{ij} \right) \\
\leq \sum_i \mathbb{E}_{v \sim D} \text{Rev}^A(\mathcal{I}'_i, \beta_i; v'_i) + \sum_i \mathbb{E}_{v \sim D} \sum_{j \in U; \beta'_i < v'_{ij} \leq \beta_i} q_{ij} v'_{ij} \\
= \sum_i \mathbb{E}_{v \sim D} \text{Rev}^A(\mathcal{I}'_i, \beta_i; v'_i) + \sum_i \mathbb{E}_{v \sim D} \sum_{j \in U; \beta'_i < v'_{ij} < \beta_i} v'_{ij} \\
\leq \sum_i \mathbb{E}_{v \sim D} \text{Rev}^A(\mathcal{I}', \beta_i) + \sum_i \mathbb{E}_{v \sim D} \sum_{j \in U; \beta'_i < v'_{ij} \leq \beta_i} v_{ij}. \\
\tag{14}
\]

The first inequality above is because the first two terms in the expectation is exactly the \(\beta\)-adjusted revenue of mechanism \(\mathcal{M}^*\) on \(\mathcal{I}'_i\). The following equality holds because \(v'_{ij} = v_{ij}\) for any \(j \in M^\setminus_i\). Finally, the second inequality is because \(0 \leq q_{ij} \leq 1\) for any \(i, j\).

Arbitrarily fix a valuation profile \(v\) and consider the term \(\sum_i \sum_{j \in U; \beta'_i < v'_{ij} \leq \beta_i} v_{ij}\) at the end of Equation 14. We show that each item \(j\) appears in the summation at most once. Indeed, for each \(v_{ij}\) that appears in the summation, \(j \in M^\setminus_i\) and \(\mathcal{D}_i\) is known in \(\mathcal{I}\). As \(v_{ij} > \beta'_i\), player \(i\) has strictly higher value for \(j\) than any other player \(i'\) whose distribution for \(j\) is also known. For any such player \(i'\), \(\beta'_{i', j} = v_{ij} > v_{i'j}\) and \(j\) is not in the set \(\{j \in U: \beta'_{i', j} < v_{i'j} \leq \beta_{i'j}\}\), which implies that \(v_{i'j}\) does not appear in the summation. Moreover, for any player \(i'' \neq i\) with \(\mathcal{D}_{i''j}\) unknown, \(j \notin M^\setminus_{i''}\) and \(v_{i''j}\) does not appear in the summation either. Therefore item \(j\) only appears once in the summation. Accordingly,

\[
\sum_i \sum_{j \in U; \beta'_i < v'_{ij} \leq \beta_i} v_{ij} = \sum_{j: \exists i \text{ s.t. } j \in U; \beta'_i < v_{ij} \leq \beta_i} v_{ij}. \\
\tag{15}
\]

We now show that

\[
\sum_{j: \exists i \text{ s.t. } j \in U, \beta'_i < v_{ij} \leq \beta_i} v_{ij} \leq \sum_{i \in M^\setminus_i} \max_{j', \neq i} v_{ij'}, \\
\tag{16}
\]

where the right-hand side is exactly the revenue generated by mechanism \(\mathcal{M}_{IEA}\) in Step 9 and also the desired term in the statement of Lemma 3. Indeed, for each \(v_{ij}\) that appears in the left-hand side, because \(v_{ij} \leq \beta_{ij}\), player \(i\)'s value for \(j\) is at most the second highest among all players. Letting \(i^* = \arg \max_{i \neq j} v_{ij}\) with ties broken lexicographically, we have \(\beta_{ij} = v_{i^*j}\) and \(v_{i^*j}\) is the highest value for \(j\) among all players. Since \(\beta'_i < \beta_{ij}\), \(\mathcal{D}_{i^*j}\) is unknown and \(j \in M^\setminus_{i^*}\). Below we show \(j \in M_{i^*}\), which then implies \(j \in M^\setminus_{i^*} \cap M_{i^*}\) and the price paid by \(i^*\) in Step 9 for item \(j\) is \(\max_{j', \neq i^*} v_{ij'} \geq v_{ij}\).
When the distributions are generic, there are no ties in the players' values and \(v_{i,j} \) is the unique maximum value for \(j \), thus \(j \in M_{i^*} \). For arbitrary distributions, problems occur when \(v_{ij} = \beta_{ij} \) and \(i < i^* \), which implies \(j \notin M_{i^*} \). To deal with this special case, consider the following tie-breaking method for the players: while the value \(\beta_{ij} \) is still defined to be \(v_{i,j} \), we denote it by \(\beta_{ij}^+ \) if \(i^* < i \) and \(\beta_{ij}^- \) if \(i^* > i \). When \(v_{ij} = \beta_{ij} \), we treat \(v_{ij} \) as strictly smaller if facing \(\beta_{ij}^+ \) and strictly larger if facing \(\beta_{ij}^- \). All results proved in [43] and above continue to hold with respect to this tie-breaking method. Now for any \(v_{ij} \) that appears in the summation, either we have \(v_{ij} < \beta_{ij} \) or we have \(v_{ij} = \beta_{ij} \) and \(i^* < i \), thus it is always the case that \(j \in M_{i^*} \).

Accordingly,

\[
\sum_{j: \exists! \ i \ s.t. \ j \in U_i, \ \beta_{ij} < v_{ij} \leq \beta_{ij}} v_{ij} \leq \sum_{j: \exists! \ i^* \ s.t. \ j \in M_{i^*} \cap M_i} \max_{i' \neq i} v_{i'j},
\]

and Equation [16] holds. Combining Equations [14], [15] and [16] we have

\[
\mathbb{E}_{v' \sim D'} Rev^A(T', \beta') \leq \mathbb{E}_{v \sim D} Rev^A(T', \beta) + \mathbb{E}_{v \sim D} \sum_{i} \sum_{j \in M_{i^*} \cap M_i} \max_{i' \neq i} v_{i'j},
\]

and Lemma 6 holds.

We finish the whole analysis by proving Lemma 5.

Proof of Lemma 5. Denote by \(M_{1\text{LA}} \) the individual 1-lookahead mechanism, which sells each item separately using the 1-lookahead mechanism [40] and is a 2-approximation to Myerson’s mechanism for each item. Similar to the proof of Lemma 4, the expected revenue generated by \(Bund_i \) in Steps 7 and 8 is

\[
\mathbb{E}_{v \sim D} \sum_i Rev\left(Bund_i(D'_i, v_{i, M_{i^*}}, \beta_i(v_{-i}))\right)
= \sum_i \mathbb{E}_{v_{-i} \sim D_{-i}} \mathbb{E}_{v \sim D_i} Rev\left(Bund_i(D_{i, M_{i^*}}, v_{i, M_{i^*}}, \beta_{i, M_{i^*}})\right)
\geq \sum_i \mathbb{E}_{v_{-i} \sim D_{-i}} \mathbb{E}_{v \sim D_i} Rev\left(M_{1\text{LA}}(D_{i, M_{i^*}}, v_{i, M_{i^*}}, \beta_{i, M_{i^*}})\right)
= \sum_i \mathbb{E}_{v \sim D} Rev\left(M_{1\text{LA}}(\tilde{T}_{i, M_{i^*}}, \beta_{i, M_{i^*}})\right).
\]

(17)

The first equality above is again because items in \(M_{i^*}^2 \) does not affect \(Bund_i \) given that player \(i \)'s values for them are constantly 0 according to \(D'_i \), and \(D'_i \) and \(D_i \) coincide when only items in \(M_{i^*}^1 \) are concerned. The inequality holds because given \(D_{i, M_{i^*}} \) and \(\beta_{i, M_{i^*}} \), mechanism \(Bund_i \) chooses between optimally selling to \(i \) the items as a bundle (i.e., \(e_i > 0 \)) and optimally selling to \(i \) each item separately (i.e., \(e_i = 0 \)), whichever generates higher expected revenue over \(v_{i, M_{i^*}} \sim D_{i, M_{i^*}} \); while \(M_{1\text{LA}} \) is a particular mechanism that sells each item \(j \in M_{i^*}^1 \) to \(i \) separately based on \(D_{ij} \).
and \(\beta_{ij} \). Accordingly, letting \(\mathcal{D}_j = \times (\mathcal{D}_{ij})_{i \in \mathbb{N}} \) and \(v_j \sim \mathcal{D}_j \) for each item \(j \), we have

\[
\mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(\mathcal{M}_{\text{IEA}}(\mathcal{I})) = \mathbb{E}_{v \sim \mathcal{D}} \sum_i \left(\text{Rev}(\text{Bund}_i(\mathcal{D}_i, v_{i,M_i^1}, \beta_i(v_{-i}))) + \sum_{j \in M_i^2 \cap M_i} \max v_{ij} \right)
\]

\[
\geq \sum_i \mathbb{E}_{v \sim \mathcal{D}} \left(\text{Rev}(\mathcal{M}_{\text{LA}}(\mathcal{I}_{i,j}, \beta_i)) + \sum_{j \in M_i^2 \cap M_i} \max v_{ij} \right)
\]

\[
= \sum_{j \in M_i} \sum_{i \sim \mathcal{D}_j} \mathbb{E}_{v_j \sim \mathcal{D}_j} \left(I_{j \in M_i^1} \cdot \text{Rev}(\mathcal{M}_{\text{LA}}(\mathcal{I}_{i,j}, \beta_i)) + I_{j \in M_i^2 \cap M_i} \cdot \max v_{ij} \right).
\]

