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ABSTRACT
We study how to maximize the broker’s (expected) profit in a two-

sided market, where he buys items from a set of sellers and resells

them to a set of buyers. Each seller has a single item to sell and

holds a private value on her item, and each buyer has a valuation

function over the bundles of the sellers’ items. We consider the

Bayesian setting where the agents’ values are independently drawn

from prior distributions, and aim at designing dominant-strategy

incentive-compatible (DSIC) mechanisms that are approximately

optimal.

Production-cost markets, where each item has a publicly-known

cost to be produced, provide a platform for us to study two-sided

markets. Briefly, we showhow to covert amechanism for production-

cost markets into a mechanism for the broker, whenever the former

satisfies cost-monotonicity. This reduction holds even when buyers

have general combinatorial valuation functions. When the buyers’

valuations are additive, we generalize an existing mechanism to

production-cost markets in an approximation-preserving way. We

then show that the resulting mechanism is cost-monotone and thus

can be converted into an 8-approximation mechanism for two-sided

markets.
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1 INTRODUCTION
Two-sided markets are widely studied market structures in eco-

nomics [17, 18, 20], where a number of buyers and a number of

sellers are connected by an intermediary, such as antique markets,

used-car markets, and pre-owned house markets. Here each seller

has a single item to trade for money and holds a private value for

her owned item, while each buyer’s private information is a general

combinatorial valuation function over the bundles of the sellers’

items. A common feature in these situations is that the intermediary

keeps the difference between the payments made by the buyers

and the payments made to the sellers —that is, the intermediary’s

profit. We call such an intermediary a broker. The objective of the
broker is to acquire the items from the sellers and resell them to the

buyers to maximize her profit. The problem studied in our paper is

to design the mechanism in the two-sided market that maximize
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the broker’s profit. For convenience, we refer to the sub-market

between the sellers and the broker the seller-side market and to

the sub-market between the broker and the buyers the buyer-side
market.

If the broker had all the items, then we would only have the

buyer-side market, which is an auction where the broker tries to

maximize his revenue. Auctions have been well studied in the liter-

ature following the seminal work of Myerson [19]. In the Section

1.2, we will briefly recall the most relevant literature on auctions. If

the broker would keep the items, then we only have the seller-side

market, which is a procurement game. Budget feasible procurement

has been studied by many in the Algorithmic Game Theory litera-

ture [6, 8, 12, 24]. The broker wants to maximize his value for the

items he buys, subject to a budget constraint.

Although auctions and procurements are closely related to the

broker’s problem, they cannot be dealt with separately in two-

sided markets. Indeed, the difficulty of the broker’s problem is to

simultaneously and truthfully elicit both the sellers’ and the buyers’

valuations, so as to generate a good profit.

1.1 Main Results and Techniques
In this paper we assume the values of the sellers and buyers are

independently distributed, and we study simple dominant-strategy
incentive compatible (DSIC) mechanisms. To approximately max-

imize the (expected) profit of the broker, we first develop a re-

duction, through which we can directly convert mechanisms for

production-cost markets into mechanisms for two-sided markets.

In a production-cost market, the broker is able to produce all the

items, each item has a cost to be produced and the costs are publicly

known. Roughly speaking, we say a mechanism for production-

cost markets is cost-monotone if, when the cost of an item increases,

the likelihood that it is sold does not increase. We show that any

cost-monotone mechanism for production-cost markets can be con-

verted into a mechanism for two-sided markets via a blackbox

approach. This reduction holds for general combinatorial valuation

functions of buyers.

Theorem 3.4 (Informal). Any cost-monotone DSIC mechanism that
is an α-approximation for production-cost markets, can be converted
into a DSIC mechanism that is an α-approximation for two-sided
markets.

Next, we use cost-monotonicity as a guideline in constructing

concrete mechanisms for two-sided markets. When the buyers have

additive valuations, we generalize the duality framework of [5] and

the mechanism there to design a cost-monotone mechanism for

production-cost markets. Following our reduction, we immediately

obtain a mechanism for two-sided markets.

https://doi.org/doi
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Theorem 4.4 (Informal). When the buyers have additive valuations,
there exists a DSIC mechanism for two-sided markets which is an
8-approximation to the optimal profit.