(18)

Arbitrarily fixing an item \(j \), we show that

\[
\sum_i \mathbb{E}_{v_j \sim \mathcal{D}_j} \left(I_{j \in M_i^1} \cdot \text{Rev}(\mathcal{M}_{\text{LA}}(\mathcal{I}_{i,j}, \beta_i)) + I_{j \in M_i^2 \cap M_i} \cdot \max v_{ij} \right)
\]

\[
\geq \sum_i \mathbb{E}_{v_j \sim \mathcal{D}_j} \left(I_{j \in M_i^1} \cdot \text{Rev}(\mathcal{M}_{\text{LA}}(\mathcal{I}_{i,j}, \beta_i^j)).
\]

(19)

To do so, by definition, if \(j \in M_i^1 \) for a player \(i \) then in the Bayesian instance \(\mathcal{I}_{i,j} \) and given the reserve price \(\beta_i \), the 1-lookahead mechanism tries to sell \(j \) to \(i \) at price

\[
r'_{ij} = \arg \max_x \mathbb{P}_{r} (v'_{ij} \geq x | v'_{ij} \geq \beta_i).
\]

Thus

\[
\sum_i \mathbb{E}_{v_j \sim \mathcal{D}_j} \left(I_{j \in M_i^1} \cdot \text{Rev}(\mathcal{M}_{\text{LA}}(\mathcal{I}_{i,j}, \beta_i^j)) \right)
\]

\[
= \sum_i \mathbb{E}_{v_{-i,j} \sim \mathcal{D}_{-i,j}} \mathbb{E}_{v'_{ij} \sim \mathcal{D}_{ij}} \left(I_{j \in M_i^1} \cdot I_{v'_{ij} \geq r'_{ij}} \cdot r'_{ij} \right)
\]

\[
= \sum_i \mathbb{E}_{v_{-i,j} \sim \mathcal{D}_{-i,j}} \mathbb{E}_{v'_{ij} \sim \mathcal{D}_{ij}} \left(I_{j \in M_i^1} \cdot I_{v'_{ij} \geq r'_{ij}(v'_{-i,j})} \cdot r'_{ij}(v'_{-i,j}) \right),
\]

(20)

where the second equality is again by sampling \(v_j \) from \(\mathcal{D}_j \) and projecting on \(G \) to get \(v'_j \). We write \(r'_{ij} \) as \(r'_{ij}(v'_{-i,j}) \) to highlight this fact. Note that given \(v'_{-i,j} \), \(r'_{ij}(v'_{-i,j}) \) depends on the distribution \(\mathcal{D}_{ij} \) but not on any concrete \(v'_{ij} \). Also note that \(r'_{ij}(v'_{-i,j}) \geq \beta_i^j \). Next, we divide the last term in Equation (20) into two parts, depending on whether \(r'_{ij}(v'_{-i,j}) < \beta_i \) or not. That is,

\[
\sum_i \mathbb{E}_{v_{-i,j} \sim \mathcal{D}_{-i,j}} \mathbb{E}_{v'_{ij} \sim \mathcal{D}_{ij}} \left(I_{j \in M_i^1} \cdot I_{v'_{ij} \geq r'_{ij}(v'_{-i,j})} \cdot r'_{ij}(v'_{-i,j}) \right)
\]

\[
= \sum_i \mathbb{E}_{v_{-i,j} \sim \mathcal{D}_{-i,j}} \mathbb{E}_{v'_{ij} \sim \mathcal{D}_{ij}} \left(I_{j \in M_i^1} \cdot I_{v'_{ij} \geq r'_{ij}(v'_{-i,j})} \cdot (I_{r'_{ij}(v'_{-i,j}) < \beta_i} + I_{r'_{ij}(v'_{-i,j}) \geq \beta_i}) \cdot r'_{ij}(v'_{-i,j}) \right).
\]

(21)

Footnote 7: Strictly speaking, under the Bayesian instance \(\mathcal{I}' \), the individual 1-lookahead mechanism for item \(j \) works as follows. Given \(v'_j \sim \mathcal{D}_j \), it finds the highest bidder \(i \) for \(j \) with ties broken lexicographically, as well as the second highest bid which is exactly \(\beta_i^j \). It then tries to sell \(j \) to \(i \) at price \(r'_{ij} \). For generic distributions, there are no ties in \(v'_j \) and the mechanism can be run on each instance \(\mathcal{I}_{ij} \) and \(\beta_i^j \) separately, without ever selling \(j \) to more than one players. For arbitrary distributions, this can be done by introducing proper tie-breaking rules.
For the \(r'_{ij}(v'_{-i,j}) < \beta_{ij} \) part in Equation 21 we have

\[
\sum_i v_{-i,j} \sum_{v_{-i,j}} E_{\mathcal{D}_{-i,j}} E_{\mathcal{D}_{ij}} I_{j \in M^*_i} \cdot I_{v_{-i,j} \geq r'_{ij}(v'_{-i,j})} \cdot I_{r'_{ij}(v'_{-i,j}) < \beta_{ij}} \cdot r'_{ij}(v'_{-i,j})
\]

\[
= \sum_i v_{-i,j} \sum_{v_{-i,j}} E_{\mathcal{D}_{-i,j}} E_{\mathcal{D}_{ij}} I_{j \in M^*_i} \cdot \left(I_{v_{-i,j} \geq \beta_{ij}} > r'_{ij}(v'_{-i,j}) + I_{\beta_{ij} > v_{-i,j} \geq r'_{ij}(v'_{-i,j})} \right) \cdot r'_{ij}(v'_{-i,j})
\]

\[
= \sum_i v_{-i,j} \sum_{v_{-i,j}} E_{\mathcal{D}_{-i,j}} E_{\mathcal{D}_{ij}} I_{j \in M^*_i} \cdot \left(I_{v_{-i,j} \geq \beta_{ij}} > r'_{ij}(v'_{-i,j}) + I_{\beta_{ij} > v_{-i,j} \geq r'_{ij}(v'_{-i,j})} \right) \cdot r'_{ij}(v'_{-i,j})
\]

\[
\leq \sum_i \sum_{v_{-i,j}} E_{\mathcal{D}_{-i,j}} E_{\mathcal{D}_{ij}} I_{j \in M^*_i} \cdot \left(I_{v_{-i,j} \geq \beta_{ij}} > r'_{ij}(v'_{-i,j}) + I_{\beta_{ij} > v_{-i,j} \geq r'_{ij}(v'_{-i,j})} \right) \cdot v_{ij}
\]

\[
= \sum_i \sum_{v_{-i,j}} E_{\mathcal{D}_{-i,j}} E_{\mathcal{D}_{ij}} I_{j \in M^*_i} \cdot I_{\beta_{ij} > r'_{ij}(v'_{-i,j})} \cdot I_{v_{ij} \geq \beta_{ij}} \cdot \beta_{ij}
\]

\[
+ \sum_i \sum_{v_{-i,j}} E_{\mathcal{D}_{-i,j}} E_{\mathcal{D}_{ij}} I_{j \in M^*_i} \cdot I_{\beta_{ij} > v_{ij} \geq r'_{ij}(v'_{-i,j})} \cdot v_{ij}.
\]

The first equality above is by distinguishing whether \(\beta_{ij} \leq v_{ij} \) or not. The second equality is because \(v_{ij} = v'_{ij} \) whenever \(j \in M^*_i \). The inequality is because \(r'_{ij}(v'_{-i,j}) < \beta_{ij} \) following the indicator in the first term and \(r'_{ij}(v'_{-i,j}) \leq v_{ij} \) following the indicator in the second term. Finally, the last equality is because \(I_{v_{ij} \geq \beta_{ij}} \geq r'_{ij}(v'_{-i,j}) \cdot I_{v_{ij} \geq \beta_{ij}} \) in the first term.

For the first term in Equation 22 because the indicators \(I_{j \in M^*_i} \) and \(I_{\beta_{ij} > r'_{ij}(v'_{-i,j})} \) does not depend on \(v_{ij} \), we have

\[
\sum_i \sum_{v_{-i,j}} E_{\mathcal{D}_{-i,j}} E_{\mathcal{D}_{ij}} I_{j \in M^*_i} \cdot I_{\beta_{ij} > r'_{ij}(v'_{-i,j})} \cdot I_{v_{ij} \geq \beta_{ij}} \cdot \beta_{ij}
\]

\[
= \sum_i \sum_{v_{-i,j}} E_{\mathcal{D}_{-i,j}} I_{j \in M^*_i} \cdot I_{\beta_{ij} > r'_{ij}(v'_{-i,j})} \left(E_{v_{ij} \geq \beta_{ij}} \cdot I_{v_{ij} \geq \beta_{ij}} \cdot \beta_{ij} \right)
\]

\[
\leq \sum_i \sum_{v_{-i,j}} E_{\mathcal{D}_{-i,j}} I_{j \in M^*_i} \cdot I_{\beta_{ij} > r'_{ij}(v'_{-i,j})} \left(E_{v_{ij} \geq \beta_{ij}} \cdot \text{Rev}(\mathcal{M}_{1LA}(\hat{I}_{i,j}, \beta_{ij})) \right),
\]

where the inequality is because on the Bayesian instance \(\hat{I}_{i,j} \) and given the reserve price \(\beta_{ij} \), mechanism \(\mathcal{M}_{1LA} \) chooses the optimal price \(r_{ij} \) to maximize the expected revenue and is no worse than simply setting \(r_{ij} = \beta_{ij} \).