1.2 Related Work
Bayesian auctions have been extensively studied since the semi-

nal work of [19]. For single-parameter settings, Myerson’s mecha-

nism is optimal. The problem becomes more complicated in multi-

parameter settings [14]. Although the optimal Bayesian incentive-

compatible (BIC) mechanisms have been characterized [3, 4], they

are too complex to be practical. Also, optimal DSIC mechanisms

remain unknown. Thus simple DSIC mechanisms that are approxi-

mately optimal have been studied, such as [5, 16, 25]

Two-sided markets are also called double auctions [17], bilateral

trading [20] or market intermediation [15] in the literature. Maxi-

mizing the broker’s profit is an important objective for two-sided

market. The seminal paper [20] characterized the optimal mech-

anism for one seller and one buyer, which is further generalized

by [11] to multiple single-parameter sellers and buyers. Unlike our

work, [11] studies the Bayesian Incentive Compatible (BIC) mecha-

nisms. DSIC mechanisms are also studied in the literature, but only

for some special cases: [15] studies the case of a single buyer and

multiple sellers, [1] studies the case of a single seller and multiple

buyers, and [13] studies the optimal mechanism when the num-

bers of sellers and buyers are both constants. Although [7] studies

two-sided markets with multiple buyers and multiple sellers, the

dealer there has a fixed budget and their mechanism guarantees

that the payment to sellers is within the budget. Before our work,

it remained unknown how to design a (simple) DSIC mechanism

that approximates the optimal profit in multi-parameter settings

with general number of sellers and buyers.

Finally, we briefly discuss the efficiency of two-sided markets,

which is measured by gain-from-trade (GFT), i.e., the total value
gained by the buyers minus the value contributed by the sellers.

[17] gave the first approximation mechanism for the one seller

and one buyer case, and [2] gives approximation mechanisms for

multiple buyers with unit demand valuations. Recently, [22] and

[23] study the asymptotically efficient mechanisms instead of con-

stant approximations. For maximizing social welfare, [9, 10] provide
constant-approximation mechanisms.

2 PRELIMINARIES
A two-sided market includes a setM ofm sellers, and a set N of n
buyers. We consider the setting where each seller j has one item j
to sell, so we may refer to items and sellers interchangeably. The

total payment made by the buyers is the broker’s revenue, and his

profit is the revenue minus the total payment to the sellers.

Each buyer i has valuation vBi : 2
M → R+ ∪ {0} with vBi (∅) =

0. The function vBi is monotone: for any T ⊆ S ⊆ M , vBi (T ) ≤

vBi (S ). In our reduction between production-cost and two-sided

markets, we consider combinatorial valuations and do not impose

any restriction on vBi .

Each function vBi is independently drawn from a distribution

DB
i over the set of all possible valuation functions, with density

function f Bi and cumulative probability FBi . Let D
B = ×i ∈NDB

i ,

f B = ×i ∈N f Bi and FB = ×i ∈N FBi . Each seller j’s value on her item,

vSj ∈ R
+ ∪ {0}, is independently drawn from a distribution DS

j ,

with density function f Sj and cumulative probability FSj . Let D
S =

×j ∈MDS
j , f

S = ×j ∈M f Sj and FS = ×j ∈M FSj . Let the supports of

distributions DB
i and DS

j beT B
i andT S

j , respectively.T
B
i andT S

j are

called the valuation spaces of buyer i and seller j . LetT B = ×i ∈NT
B
i

and T S = ×j ∈MT S
j . Finally, denote by I = (N ,M,DB ,DS ) a two-

sided market instance.

A mechanismM for two-sided markets is a tuple of four func-

tions represented by (xB ,xS ,pB ,pS ). Given a valuation profile

(vB ,vS ),

• xB (vB ,vS ) ≜ (xBi (v
B ,vS ))i ∈N is the allocation of the buy-

ers, wherexBi (v
B ,vS ) = (xBiA (v

B ,vS ))A⊆M withxBiA (v
B ,vS ) ∈

[0, 1], representing the probability that buyer i gets the

item set A, under valuation profile vB and vS . Moreover,∑
A xBiA (v

B ,vS ) = 1.

• xS (vB ,vS ) = (xSj (v
B ,vS ))j ∈M is the allocation of the sellers

with xSj (v
B ,vS ) ∈ [0, 1], representing the probability that

seller j’s item is sold under (vB ,vS ).
• pB (vB ,vS ) = (pBi (v

B ,vS ))i ∈N is the payment made by the

buyers, where pBi (v
B ,vS ) ∈ R+ ∪ {0}.