For the second term in Equation 22 for any valuation profile \(v \), if there exists a player \(i \) is such that the two indicators both equal to 1, then we have \(\beta_{ij} > v_{ij} \geq \beta'_{ij} \), because \(\beta_{ij} > v_{ij} \geq r'_{ij}(v'_{-i,j}) \) and \(r'_{ij}(v'_{-i,j}) \geq \beta'_{ij} \). Thus the (lexicographically first) highest bidder \(i^* \) for \(j \) in \(v_{ij} \) has his distribution unknown, and \(j \in M^*_i \cap M_{i^*} \); and player \(i \) is the (lexicographically first) highest bidder for \(j \) in \(v'_{ij} \), which is unique. Accordingly,

\[
\sum_i \sum_{v_{-i,j}} E_{\mathcal{D}_{-i,j}} E_{\mathcal{D}_{ij}} I_{j \in M^*_i} \cdot I_{\beta_{ij} > v_{ij} \geq r'_{ij}(v'_{-i,j})} \cdot v_{ij}
\]

\[
= \sum_{v_{ij} \sim \mathcal{D}_j} v_{ij} \cdot \sum_i I_{j \in M^*_i} \cdot I_{\beta_{ij} > v_{ij} \geq r'_{ij}(v'_{-i,j})} \cdot v_{ij}
\]

\[
\leq \sum_{v_{ij} \sim \mathcal{D}_j} I_{j \in M^*_i \cap M_{i^*}} \cdot \max_{v_{ij} \in M^*_i} v_{ij} \leq \sum_{v_{ij} \sim \mathcal{D}_j} I_{j \in M^*_i \cap M_{i^*}} \cdot \max_{v_{ij} \neq v'_{ij}} v_{ij}
\]

\[
= \sum_{v_{ij} \sim \mathcal{D}_j} I_{j \in M^*_i \cap M_{i^*}} \cdot \max_{v' \neq i} v_{ij}.
\]
where the last equality is because \(i^* \) is the unique player such that the indicator is 1.

Combining the above two equations with Equation 22 for the \(r_{ij}'(v_{-i,j}) < \beta_{ij} \) part in Equation 21 we have

\[
\sum_i \sum_{v_{-i,j} \sim D_{-i,j}} \mathbb{E}_{v_i \sim D_{ij}} \mathbb{E}_{j \in M_1^j} \mathbb{I}_{j \in M_1^j} \cdot \mathbb{I}_{v_i' \geq r_{ij}'(v_{-i,j}')} \cdot \mathbb{I}_{r_{ij}'(v_{-i,j}') < \beta_{ij} \cdot r_{ij}'(v_{-i,j}')}
\]

\[
\leq \sum_i \sum_{v_{-i,j} \sim D_{-i,j}} \mathbb{E}_{v_i \sim D_{ij}} \mathbb{E}_{j \in M_1^j} \cdot \mathbb{I}_{j \in M_1^j} \cdot \mathbb{I}_{v_i \geq r_{ij}(v_{-i,j})} \cdot \mathbb{I}_{r_{ij}(v_{-i,j}) > \beta_{ij} \cdot r_{ij}(v_{-i,j})}
\]

\[
+ \sum_i \mathbb{E}_{v_j \sim D_j} \sum_{j \in M_1^j \cap M_i} \cdot \max_{v_{-i,j}'} v_{ij}'
\]

\[
= \sum_i \mathbb{E}_{v_j \sim D_j} \sum_{j \in M_1^j \cap M_i} \cdot \max_{v_{-i,j}'} v_{ij}'
\]

For the \(r_{ij}'(v_{-i,j}') \geq \beta_{ij} \) part in Equation 21 we immediately have \(r_{ij}'(v_{-i,j}') = r_{ij}(v_{-i,j}) \) when the indicators are 1, because \(D_{ij}' = D_{ij} \) and \(v_{ij}' = v_{ij} \) whenever \(j \in M_1^j \), and \(r_{ij}(v_{-i,j}) \) maximizes the expected revenue over \(D_{ij} \) conditional on \(v_{ij} \geq \beta_{ij} \). Thus

\[
\sum_i \mathbb{E}_{v_j \sim D_j} \sum_{j \in M_1^j \cap M_i} \cdot \max_{v_{ij}'} v_{ij}'
\]

Combining the above two equations with Equation 21 and then Equation 20, we have

\[
\sum_i \mathbb{E}_{v_j \sim D_j} \sum_{j \in M_1^j \cap M_i} \cdot \max_{v_{ij}'} v_{ij}'
\]

and Equation 19 holds.

Taking summation over all items \(j \) on both sides of Equation 19 and combining with Equation 18 we have

\[
\mathbb{E}_{v \sim D} \text{Rev}(M_{i\text{EA}}(\mathcal{I})) \geq \sum_{j \in M} \sum_i \mathbb{E}_{v_j \sim D_j} \mathbb{I}_{j \in M_1^j} \cdot \text{Rev}(M_{i\text{LA}}(\mathcal{I}_{i,j}', \beta_{ij}'))
\]

\[
= \mathbb{E}_{v' \sim D'} \sum_{i} \sum_{j \in M_1^j} \text{Rev}(M_{i\text{LA}}(\mathcal{I}_{i,j}', \beta_{ij}')) = \mathbb{E}_{v' \sim D'} \text{Rev}(M_{i\text{LA}}(\mathcal{I}')) \geq \frac{1}{2} \mathbb{E}_{v' \sim D'} IM(\mathcal{I}'),
\]

24
where the inequality is because \mathcal{M}_{1LA} is a 2-approximation to Myerson’s mechanism for each item \([40]\). Thus Lemma \([5]\) holds.

B Proofs for Section \([4]\)

B.1 Proof of Theorem \([4]\)

Theorem \([4]\) (restated) \(\forall k \in [n - 1]\), any unit-demand auction instances \(\hat{I} = (N, M, D)\) and \(I = (N, M, D, G)\) where \(G\) is \(k\)-informed, mechanism \(\mathcal{M}_{I\text{EUD}}'\) is 2-DST and \(\mathbb{E}_{v \sim D}\text{Rev}(\mathcal{M}_{I\text{EUD}}'(I)) \geq \frac{\tau_k}{24} \cdot \text{OPT}(\hat{I})\).

Proof. The proof is almost the same as that of Theorem \([4]\) thus most details are omitted. Below we only show that under the players’ truthful strategies, the probability for each distribution \(D_{ij}\) to be reported in mechanism \(\mathcal{M}_{I\text{EUD}}'\) is at least \(\tau_k\). Indeed, for any player \(i\) and item \(j\),

\[
\Pr(D_{ij} \text{ is reported in the mechanism}) = \Pr(i \in N_2) \Pr(\exists i' \in N_1, (i, i') \in G_j \mid i \in N_2) \geq (1 - q)(1 - (1 - q)^k),
\]

where the inequality is because \(D_{ij}\) is known by at least \(k\) players other than \(i\), and the players are partitioned independently. Taking derivatives of the last term, we have that it is maximized when \(q = 1 - (k + 1)^{-\tau_k}\) as in the mechanism, in which case

\[
\Pr(D_{ij} \text{ is reported in the mechanism}) \geq \frac{1}{(k + 1)^{\tau_k}} \cdot \frac{k}{k + 1} = \tau_k.
\]

Combined with the proof of Theorem \([4]\) Theorem \([4]\) holds.

B.2 Proof of Theorem \([5]\)

The Information Elicitation Individual Myerson Mechanism. We start by introducing the information elicitation individual Myerson mechanism \(\mathcal{M}_{IEIM}\), which runs the following mechanism \(\mathcal{M}_{IEIM,j}\) for each item \(j\) separately. Mechanism \(\mathcal{M}_{IEIM,j}\) is similar to \(\mathcal{M}_{I\text{EUD}}\) and \(\mathcal{M}_{I\text{EUD}}'\), thus we have omitted many details in the analysis.

Mechanism 4. \(\mathcal{M}_{IEIM,j}\)

1. Each player \(i\) reports a value \(b_{ij}\) and a knowledge \(K_{ij} = (D_{ij}'_{i'}:i' \neq i)\).
2. Randomly partition the players into two sets, \(N_1\) and \(N_2\), where each player is independently put in \(N_1\) with probability \(q = 1 - (k + 1)^{-\tau_k}\) and \(N_2\) with probability \(1 - q\).
3. Let \(N_3\) be the set of players in \(N_2\) whose distributions are reported by some players in \(N_1\), and \(D'_{N_3,j}\) be the vector of reported distributions.
4. Run Myerson’s mechanism on the single-good Bayesian instance \(\hat{I}_{N_3,j} = (N_3, \{j\}, D'_{N_3,j})\) with the values being \((b_{ij})_{i \in N_3}\); and use the resulting allocation and prices to sell to players in \(N_3\).