• pS (vB ,vS ) = (pSj (v
B ,vS ))j ∈M is the payment made to the

sellers, where pSj (v
B ,vS ) ∈ R+ ∪ {0}.

A feasible mechanismM is such that∑
A∋j

∑
i ∈N

xBiA (v
B ,vS ) ≤ xSj (v

B ,vS )

for any item j ∈ M and any valuation profile (vB ,vS ). In principle,

the above condition may allow a mechanism to sell an item that

it didn’t buy or to buy an item without selling it. However, these

cases never happen in the mechanisms in this paper.
1
The expected

profit PFT (M;I) of mechanismM for instance I is

E
vS∼DS

;vB∼DB

∑
i ∈N

pBi (v
B ,vS ) −

∑
j ∈M

pSj (v
B ,vS ).

The utilities of the agents are quasi-linear. That is, for each

buyer i , for any valuation subprofile vB
−i of the buyers and any

valuation profile vS of the sellers, when i reports his true valuation
function vBi , his utility under mechanismM is

uBi (v
B
i ;M,v

B
−i ,v

S ) =
∑
A⊆M

xBiA (v
B ,vS )vBi (A) − p

B
i (v

B ,vS ).

For each seller j, for any valuation subprofile vS
−j and v

B
, when j

reports her true value vSj , her utility is

uSj (v
S
j ;M,v

B ,vS−j ) = p
S
j (v

B ,vS ) −vSj x
S
j (v

B ,vS ).

1
Note that our feasibility constraint only requires “feasible in expectation” which is

weaker than ex post feasibility. All of our results still hold if we change the requirement

to be ex post feasible.
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MechanismM is dominant-strategy incentive-compatible (DSIC)
if: (1) for any buyer i , vB

−i , v
S
, and vBi , v

′B
i ,

uBi (v
B
i ;M,v

B ,vS−i )

≥
∑
A⊆M

xBiA (v
′B
i ,v

B
−i ,v

S )vBi (A) − p
B
i (v
′B
i ,v

B
−i ,v

S );

and (2) for any seller j, vS
−j , v

B
and vSj , v

′S
j ,

uSj (v
S
j ;M,v

S
−j ,v

B ) ≥ pSj (v
B ,v ′Sj ,v

S
−j ) −v

S
j x

S
j (v

B ,v ′Sj ,v
S
−j ).

MechanismM is individually rational (IR) if: (1) for any buyer

i , vBi , v
B
−i and v

S
, uBi (v

B
i ;M,v

B
−i ,v

S ) ≥ 0; and (2) for any seller j,

vSj , v
S
−j and v

B
, uSj (v

S
j ;M,v

S
−j ,v

B ) ≥ 0.

MechanismM is Bayesian incentive-compatible (BIC) if (1) for
any buyer i and valuation functions vBi , v

′B
i ,

uBi (v
B
i ;M) ≜ EvB

−i∼D
B
−i ;v

S∼DS uBi (v
B
i ;M,v

B
−i ,v

S )

≥ EvB
−i∼D

B
−i ;v

S∼DS

[∑
A⊆M xBiA (v

′B
i ,v

B
−i ,v

S )vBi (A)

−pBi (v
′B
i ,v

B
−i ,v

S )
]
;

and (2) for any seller j and values vSj , v
′S
j ,

uSj (v
S
j ;M) ≜ E

vB∼DB
;vS
−j∼D

S
−j

uSj (v
S
j ;M,v

B ,vS−j ) ≥

E
vB∼DB

;vS
−j∼D

S
−j

[
pSj (v

B ,v ′Sj ,v
S
−j ) −v

S
j x

S
j (v

B ,v ′Sj ,v
S
−j )

]
.

MechanismM is Bayesian individually rational (BIR) if (1) for
any buyer i and valuation function vBi , u

B
i (v

B
i ;M) ≥ 0; and (2) for

any seller j and value vSj , u
S
j (v

S
j ;M) ≥ 0.

Finally, we denote byOPT (I) the (expected) profit generated by
the optimal DSIC mechanism for instance I.