For each item \(j\), let \(v_j = (v_{ij})_{i \in N}, D_j = (D_{ij})_{i \in N}, \hat{I}_j = (N, \{j\}, D_j)\) be the corresponding single-good Bayesian instance, and \(\hat{I}_j = (N, \{j\}, D_j, G_j)\) be the corresponding single-good information elicitation instance. Lemma \([7]\) below is similar to Lemma \([1]\) and we provide its statement only.

Lemma 7. For any additive auction instances \(\hat{I} = (N, M, D)\) and \(I = (N, M, D, G)\), mechanism \(\mathcal{M}_{IEIM,j}\) is 2-DST for \(\hat{I}_j\) for each \(j \in M\), and mechanism \(\mathcal{M}_{IEIM}\) is 2-DST for \(\hat{I}\).
Next, we consider the expected revenue of \mathcal{M}_{IEIM}.

Lemma 8. $E_{v \sim D} Rev(\mathcal{M}_{IEIM}(\mathcal{I})) \geq \tau_k E_{v \sim D} Rev(\mathcal{I}(\hat{I})).$

Proof. By definition,

$$E_{v \sim D} Rev(\mathcal{M}_{IEIM}(\mathcal{I})) = \sum_{j \in M} E_{v_j \sim D_j} Rev(\mathcal{M}_{IEIM,j}(\mathcal{I}_j))$$

and

$$E_{v \sim D} Rev(\mathcal{I}(\hat{I})) = \sum_{j \in M} OPT(\hat{I}_j).$$

Accordingly, it suffices to show that for each item j,

$$E_{v_j \sim D_j} Rev(\mathcal{M}_{IEIM,j}(\mathcal{I}_j)) \geq \tau_k OPT(\hat{I}_j).$$

Using ideas and notations similar to those in the proofs of Theorem 1 and Lemma 2, we have

$$E_{v_j \sim D_j} Rev(\mathcal{M}_{IEIM,j}(\mathcal{I}_j)) = E_{N_3} E_{v_{N_3,j} \sim D_{N_3,j}} OPT(\hat{I}_{N_3,j}) \geq E_{N_3} v_j \sim D_j OPT(\hat{I}_j)_{N_3}$$

$$= E_{N_3} \sum_{v_j \sim D_j} \sum_{i \in N_3} P_i(OPT(\hat{I}_j)) = E_{v_j \sim D_j} \sum_{i \in N_3} P_i(OPT(\hat{I}_j))$$

$$= \tau_k \sum_{v_j \sim D_j} \sum_{i \in N_3} P_i(OPT(\hat{I}_j))$$

as desired. Thus Lemma 8 holds. □

The Information Elicitation Individual 1-Lookahead Mechanism. Next, we introduce the information elicitation 1-lookahead mechanism \mathcal{M}_{IE1LA}, which runs the following mechanism $\mathcal{M}_{IE1LA,j}$ for each item j separately. We will show that the revenue of \mathcal{M}_{IE1LA} matches that of mechanism \mathcal{M}_{1LA} for any $k \geq 1$.

Mechanism 5 $\mathcal{M}_{IE1LA,j}$

1. Each player i reports a value b_{ij} and a knowledge $K_{ij} = (D_{i,j}')_{i' \neq i}$.
2. Set $i^* = \arg \max_i b_{ij}$ and $p_{second} = \max_{i \neq i^*} b_{ij}$.
3. If i^*’s distribution is not reported, sell item j to him at price p_{second} and halt here.
4. Otherwise, let $D_{i^*,j}'$ be the reported distribution for i^* (if there are many reported distributions for him, take the one by the lexicographically first reporter).
5. Let $p_{i^*} = \max_p \Pr_{v_{i^*,j} \sim D_{i^*,j}'} (v_{i^*,j} \geq p \mid v_{i^*,j} \geq p_{second}) \cdot p$. If $b_{i^*,j} \geq p_{i^*}$ then sell item j to i^* at price p_{i^*}; otherwise the item is unsold.

Note that $\mathcal{M}_{IE1LA,j}$ does not partition the players into two groups. Also, it is not exactly using the 1-lookahead mechanism as a blackbox, because it has to handle boundary cases where the players’ distributions are not all reported. However, for the mechanism to be well defined, it has to know what to
do in all possible cases. Moreover, running the 1-lookahead mechanism on the set of players whose distributions are reported is not 2-DST: for example, if the player with the second highest value is the only one who knows the distribution for the player with the highest value, then he may choose not to report his knowledge about the latter, so that he himself has the highest value in the 1-Lookahead mechanism and gets a high utility. That is why the mechanism only tries to sell to the player with the highest value. We have the following two lemmas.

Lemma 9. For any additive auction instances $\hat{I} = (N, M, D)$ and $I = (N, M, D, G)$, mechanism \mathcal{M}_{IE1LA_j} is 2-DST for each I_j, and mechanism \mathcal{M}_{IE1LA} is 2-DST for I.

Proof. As in mechanism \mathcal{M}_{IEA}, in each mechanism \mathcal{M}_{IE1LA_j}, the fact that it is dominant for each player i to report his true value no matter what knowledge the players report follows from the truthfulness of the second-price mechanism and that of the 1-lookahead mechanism. Given that all players report their true values, a player i's reported knowledge does not affect whether he is i^* or not. It may affect the other players' utilities, but not his own. Thus reporting his true knowledge never hurts him, and mechanism \mathcal{M}_{IE1LA_j} is 2-DST for I_j.

Since the players have additive valuations and \mathcal{M}_{IE1LA} runs each mechanism \mathcal{M}_{IE1LA_j} separately for item j, we have that \mathcal{M}_{IE1LA} is 2-DST for I and Lemma 9 holds.

Lemma 10. $\mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(\mathcal{M}_{IE1LA}(I)) = \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(\mathcal{M}_{1LA}(\hat{I})) \geq \frac{1}{2} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(\mathcal{M}_{1LA}(\hat{I})).$

Proof. When the players report their true values and true knowledge, the outcome of each \mathcal{M}_{IE1LA_j} on the information elicitation instance I_j is the same as that of mechanism \mathcal{M}_{1LA} on the Bayesian instance \hat{I}_j, because the distribution for i^* is reported. Accordingly,

$$\mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(\mathcal{M}_{IE1LA}(I)) = \sum_{j \in M} \mathbb{E}_{v \sim \mathcal{D}_j} \text{Rev}(\mathcal{M}_{IE1LA_j}(I_j)) = \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(\mathcal{M}_{1LA}(\hat{I}))$$

$$\geq \sum_{j \in M} \frac{1}{2} \text{OPT}(\hat{I}_j) = \frac{1}{2} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(\mathcal{M}_{1LA}(\hat{I})), $$

where the inequality is because the 1-lookahead mechanism is a 2-approximation to the optimal Bayesian mechanism for each item j [10]. Thus Lemma 10 holds.

Note that the approximation ratio of \mathcal{M}_{IE1LA} does not depend on the specific value of k, as long as $k \geq 1$.

The Information Elicitation BVCG Mechanism. The mechanism \mathcal{M}_{IEBVCG} is defined in Mechanism 6. It is similar to \mathcal{M}_{IEA} and approximates mechanism BVCG in information elicitation settings. If a player i's value distributions are not all reported, \mathcal{M}_{IEBVCG} throws i away and leaves his winning set unsold. This simplifies the instructions compared to \mathcal{M}_{IEA} and still ensures truthfulness. Doing so would seriously damage the revenue if the knowledge graphs can be totally arbitrary. However, when everything is known by somebody and when the players report their true knowledge, no player is actually thrown away. We have the following two lemmas.

Lemma 11. Mechanism \mathcal{M}_{IEBVCG} is 2-DST.

Proof. Arbitrarily fix a player i, a strategy subprofile of the other players, and a knowledge of i. If not all m distributions of i's values are reported by the others, then i gets nothing and pays nothing, so it does not matter what valuation he reports about himself. Otherwise, \mathcal{M}_{IEBVCG}
Mechanism 6 \mathcal{M}_{IEBVCG}

1: Each player i reports a valuation $b_i = (b_{ij})_{j \in M}$ and a knowledge $K_i = (\mathcal{D}^i_{k})_{i' \neq i, j \in M}$.
2: For each item j, set $i^*(j) = \arg\max_i b_{ij}$ (ties broken lexicographically) and $p_j = \max_{i \neq i^*} b_{ij}$.
3: for each player i do
4: Let $M_i = \{j \mid i^*(j) = i\}$ be player i's winning set.
5: If not all m distributions of i's values are reported, i gets no item and items in M_i are unsold.
6: Otherwise, let \mathcal{D}'_i be the vector of reported distributions for i's values (if there are more than one reporters for an item, take the lexicographically first).
7: Compute the entry fee $e_i(\mathcal{D}'_i, b_{-i})$ using $BVCG$. Note that different from mechanism $Bund$, $BVCG$ does not compute extra reserve prices for i.
8: Sell M_i to player i according to $BVCG$. That is, if $\sum_{j \in M_i} b_{ij} \geq e_i(\mathcal{D}'_i, b_{-i}) + \sum_{j \in M_i} p_j$ then i gets M_i with price $e_i(\mathcal{D}'_i, b_{-i}) + \sum_{j \in M_i} p_j$; otherwise i gets no item and the items in M_i are unsold.
9: end for

sells to player i in the same way as $BVCG$: using the other players’ highest reported value as the reserve price for each item, either player i gets the whole set of items for which his value passes the reserve price (i.e., his winning set), or he gets nothing and those items are unsold to anybody. Following [43], it is dominant for i to report his true values given any entry fee that does not depend on his reported values, so it is when the entry fee is computed based on \mathcal{D}'_i and b_{-i}.

Moreover, a player i’s reported knowledge K_i about others affects neither M_i nor e_i, nor the reserve prices for him. Thus reporting his true knowledge never hurts him and Lemma 11 holds.

Lemma 12. $\mathbb{E}_{v \sim \mathcal{D}} Rev(\mathcal{M}_{IEBVCG}(\mathcal{I})) = \mathbb{E}_{v \sim \mathcal{D}} Rev(BVCG(\mathcal{I}))$.

Proof. Since \mathcal{M}_{IEBVCG} retrieves the whole distribution \mathcal{D} from the players, its outcome is exactly the same as that of $BVCG$ under the Bayesian instance \mathcal{I}.

Remark. Similar to \mathcal{M}_{IELA}, the revenue of \mathcal{M}_{IEBVCG} does not depend on the specific value of k, as long as $k \geq 1$. Indeed, notice the special structures of the two Bayesian mechanisms \mathcal{M}_{IELA} and $BVCG$: the winning set of a player i solely depends on the players’ values; the distribution \mathcal{D}_i is only used to compute better reserve prices or entry fee to increase revenue; and the distribution \mathcal{D}_{-i} is irrelevant to i. Therefore, in the information elicitation setting we can allow a player to be both a reporter about the others’ distributions and a potential buyer of some items. In some other mechanisms such as Myerson’s mechanism, all players’ distributions are used both to choose the potential winner and to set his price, thus in the information elicitation setting we must separate the knowledge reporters and the potential winners.

We are now ready to prove Theorem 5.

Theorem 5 (restated) For any $k \in [n - 1]$, any additive auction instances $\mathcal{I} = (N, M, \mathcal{D})$ and $\mathcal{I} = (N, M, \mathcal{D}, G)$ where G is k-informed, the mechanism \mathcal{M}'_{IEA} is 2-DST and

$$\mathbb{E}_{v \sim \mathcal{D}} Rev(\mathcal{M}'_{IEA}(\mathcal{I})) \geq \max\left\{\frac{1}{11}, \frac{\tau_k}{6 + 2\tau_k}\right\} \cdot OPT(\mathcal{I}).$$
Proof. Recall that mechanism \(M'_{IEA}\) is defined as follows: when \(k \leq 7\), it runs \(M_{IEBVCG}\) with probability \(\frac{\tau}{11}\) and \(M_{IE1LA}\) with probability \(\frac{9}{11}\); when \(k > 7\), it runs \(M_{IEBVCG}\) with probability \(\frac{3\tau}{3 + 7\tau}\) and \(M_{IEIM}\) with probability \(\frac{3}{3 + 7\tau}\).

The mechanism \(M'_{IEA}\) is clearly 2-DST, since all the sub-mechanisms are 2-DST, and which mechanism is chosen does not depend on the players’ strategies.

When \(k \leq 7\), we have \(\frac{\tau_k}{6 + 2\tau_k} < \frac{1}{11}\). By Lemmas [10] and [12],

\[
\mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(M'_{IEA}(\hat{I})) = \frac{\tau_k}{3 + \tau_k} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(M_{IEBVCG}(\hat{I})) + \frac{3}{3 + \tau_k} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(M_{IEIM}(\hat{I}))
\]

\[
\geq \frac{2}{11} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(BVC(G)(\hat{I})) + \frac{3}{11} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(IM(\hat{I})) + \frac{3}{11} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(M_{1LA}(\hat{I})).
\]

When \(k > 7\), we have \(\frac{\tau_k}{6 + 2\tau_k} > \frac{1}{11}\). By Lemmas [8] and [12],

\[
\mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(M'_{IEA}(\hat{I})) = \frac{\tau_k}{3 + \tau_k} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(M_{IEBVCG}(\hat{I})) + \frac{3}{3 + \tau_k} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(M_{IEIM}(\hat{I}))
\]

\[
\geq \frac{2}{11} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(BVC(G)(\hat{I})) + \frac{3}{11} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(IM(\hat{I})).
\]

By [11],

\[
OPT(\hat{I}) \leq \frac{2}{11} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(BVC(G)(\hat{I})) + 3 \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(IM(\hat{I})) + \frac{3}{11} \mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(M_{1LA}(\hat{I})).
\]

Combined the first inequality with Inequality [23] and the second with Inequality [24] we have

\[
\mathbb{E}_{v \sim \mathcal{D}} \text{Rev}(M'_{IEA}(\hat{I})) \geq \frac{1}{11} \cdot \frac{\tau_k}{6 + 2\tau_k} \cdot OPT(\hat{I}),
\]

B.3 An Illustration of Mechanism \(M_{IEM}\)

The sets of players involved in the first round of mechanism \(M_{IEM}\) are illustrated in Figure [2].

B.4 Proof of Theorem [6]

Lemma 13. \(M_{IEM}\) is 2-DST.

Proof. Similar to Lemma [1] the proof takes two steps.

Claim 3. For any player \(i\), true value \(v_i\), value \(b_i\), knowledge \(K_i\), and strategy subprofile \(s_{-i} = (b_j, K_j)_{j \neq i}\) of the other players, \(\mathbb{E}_{M_{IEM}} u_i((v_i, K_i), s_{-i}) = \mathbb{E}_{M_{IEM}} u_i((b_i, K_i), s_{-i})\), where the expectation is taken over the mechanism’s random coins.

Proof. First, conditional on \(a = i\), player \(i\) does not get the item and his reported value is not used by the mechanism. Thus \(u_i((v_i, K_i), s_{-i}) = u_i((b_i, K_i), s_{-i}) = 0\) in this case.

Second, we compare the two utilities conditional on \(a \neq i\). Notice that when \(a \neq i\), whether or not player \(i\)’s distribution is reported—that is, whether or not \(\mathcal{D}_{i}'\) is defined—only depends on \(s_{-i}\). Thus \(\mathcal{D}_{i}'\) is defined under \((v_i, K_i)\) if and only if it is defined under \((b_i, K_i)\).
If \(D_i' \) is not defined, then \(i \in N' \) at the end of the mechanism, he does not get the item, and his reported value is not used. Therefore \(u_i((v_i, K_i), s_{-i}) = u_i((b_i, K_i), s_{-i}) = 0 \) again.

If \(D_i' \) is defined, then it is defined in the same round of the mechanism under both \((v_i, K_i)\) and \((b_i, K_i)\), which we refer to as round \(r \). Also, \(D_i' \) is the same in both cases and the mechanism’s execution is the same till this round. Notice that

1. \(\phi_i(\cdot; D_i') \) is monotone in its input;
2. \(i \) gets the item if and only if \(i = i^* \) in all rounds \(\ell \) with \(\ell \geq r \) and his virtual value is at least 0; and
3. when \(i \) gets the item, \(K_i \) is never used by the mechanism and thus does not affect the execution of any round \(\ell \) with \(\ell \geq r \).

Accordingly, the mechanism is monotone in player \(i \)'s reported value: if \(i \) gets the item by reporting some value, then he still gets it by reporting a higher value. Moreover, when \(i \) gets the item, his price in Step 13 is the threshold payment. Following standard characterizations of single-parameter DST mechanisms, it is the best for player \(i \) to report his true value \(v_i \). That is, \(u_i((v_i, K_i), s_{-i}) \geq u_i((b_i, K_i), s_{-i}) \) when \(D_i' \) is defined.

Combining the above cases together, we have \(\mathbb{E}_{M_{IEM}} u_i((v_i, K_i), s_{-i}) \geq \mathbb{E}_{M_{IEM}} u_i((b_i, K_i), s_{-i}) \) and Claim 3 holds.

Claim 4. For any player \(i \), true value \(v_i \), true knowledge \(K_i \), knowledge \(K'_i \), and knowledge subprofile \(K'_{-i}(v_{-i}) = (K'_j(v_j))_{j \neq i} \) of the other players, where each \(K'_j(v_j) \) is a function of player \(j \)'s true value \(v_j \), \(\mathbb{E}_{v_i \sim D_i} u_i((v_i, K_i), (v_{-i}, K'_{-i}(v_{-i}))) \geq \mathbb{E}_{v_i \sim D_i} u_i((v_i, K'_i), (v_{-i}, K'_{-i}(v_{-i}))) \).

Proof. Similar to Claim 3 conditional on \(a = i \), player \(i \) does not get the item no matter what knowledge he reports. Thus \(\mathbb{E}_{v_i \sim D_i} [u_i((v_i, K_i), (v_{-i}, K'_{-i}(v_{-i}))) | a = i] = \mathbb{E}_{v_i \sim D_i} [u_i((v_i, K'_i), (v_{-i}, K'_{-i}(v_{-i}))) | a = i] = 0 \).