A special case of two-sided markets is production-cost markets,
where the broker can produce the items by himself and each item j ∈
M has a publicly known production cost c j ∈ R

+∪{0}. Therefore we

do not need to consider the sellers’ incentives. Letting c ≜ (c j )j ∈M ,

we use Ic = (N ,M,DB , c ) to denote a production-cost market

instance andMc = (xB ,pB ) a production-cost market mechanism,

where the input of xB and pB is the buyers’ valuation profile. Then

the broker’s profit is the revenue minus the total production cost

PFT (Mc
;Ic ), which is

E
vB∼DB

∑
i ∈N

*.
,
pBi (v

B ) −
∑
A⊆M

∑
j ∈A

xBiA (v
B )c j

+/
-
.

Auctions are production-cost markets with cost 0. We use Ia =

(N ,M,DB ) to denote an auction instance andMa = (xB ,pB ) an
mechanism. The expected revenue is

PFT (Ma
;Ia ) = EvB∼DB

∑
i ∈N

pBi (v
B ).

When there is no ambiguity, the superscript B is omitted in auctions

and production-cost markets.

In Section 4, we will consider additive valuations for the buy-

ers. In this case, for any buyer i , there exists a valuation vec-

tor (vBi j )j ∈M such that vBi j = vB ({j}) is i’s value on each item j.

Then, vBi is additive if vBi (A) =
∑
j ∈A vBi j for any A ⊆ M . To sim-

plify the notation, in this case we use vBi to denote the vector

(vBi j )j ∈M instead of the corresponding function. Each vBi j is inde-

pendently drawn from a distribution DB
i j , and DB

i = ×j ∈MDB
i j .

Finally, when buyers have additive valuations, their allocation is

simplified as xB (vB ,vS ) ≜ (xBi (v
B ,vS ))i ∈N , where xBi (v

B ,vS ) =

(xBi j (v
B ,vS ))j ∈M with xBi j (v

B ,vS ) ∈ [0, 1], representing the proba-

bility that buyer i gets the item j, when the valuations are vB and

vS .

3 A REDUCTION FROM TWO-SIDED
MARKETS TO PRODUCTION-COST
MARKETS

Note that the sellers are single-parameter in the two-sided markets

under consideration. Thus, each seller is truthful in a mechanism

if and only if the selling probability of her item is non-increasing

with respect to her value and the payment to her is the threshold

payment, i.e., the highest value such that her item can still be sold.

More precisely, for any single-value distribution D with density

function f and cumulative probability F , if D is a seller’s value

distribution, then the virtual value function is ϕS (v ) = v +
F (v )
f (v ) . In

addition, if D is not regular then ϕS is the ironed virtual value. Fol-

lowing [20], for single-parameter sellers and any DSIC mechanism

M = (xS ,xB ,pS ,pB ), the total payment to the sellers is the virtual

social welfare of them, i.e.,

E
vS∼DS

∑
j ∈M

pSj (v
B ,vS ) = E

vS∼DS

∑
j ∈M

ϕ j (v
S
j )x

S
j (v

B ,vS ) (1)

for any valuation profile vB of the buyers.

We now show how to convert a mechanism for production-cost

markets into a two-sided market’s mechanism. The main idea is to

use the sellers’ virtual values in two-sided markets as costs, and

run the mechanism for production-cost markets.

Definition 3.1. A mechanismMc = (x ,p) for production-cost
markets is cost-monotone if for any two instancesIc = (N ,M,Dc , c )
and I ′c = (N ,M,Dc , c ′), where c and c ′ differ only at an item j and
c j ≤ c ′j , for any buyers’ valuation profile vc ∼ Dc

, the probabilities

of item j being sold under the two instances,x j ≜
∑
i ∈N
∑
A∋j xiA (v

c
;Ic )

and x ′j ≜
∑
i ∈N
∑
A∋j xiA (v

c
;I ′c ), satisfy x j ≥ x ′j .

Reduction. Let I = (N ,M,DS ,DB ) be a two-sided market

instance. For any valuation profile vS of the sellers, denote by

ϕS (vS ) ≜ (ϕSj (v
S
j ))j ∈M the sellers’ virtual-value vector, and let

Ic
ϕS (vS )

= (N ,M,DB ,ϕS (vS )) be a production-cost market in-

stance.

We first show that the optimal profit of the two-sided market is

no more than the optimal profit generated by the corresponding

production-cost markets in expectation.

Lemma 3.2. For any two-sidedmarket instanceI = (N ,M,DB ,DS ),
OPT (I) ≤ EvS∼DSOPT (IcϕS (vS )

).

Proof. It suffices to show that for any DSIC mechanismM =

(xS ,xB ,pS ,pB ) for two-sided markets, there exists a DSIC mech-

anismMc
for production-cost markets such that PFT (M;I) ≤
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EvS∼DS PFT (Mc
;Ic
ϕS (vS )

). Indeed, this would imply PFT (M;I) ≤

EvS∼DSOPT (IcϕS (vS )
) for anyM, and thus

OPT (I) ≤ EvS∼DSOPT (IcϕS (vS ) ).

GivenM and I, we define mechanismMc = (xc ,pc ) as follows.
For any instance Ic

ϕS (vS )
,Mc

first computes vS , the (randomized)

pre-image of ϕS (vS ) with respect to DS
. In particular, if for some

seller j, the (ironed) virtual value ϕSj (v
S
j ) corresponds to a value

interval in the support of DS
j , then v

S
j is randomly sampled from

DS
j conditional on it belongs to this interval.

For any reported valuation profile vB and buyer i ∈ N ,

xciA (v
B ) = xBiA (v

B ,vS )

for any A ⊆ M , and

pci (v
B ) = pBi (v

B ,vS ).

It is easy to see that, given anyvS andvB
−i , for any true valuationv

B
i ,

buyer i has the same utility inMc
andM by reporting the samev ′Bi .

ThusMc
is DSIC wheneverM is DSIC. Next, we lower-bound the

profit ofMc
for each instance Ic

ϕS (vS )
.

PFT (Mc
;IcϕS (vS ) )

= E
vB∼DB

∑
i ∈N

*.
,
pci (v

B ) −
∑
A⊆M

xciA (v
B )
∑
j ∈A

ϕSj (v
S
j )
+/
-

= E
vB∼DB

E
vS∼DS |ϕS (vS )

*
,

∑
i ∈N

pBi (v
B ,vS )

−
∑
j ∈M

∑
i ∈N

∑
A∋j

xBiA (v
B ,vS )ϕSj (v

S
j )
+/
-

≥ E
vB∼DB

E
vS∼DS |ϕS (vS )

*
,

∑
i ∈N

pBi (v
B ,vS )

−
∑
j ∈M

ϕSj (v
S
j )x

S
j (v

B ,vS )+/
-

The inequality above is because any feasible mechanism should

satisfy

∑
i ∈N
∑
A∋j x

B
iA (v

B ,vS ) ≤ xSj (v
B ,vS ) for any j ∈ M and

any valuation profiles vB ,vS . Thus,

E
vS∼DS

PFT (Mc
;IcϕS (vS ) )

= E
ϕS (vS )∼ϕS (DS )

PFT (Mc
;IcϕS (vS ) )

≥ E
vB∼DB

E
vS∼DS

*.
,

∑
i ∈N

pBi (v
B ,vS ) −

∑
j ∈M

ϕ j (v
S
j )x

S
j (v

B ,vS )+/
-

= E
vS∼DS ,vB∼DB

*.
,

∑
i ∈N

pBi (v
B ,vS ) −

∑
j ∈M

pSj (v
B ,vS )+/

-
= PFT (M,I),

as desired. Here ϕS (DS ) is the distribution of virtual values induced

by DS
, and the second equality is by Equation 1. □

In the following, we show that if a mechanism for production-

cost markets is cost-monotone, then it can be converted into a

mechanism for two-sided markets.

Lemma 3.3. Given any DSIC cost-monotone mechanismMc for
production-cost markets, there exists a DSIC mechanismM for two-
sided markets such that

PFT (M;I) = EvS∼DS PFT (Mc
;IcϕS (vS ) ).

Proof. Given mechanismMc = (xc ,pc ), the mechanismM =

(xS ,xB ,pS ,pB ) is defined as follows:M first collects vB and vS

reported by the buyers and the sellers, and then runMc
on the

production-cost instance Ic
ϕS (vS )

= (N ,M,DB ,ϕS (vS )) to obtain

xc (vB ) and pc (vB ). Then for each buyer i , let

xBiA (v
B ,vS ) = xciA (v

B )

for any A ⊆ M and

pBi (v
B ,vS ) = pci (v

B ).

For each seller j, let

xSj (v
B ,vS ) =

∑
i ∈N

∑
A∋j

xciA (v
S ,vB )

and let pSj (v
B ,vS ) be the threshold payment for j: namely, the

highest reported value of seller j such that the probability that

item j is bought by the broker is xSj (v
B ,vS ).