Next, we compare the two utilities conditional on \(a \neq i \). Again similar to Claim 3 \(D_i' \) is the same under both strategies of \(i \), and the mechanism’s execution is also the same till the round \(r \) where \(D_i' \) is defined (or till the end if \(D_i' \) is not defined). There are three cases:

Figure 2: The sets of players involved in the first round of Mechanism \(M_{IEM} \). The edges in the figure correspond to distributions reported by the players. In each round, the mechanism keeps in \(S \) the player with the highest virtual value so far, drops all the other players from \(S \), and adds the players whose distributions are reported for the first time by the dropped ones.
• If D'_i is not defined, then neither K_i nor K'_i is used by the mechanism, and i has utility 0 under both strategies.

• If D'_i is defined and $i = i^*$ from round r to the end of the mechanism, then again K_i and K'_i are not used. Thus i has the same utility (maybe non-zero) under both strategies.

• If D'_i is defined and $i \neq i^*$ starting from some round $r' \geq r$, then i does not get the item under either strategy, thus his utility is 0 under both of them.

In sum, $\mathbb{E}_{v_i \sim \mathcal{D}_i} u_i((v_i, K'_i), (v_i, K'_i(v_i))) = \mathbb{E}_{v_i \sim \mathcal{D}_i} u_i((v_i, K'_i), (v_i, K'_i(v_i)))$ and reporting his true knowledge does not hurt player i.

Lemma 13 follows directly from Claims 3 and 4

Theorem 6 (restated) For any single-good auction instances $\hat{I} = (N, M, D)$ and $\bar{I} = (N, M, D, G)$ where G is 2-connected, \mathcal{M}_{IEM} is 2-DST and $\mathbb{E}_{v_i \sim \mathcal{D}} Rev(\mathcal{M}_{IEM}(\bar{I})) \geq (1 - \frac{1}{n})Opt(\bar{I})$.

Proof. Following Lemma 13, it remains to show $\mathbb{E}_{v_i \sim \mathcal{D}} Rev(\mathcal{M}_{IEM}(\bar{I})) \geq (1 - \frac{1}{n})Opt(\bar{I})$ under the players’ truthful strategies. The key is to explore the structure of the knowledge graph to make sure that the player with the highest virtual value is found by the mechanism with high probability.

More specifically, arbitrarily fix the player a chosen by the mechanism. Notice that throughout the mechanism, N' is the set of players $i \in N \setminus \{a\}$ such that D'_i is not defined. We show that $N' = \emptyset$ at the end of the mechanism. Indeed, since G is 2-connected, the out-degree of a in G is at least 2: otherwise, either a cannot reach any other node in G, or this becomes the case after removing the unique node j with $(a,j) \in G$, contradicting 2-connectedness. Since a reports his true knowledge K_a, we have $|S| \geq 2$ in Step 3 and the mechanism does not stop there. Moreover, at the beginning of each round, we have $|S| \geq 2$ and thus $S \setminus \{i^*\} \neq \emptyset$: otherwise $S' = \emptyset$ in the previous round, and the mechanism would not have reached this round.

Assume, for the sake of contradiction that the mechanism finally reaches a round r where $N' \neq \emptyset$ at the beginning but $S' = \emptyset$ in Step 3. Since all players report their true knowledge, by the definition of S' we have that, in graph G, all neighbors of $S \setminus \{i^*\}$ are in $N \setminus N'$. Furthermore, for any player $i \in (N \setminus N') \setminus S$, all neighbors of i are also in $N \setminus N'$; indeed, i has been moved from N' to S and then dropped from G (except player a, whose neighbors are in $N \setminus N'$ by definition); and when i is dropped from S, all his neighbors in N' are moved to S. Accordingly, all the edges going from $N \setminus N'$ to N' are from player i^*, and G becomes disconnected after removing i^*, again contradicting 2-connectedness. Thus $S' \neq \emptyset$ in all rounds and $N' = \emptyset$ in the end, as we wanted to show.

Because all players report their true values and true knowledge, we have $D'_{-a} = D_{-a}$ and $\phi_i(v_i; D'_i) = \phi_i(v_i; D_i)$ for all $i \neq a$. Letting $\hat{I}_a = (N \setminus \{a\}, M, D_{-a})$, we claim

$$\mathbb{E}_{v_i \sim \mathcal{D}} [Rev(\mathcal{M}_{IEM}(\bar{I}))|a] = Opt(\hat{I}_a).$$

(25)

To see why this is true, note that by construction, in each round the mechanism keeps the player with the highest virtual value in S. Thus, the final player i^* has the highest virtual value in $N \setminus \{a\}$, and ϕ_{second} is the second highest virtual value in $N \setminus \{a\}$. Accordingly, the outcome of Step 13 is the same as that of Myerson’s mechanism on \hat{I}_a, so is the revenue. Therefore Equation 25 holds.

Finally, it remains to show that, by throwing away a random player a, the mechanism does not lose much revenue. For each player i, letting $P_i(Opt(\hat{I}))$ be the expected price paid by i in Myerson’s mechanism under \hat{I}, we have $Opt(\bar{I}) = \sum_{i \in N} P_i(Opt(\hat{I}))$. Similar to the proof of Lemma 2, consider the following Bayesian mechanism \mathcal{M}' on \hat{I}_a: it runs Myerson’s mechanism on \hat{I} and then projects the outcome to players $N \setminus \{a\}$. It is easy to see that \mathcal{M}' is DST, thus it cannot
generate more revenue than $OPT(\hat{I}_a)$. As the expected revenue of M' is $\sum_{i \neq a} P_i(OPT(\hat{I}))$, we have

$$OPT(\hat{I}_a) \geq \mathbb{E}_{D \sim a} Rev(M'(\hat{I}_a)) = \sum_{i \neq a} P_i(OPT(\hat{I})).$$

Combining Equations 25 and 26, we have

$$\mathbb{E}_{\omega \sim D} Rev(M_{IEU}(\hat{I})) = \sum_{a \in N} \frac{1}{n} \mathbb{E}_{\omega \sim D}[Rev(M_{IEU}(\hat{I})) | a] = \sum_{a \in N} \frac{1}{n} \left(OPT(\hat{I}_a) \right)$$

$$\geq \sum_{a \in N} \frac{1}{n} \left(\sum_{i \neq a} P_i(OPT(\hat{I})) \right) = \left(\sum_{i \in N} \frac{n-1}{n} P_i(OPT(\hat{I})) \right) = (1 - \frac{1}{n})OPT(\hat{I}),$$

and Theorem 4 holds. \qed

C Using Scoring Rules to Buy Knowledge from Players

In this section we use proper scoring rules to reward the players for their knowledge, so that it is strictly better for them to report truthfully. More precisely, a scoring rule is a function f that takes as inputs a distribution D' over a state space Ω and a random sample ω from an underlying true distribution D over Ω, and outputs a real number. Scoring rule f is proper if

$$\mathbb{E}_{\omega \sim D} f(D, \omega) \geq \mathbb{E}_{\omega \sim D} f(D', \omega)$$

for any D and D', and strictly proper if the inequality is strict for any $D' \neq D$. Moreover, f is bounded if there exist constants c_1, c_2 such that $c_1 \leq f(D', \omega) \leq c_2$ for any D' and ω. Our mechanisms can use any strictly proper scoring rules that are bounded. For concreteness, we use Brier’s scoring rule [9]:

$$BSR(D', \omega) = 2 - \left(\sum_{s \in \Omega} (\delta_{\omega,s} - D'(s))^2 \right) = 2D'(\omega) - ||D'||_2^2 + 1,$$

where $D'(s)$ is the probability of s according to D', and $\delta_{\omega,s}$ is the indicator for $\omega = s$. Note that $BSR(D', \omega) \in [0, 2]$ for any D' and ω.

In all our mechanisms, when player i reports $D_{i,j}^i \neq \bot$ for player i' and item j, the seller rewards i based on $BSR(D_{i,j}^i, b_{i,j})$. If there are more than one reporters for the same distribution, the seller can either reward all of them or randomly choose one. We can scale the reward for each distribution so that the total reward given to the players is at most some constant ϵ, which is an ϵ additive loss to the revenue. For example, in Mechanism M_{IEU}, the seller could reward each player i with

$$r_{i,j}^i = \frac{\epsilon}{2mn^2} BSR(D_{i,j}^i, b_{i,j})$$

for reporting the value distribution of player i' on item j.

Although scoring rules help breaking utility-ties, they cause another problem: a player who does not know a distribution may report something he made up, just to receive a reward. Therefore we start by considering our mechanisms under the no-bluff assumption: that is, a player will not report anything about a distribution that he does not know. More precisely, a player i in an information elicitation auction is no-bluff if, for any knowledge graph G_j and player i' with $(i, i') \notin G_j$, and for any strategy (b_i, K_i) of i, i reports \bot for the corresponding distribution of i'. Note that for a

\footnote{The original version of BSR is bounded by -1 and 1, and we have shifted it up by 2.}
player \(i'\) with \((i, i') \in G_j\), \(i\) may report any distribution about \(i'\), including \(\bot\). In some sense, the no-bluff assumption is the analogy of the no-overbidding assumption adopted in budget-constrained auctions: a player will not bid higher than his true value or budget, even if doing so may not lead to a price higher than the latter.

For all our mechanisms, it is easy to see that the reward will only affect the players’ incentives for reporting their knowledge, not their incentives for reporting their values. Accordingly, it is still dominant for the players to report their true values, no matter what knowledge they report. Given that the players all report their true values, the reported values are distributed according to the prior. Thus reporting his true knowledge is now strictly better than lying for a player, because it maximizes his reward. Rather than restating all our previous theorems, we summarize them in the theorem below.