We claim thatM is DSIC. First, the buyers will truthfully report

their valuations becauseMc
is DSIC and each buyer has the same

allocation and payment inM andMc
. For the sellers, sinceMc

is cost-monotone and each (ironed) virtual value function ϕSj is

non-decreasing in vSj , the allocation x
S
j is non-increasing in vSj . As

the payments to the sellers are the threshold payments, the sellers

are truthful as well.

Next we show that

PFT (M,I)

= E
vS∼DS ,vB∼DB

*.
,

∑
i ∈N

pBi (v
B ,vS ) −

∑
j ∈M

pSj (v
B ,vS )+/

-

= E
vS∼DS ,vB∼DB

*.
,

∑
i ∈N

pBi (v
B ,vS ) −

∑
j ∈M

xSj (v
B ,vS )ϕ j (v

S
j )
+/
-

= E
vB∼DB

E
ϕS (vS )∼ϕS (DS )

*
,

∑
i ∈N

pci (v
B )

−
∑
j ∈M

∑
i ∈N

∑
A∋j

xciA (v
B )ϕ j (v

S
j )
+/
-

= E
ϕS (vS )∼ϕS (DS )

E
vB∼DB

∑
i ∈N

(
pci (v

B )

−
∑
A⊆M

∑
j ∈A

xciA (v
B )ϕ j (v

S
j )
+/
-

= E
vS∼DS

PFT (Mc
;IcϕS (vS ) ).
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Thus Lemma 3.3 holds. □

Combining Lemmas 3.2 and 3.3, we get our first main result.

Theorem 3.4. Given any DSIC mechanismMc for production-
cost markets, ifMc is cost-monotone and is anα -approximation to the
optimal profit, then there exists a DSIC mechanismM for two-sided
markets that is an α-approximation to the optimal profit.

Proof. MechanismM is defined as in Lemma 3.3. For any two-

sided market instance I,

PFT (M;I) = E
vS∼DS

PFT (Mc
;IcϕS (vS ) )

≥
1

α
E

vS∼DS
OPT (IcϕS (vS ) ) ≥

1

α
OPT (I),

where the equality is by Lemma 3.3 and the last inequality is by

Lemma 3.2. □

4 A MECHANISM FOR TWO-SIDED
MARKETS WITH ADDITIVE VALUATIONS

4.1 Broker’s Profit in Production-Cost Markets
We first design a mechanism MA for production-cost markets

which is an 8-approximation of the optimal profit. Our mechanism

is inspired by the mechanism in [25] and the duality framework

in [5] for auctions. In particular, with probability
3

4
,MA runs the

mechanism of [20] for two-sided markets for each item separately,

denoted byMIT . The mechanism of [20] is for a single buyer and a

single seller, but can be generalized to multiple buyers and a single

seller as shown in [11]. Furthermore,MA generalizes the bundling

VCG mechanism of [25] to production-cost markets (denoted by

MBVCG ) and runs it with probability
1

4
.

Essentially, MechanismMIT runs a second-price auction on the

buyers’ virtual values, with a reserve price which is the production

cost of the item. As shown in [11, 20], this mechanism is optimal

for the broker’s profit when the buyers have single-parameter val-

uations. MechanismMBVCG is well studied in auctions [5, 25],

and we describe it in Mechanism 1 for production-cost markets

Ic = (N ,M,D, c ). Essentially, it is a VCGmechanismwith per-item

reserve prices and per-agent entry fees.

Mechanism 1MBVCG for Production-Cost Markets

1: Collect the valuation profile v from the buyers.

2: For any buyer i and item j, let Pi j (v−i ) ≜ maxi′,i vi′j and

βi j (v−i ) ≜ max{Pi j (v−i ), c j }.
3: For any buyer i , set the reserve price for item j to be βi j (v−i ). Set

the entry fee ei (v−i ) to be the median of the random variable∑
j ∈M (ti j − βi j (v−i ))

+
, where ti = (ti j )j ∈M ∼ Di and x+ ≜

max{x , 0} for any x ∈ R.
4: Each buyer i is considered to accept his entry fee if and only if∑

j ∈M (vi j − βi j (v−i ))
+ ≥ ei (v−i ).

5: If a buyer i accepts his entry fee, then he gets the set of

items j with vi j ≥ βi j (v−i ), and his price is ei (v−i ) +∑
j :vi j ≥βi j (v−i ) βi j (v−i ). If i does not accept his entry fee, then

he gets no item and pays 0.