Theorem 7. Under the no-bluff assumption, for any information elicitation mechanism in previous sections, the revised mechanism with proper scoring rules is 2-DST, and reporting his true knowledge is strictly better than lying for each player \(i\). Moreover, the mechanism’s revenue is the same as before with an \(\epsilon\) additive loss.

Next, we show how to remove the no-bluff assumption when everything is known. Without this assumption, player \(i\) may report a distribution for another player \(i'\)’s value for an item \(j\), even if \((i, i') \notin G_j\). However, if there exists a third player \(i\) who knows \(i'\)’s distribution \(D_{i'j}\), and if player \(i\) is also rewarded for player \(i\)’s report, then intuitively player \(i\) would have no incentive to bluff about \(i'\). That is, not only a player is paid for reporting the distributions he knows, but he is also paid for keeping quiet about the distributions he does not know and letting the experts speak. Surely reporting \(D_{i'j}\) maximizes player \(i\)’s expected reward, but he does not have the information to decide what \(D_{i'j}\) is. Therefore, as long as reporting “\(\bot\)” gives player \(i\) the same utility as the unknown strategy of reporting \(D_{i'j}\), and as long as reporting any distribution other than \(D_{i'j}\) gives him a strictly smaller utility, player \(i\) will report “\(\bot\)” about \(D_{i'j}\).

Taking mechanism \(M'_{IEUD}\) in Section 4 as an example, the players are rewarded as follows:

- For each player \(i'\) and item \(j\), let \(R_{i'j}\) be the set of players who did not report “\(\bot\)” about the value of \(i'\) for \(j\). Randomly select a player \(\hat{i}\) from \(R_{i'j}\) and let \(r_{i'j} = BSR(D_{i'j}, b_{i'j})\). Reward every player \(i \neq i'\) using \(r_{i'j}\), properly scaled.

Note that the reward \(r_{i'j}\) is given to player \(i\) even if he has reported \(D_{i'j} = \bot\).

It is easy to see that, for any \(k\)-informed information elicitation instance with \(k \geq 1\), if all players except \(i\) report their true values and true knowledge, then player \(i\)’s best strategy is to tell the truth about his own. Indeed, reporting his true values is still dominant no matter what knowledge the players’ report. Moreover, for each player \(i'\) and item \(j\), there are two ways for player \(i\) to maximize the reward \(r_{i'j}\) he receives: (1) reporting \(D_{i'j} = \bot\), so that \(\hat{i}\) is chosen with probability 1 from the set of players who actually know \(D_{i'j}\); or (2) successfully guessing \(D_{i'j}\) and reporting it, so that \(\hat{i}\)’s report is still \(D_{i'j}\) with probability 1. Note that the latter is not a well-defined Bayesian strategy, because \(i\) does not have enough information to carry it out. Accordingly, the resulting information elicitation mechanism is Bayesian incentive compatibility (BIC): that is, all players reporting their true values and true knowledge is a Bayesian Nash equilibrium. In fact, this is the only Bayesian Nash equilibrium in the mechanism, besides the unachievable ones where each player reports the unknown true distributions. We again summarize our results in the theorem below.

Using the standard language from epistemic game theory, player \(i\)’s information set contains at least two different distributions for \(i’\)’s value for \(j\).
Theorem 8. For any information elicitation mechanism in previous sections where the knowledge graph is at least 1-informed, the revised mechanism does not rely on the no-bluff assumption, and all players reporting their true values and true knowledge is the unique Bayesian Nash equilibrium. Moreover, the mechanism’s revenue is the same as before with an ϵ additive loss.

When not everything is known and the players may bluff, a player may not report “⊥” about a distribution he does not know, because he may still get some reward in case nobody knows that distribution. It is an interesting open problem to design information elicitation mechanisms when not everything is known and without the no-bluff assumption.

D Information Elicitation Mechanisms with Efficient Communication

To improve the communication complexity of our mechanisms, rather than asking each player to report his known distributions in their entirety, the seller can make specific queries to the players about the distributions. Indeed, the query complexity of Bayesian auctions has been studied by [18] very recently, where the seller does not know the prior distributions but is given oracle accesses to them. More precisely, for any distribution D over reals, in a value query the seller sends a value v and the oracle returns the corresponding quantile $q(v) = \Pr_{x \sim D}[x \geq v]$. In a quantile query, the seller sends a quantile $q \in [0, 1]$ and the oracle returns the corresponding value $v(q)$ such that $\Pr_{x \sim D}[x \geq v(q)] = q$.

In information elicitation auctions, as the players have knowledge about the distributions, it is very natural for the seller to use them as oracles. However, it is important to ensure that the queries to the players do not destroy their incentives to be truthful: both to report their true values and to report their true knowledge.10 Fortunately, truthfulness in our mechanisms can be easily guaranteed by non-adaptive queries, where all the queries are made together, before the players report their values. As shown by [18], when the players’ value distributions are bounded within $[1, H]$ for a given value H, the number of non-adaptive queries enough to approximate OPT in Bayesian auctions is polynomial in m and n, but only logarithmic in H, which is very efficient. Moreover, only value queries are needed in this case. When the distributions have unbounded supports but satisfy small-tail assumptions, non-adaptive quantile queries are enough, and the query complexity is polynomial in m, n and logarithmic in the cut-off value of the tail. We make the same queries in our mechanisms as in [18].

Below we show how to revise our information elicitation mechanisms to query the players, using mechanism \mathcal{M}_{IEUD} as an example and for bounded distributions. The mechanism now has a parameter $\epsilon > 0$, which affects its approximation ratio.

- In Step II given $\epsilon > 0$, let $k = \lceil \log_{1+\epsilon} H \rceil$ and $\nu = (\nu_0, \nu_1, \ldots, \nu_{k-1}, \nu_k) = (1, (1 + \epsilon), (1 + \epsilon)^2, \ldots, (1 + \epsilon)^{k-1}, H)$.

 Each player i reports, for each player $i' \neq i$ and item j, either \perp or a non-increasing quantile vector $q_{ij}^* = (q_{ij0}^*, \ldots, q_{ijk}^*)$, where $q_{ij0}^* = 1$. Allegedly, $q_{ijl}^* = \nu_{j}^{-}(\nu_l)$ for each $l \in \{0, \ldots, k\}$, where $\nu_{j}^{-}(\cdot)$ is defined by D_{ij}. That is, if $(i, i') \in G_{ij}$ then player i answers the value queries for distribution D_{ij} and value vector ν.

 Simultaneously, each player i also reports a valuation $b_i = (b_{ij})_{j \in M}$.

10Here a player reporting his true knowledge no longer means that he reports the true distributions, but that he answers the seller’s queries truthfully.
• In Step 5, if player $i \in N_1$ is the reporter for player $i' \in N_2$ and item j, then construct a discrete distribution D'_{ij} as follows: $D'_{ij}(\nu_l) = q_{ij}^l - q_{ij}^{l+1}$ for every $l \in \{0, \ldots, k\}$, where $q_{ij}^{k+1} \equiv 0$.

The other parts of the mechanism remain unchanged.

In the revised mechanism, it is still dominant for the players to report their true values, no matter how the queries are answered. Indeed, the fact that distribution D' is now different from D_{ij} does not affect the players’ truthfulness in the Bayesian mechanism $M_{U,D}$. Moreover, having player i answer the value queries for D_{ij} is equivalent to first having him report D'_{ij}, and then having the seller answer the value queries accordingly. In the latter, reporting D'_{ij} truthfully never hurts player i, because $i \in N_1$ when his knowledge is used. Thus answering the value queries truthfully never hurts i either, and the mechanism is still 2-DST. Because the value queries for a distribution D'_{ij} may be answered by all the other $n - 1$ players (when they all know D'_{ij}), the query complexity and thus the communication complexity of our mechanisms have an extra factor n compared with the query complexity in [13].

More precisely, we state the following theorem for arbitrary knowledge graphs and bounded distributions. The proof is relatively easy following those for Section 3 and those in [18], thus has been omitted.

Theorem 9. \(\forall \epsilon > 0, H > 1 \) and for any auction instances $\hat{I} = (N, M, D)$ and $I = (N, M, D, G)$, where each D_{ij}’s support is bounded in $[1, H]$, our revised information elicitation mechanisms are 2-DST and make non-adaptive value queries. Moreover,

- for single-good auctions, with $O(n^2 \log_{1+\epsilon} H)$ queries, the mechanism achieves revenue at least $\frac{OPT_k(\hat{I})}{2(1+\epsilon)}$;

- for unit-demand auctions, with $O(mn^2 \log_{1+\epsilon} H)$ queries, the mechanism achieves revenue at least $\frac{OPT_k(I)}{96(1+\epsilon)}$; and

- for additive auctions, with $O(mn^2 \log_{1+\epsilon} H)$ queries, the mechanism achieves revenue at least $\frac{OPT_k(I)}{70(1+\epsilon)}$.

The case of unbounded distributions with small-tail assumptions, as well as the cases of k-informed knowledge graphs with $k \geq 1$ and bounded/unbounded distributions, are similar. Indeed, the approximation ratios of our main results and the query complexity of Bayesian auctions in [13] combine nicely with each other, resulting in crowdsourced Bayesian mechanisms with very efficient communication.

To further improve the communication complexity of our mechanisms, the seller can change them into extensive-form mechanisms and ask each player i to first report a bit about each pair (i, j), indicating whether i knows D_{ij} or not. The seller then selects one reporter and only asks him to answer the oracle queries. By doing so, the extra factor n in the query complexity of our mechanisms can be dropped, with the players communicating $O(n^2m)$ bits besides the queries.

If scoring rules are used to buy the players’ knowledge, then we can use the following value scoring rule g_V to reward value queries, which follows directly from Brier’s scoring rule [9]. More precisely, for any value query $v \in \mathbb{R}$, letting x be a sample from the underlying value distribution and q be the answer of a reporter to the query, then

$$g_V(x, q; v) \triangleq 1 + 2q1_{x \leq v} - q^2.$$
To reward the players’ answers to quantile queries, we define the following quantile scoring rule g_Q, which is a variant of the one in [14]. More precisely, for any quantile query $q \in [0,1]$, letting x be a sample from the underlying value distribution and z be the answer of a reporter to the query, then

$$g_Q(x, z; q) \triangleq q \arctan z - (\arctan z - \arctan x)I_{z \geq x}.$$

Both scoring rules are strictly proper scoring rules with bounded ranges.

E Aggregating the Players’ Refined Insider Knowledge

As mentioned in the introduction of the paper, since the common prior assumption implies that every player has correct and exact (that is, no more, no less) knowledge about all the distributions, in the main body of this paper we do not consider scenarios where the players have “insider” knowledge. Incorrect insider knowledge has been studied in [7, 2, 19, 20, 8] and is not the focus of this paper. However, sometimes each player may have correct insider knowledge about the other players’ value distributions,11 that is, his knowledge is a refinement of the prior.

Different players’ knowledge, although all correct, may refine the prior in different ways. For example, when the prior distribution of a player i’s value for an item j is uniform over $[0, 100]$, after v_{ij} is drawn, another player i' may observe whether $v_{ij} \geq 50$ or not, and a third player i'' may observe whether $v_{ij} \in [20, 80]$. Thus, player i' knows whether v_{ij} is uniform over $[0, 50]$ or $[50, 100]$, depending on his signal; and player i'' knows whether v_{ij} is uniform over $[20, 80]$ or $[0, 20] \cup (80, 100]$, depending on the signal i'' observes.

The players’ correct knowledge must be consistent with each other and one can obtain an even better refinement of the prior by combining their knowledge together. In the example above, if player i' observes $v_{ij} < 50$ and player i'' observes $v_{ij} \not\in [20, 80]$, then it must be that $v_{ij} \in [0, 20)$ and the posterior distribution is uniform in this range. However, neither i' nor i'' knows this fact.

Enhanced knowledge graphs

To model the players’ insider knowledge, we equip the knowledge graphs in the information elicitation setting with information sets. To begin with, for any two players i, i' and item j such that $(i, i') \in G_j$, there is a partition P_{ij} of the support of D_{ij}, representing the possible signals player i will observe about D_{ij}. After the true value v_{ij} is drawn, letting $S(v_{ij})$ be the unique set in the partition that contains v_{ij}, player i learns the fact that player i'’s true value for j falls into $S(v_{ij})$ and the posterior distribution is $D_{ij} | S(v_{ij})$. More generally, the partitions may even depend on player i'’s own true valuation v_i, because v_i is part of the information he has. Because different values are independently drawn, given v_i and the information sets observed by i for different distributions of the other players, i considers their posterior distributions to be independent.

All our mechanisms remain 2-DST with respect to the players’ refined knowledge, where a player’s true knowledge is now the posterior distributions known by him. Since the optimal Bayesian revenue increases when the distributions are refined [4], the expected revenue of our mechanisms also increases, where the expectation is further taken over the private signals observed by the players. However, the revenue benchmark is still defined as before: that is, with respect to the prior and the knowledge graphs, without considering the refinements. An interesting open problem is to design information elicitation mechanisms whose revenue approximates a more demanding benchmark — the optimal revenue based on the “aggregated refinement” obtained by combining all players’ refinements together.

11 A similar scenario in the literature of contracts was considered in [13] with different concerns.
F Information Elicitation Mechanisms for Combinatorial Auctions

In our main results, the knowledge graphs for different items can be totally different from each other: player 1’s value distribution for item 2 may be known by player 3, while his value distribution for item 4 may be known by player 5, etc. When all the knowledge graphs are the same, we say that the auction has player-wise information: all value distributions of a player have the same “knower”.

With player-wise information, only one knowledge graph \(G \) is needed: an edge \((i, i')\) is in \(G \) if and only if player \(i \) knows the distribution \(D_{i'} = D_{i'1} \times \cdots \times D_{i'm} \). Such an information setting can also model arbitrary combinatorial auctions, where each player \(i \)'s valuation function \(v_i \) maps each subset of items to a non-negative real, with \(v_i(\emptyset) = 0 \). Thus the distribution \(D_i \) is over such functions, and \(i \)'s values for two subsets of items can be arbitrarily correlated. Given a combinatorial Bayesian auction instance \(\hat{I} = (N, M, D) \), a corresponding information elicitation instance is denoted by \(I = (N, M, D, G) \), where \(G \) is a single knowledge graph rather than a vector of graphs.

Player-wise information is a much stronger assumption than (player, item)-wise information (player, item)-wise information. Thus for unit-demand auctions there is no need to adopt the COPIES setting to handle the scenario where only part of \(D_i \) is reported. As before, the approximation ratio of \(M_{IEB} \) increases as \(k \) gets larger and converges to that of the Bayesian mechanism. When \(k = 1 \), it is a 4-approximation to \(OPT \) using the optimal Bayesian mechanism as a black-box. Note that the model studied in [4] is a very special case even compared with the player-wise information setting: that is, \(G \) is the complete graph and \(k = n - 1 \). Since \(\tau_n^{-1} = \frac{n-1}{n^\pi (n-1)} \rightarrow 1 - \frac{1}{n} \) when \(n \) gets larger, the revenue of our mechanism essentially matches that of [4] for combinatorial auctions. Moreover, if the players can observe private signals and refine their knowledge about the prior, then our mechanism can also aggregate such refinements as in [4]. Finally, we have the following corollary for arbitrary knowledge graphs (i.e., \(k \) may be 0).

Mechanism 7 \(M_{IEB} \)

1. Each player \(i \) reports a valuation function \(b_i \) and a knowledge \(K_i = (D_{i'})_{i' \neq i} \).
2. Randomly partition the players into two sets, \(N_1 \) and \(N_2 \), where each player is independently put in \(N_1 \) with probability \(q = 1 - (k + 1)^{\frac{-k}{n}} \) and \(N_2 \) with probability \(1 - q \).
3. Let \(N_3 \) be the set of players in \(N_2 \) whose distributions are reported by some players in \(N_1 \), and let \(D'_{N_3} \) be the vector of reported distributions.
4. Run \(M_B \) on the Bayesian instance \(\hat{I}_{N_3} = (N_3, M, D'_{N_3}) \) and the valuation functions \(b_{N_3} \); and use the resulting allocation and prices to sell to players in \(N_3 \).

Theorem 10. For any \(k \in [n - 1] \), for any combinatorial auction instances \(\hat{I} = (N, M, D) \) and \(I = (N, M, D, G) \) where \(I \) has player-wise information and \(G \) is \(k \)-informed, if \(M_B \) is DST then \(M_{IEB} \) is 2-DST; and if \(M_B \) is BIC then \(M_{IEB} \) is BIC. Moreover, if \(M_B \) is a \(\sigma \)-approximation to \(OPT \), then \(M_{IEB} \) is a \(\tau_k \sigma \)-approximation to \(OPT \).

With player-wise information, a player \(i \)'s valuation distribution \(D_i \) is either “completely known” or “completely unknown”. Thus for unit-demand auctions there is no need to adopt the COPIES setting to handle the scenario where only part of \(D_i \) is reported. As before, the approximation ratio of \(M_{IEB} \) increases as \(k \) gets larger and converges to that of the Bayesian mechanism. When \(k = 1 \), it is a 4-approximation to \(OPT \) using the optimal Bayesian mechanism as a black-box. Note that the model studied in [4] is a very special case even compared with the player-wise information setting: that is, \(G \) is the complete graph and \(k = n - 1 \). Since \(\tau_n^{-1} = \frac{n-1}{n^\pi (n-1)} \rightarrow 1 - \frac{1}{n} \) when \(n \) gets larger, the revenue of our mechanism essentially matches that of [4] for combinatorial auctions. Moreover, if the players can observe private signals and refine their knowledge about the prior, then our mechanism can also aggregate such refinements as in [4]. Finally, we have the following corollary for arbitrary knowledge graphs (i.e., \(k \) may be 0).

37
Corollary 2. For any combinatorial auction instances \(\hat{I} = (N, M, D) \) and \(I = (N, M, D, G) \) with player-wise information, mechanism \(M_{IEB} \) with \(q = \frac{1}{2} \) is a \(\frac{q}{q} \)-approximation to \(\text{OPT}_K(I) \) if \(M_B \) is a \(\sigma \)-approximation to \(\text{OPT} \).
References