It is not hard to see that bothMIT andMBVCG are DSIC and

IR. Indeed, the mechanism of [20] is DSIC and IR,MIT directly

applies it to each item, and the buyers have additive valuations

across the items. Moreover,MBVCG is DSIC and IR with respect to

any reserve prices βi j that do not depend on vi j , and Mechanism 1

simply incorporates the production costs into reserve prices.

In Theorem 4.1 useMA to upper-bound the optimal profit for

any production-cost instance Ic = (N ,M,D, c ), with proof pro-

vided in the appendix. In fact, this proof is similar to the proof

in [5] with modifications to incorporate the production costs into

consideration. Note that [2] also adapts the framework of [5] to the

2-sided market. But their goal is to maximize the gain from trade

and the buyers have unit-demand valuations.

Theorem 4.1. When the buyers have additive valuations, Mecha-
nismMA is DSIC and is an 8-approximation to the optimal profit for
production-cost markets.

4.2 ConvertingMA to Two-sided Markets
Next we prove the cost-monotonicity for MechanismMA. But first,

we start with MechanismMIT .

Lemma 4.2. MIT is cost-monotone.

Proof. For any two production-cost instancesIc = (N ,M,D, c )
and I ′c = (N ,M,D, c ′), where there exists an item j ∈ M such that

c ′j > c j and c ′j′ = c j′ for any j ′ , j, we show that in Mechanism

MIT , when buyers’ valuation profile is v ∼ D, if item j is not sold
in Ic , then item j is not sold in I ′c . Since all buyers’ valuation func-
tions are additive andMIT sells each item individually, the result

of selling one item does not effect any other item. In the mechanism

of [20], given the reported valuation profile v , the potential winner
of item j is the buyer who has highest virtual value on it, denoted

by i j = argmaxi ∈N vi j . If his virtual value ϕi j j (vi j j ) is at least the
cost of item j , buyer i j takes item j . Otherwise, item j is kept unsold.
Therefore, if item j is not sold in Ic , then ϕi j j (vi j j ) − c j < 0 which

implies ϕi j j (vi j j ) − c
′
j < 0 and item j cannot be sold in I ′c . Thus

MIT satisfies cost-monotonicity. □

Next we showMBVCG is cost-monotone. Since we need to apply

MBVCG to different instances with different cost vectors c and c ′,
we explicitly write βi j (v−i , c j ) and ei (v−i , c ) in Steps 2 and 3 of

Mechanism 1.

Lemma 4.3. MBVCG is cost-monotone.

Proof. Similarly, for any two production-cost instances Ic =

(N ,M,D, c ) and I ′c = (N ,M,D, c ′), where there exists an item

j ∈ M such that c ′j > c j and c
′
j′ = c j′ for any j ′ , j, we show that

in MechanismMBVCG , when buyers’ valuation profile is v ∼ D, if
item j is sold in I ′c , then item j is also sold in Ic .

In MechanismMBVCG , given the valuation profile v , the poten-
tial winner of item j is the buyer who has highest value on item j,
denoted by i j = argmaxi ∈N vi j . When the cost vector is c , item j
is sold to i j if and only if i j accepts the entry fee ei j (v−i , c ) and
vi j − βi j j (v−i j , c j ) > 0. Otherwise item j is unsold. Note that given
different production cost c ′, the potential winner of item j remains

unchanged.
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Note that the entry fee ei (v−i , c ) is selected such that the proba-

bility that buyer i accepts it is exactly 1

2
. Let dj ≜ βi j j (v−i j , c

′
j ) −

βi j j (v−i j , c j ) be the increase of the item reserve in MBVCG for

buyer i j . Then

(vi j j − βi j j (v−i j , c
′
j ))
+ + dj ≥ (vi j j − βi j j (v−i j , c j ))

+. (2)

Indeed the equality holds in Inequality 2 if vi j j − βi j j (v−i j , c
′
j ) ≥ 0.

Let e ′i j ≜ ei j (v−i j , c ) − dj . When the cost vector is c , buyer i j ’s

utility is

ui j =
∑
k ∈M

(vi jk − βi jk (v−i j , ck ))
+ − ei j (v−i j , c ).

When the cost is c ′, if the entry fee is e ′i j , buyer i j ’s utility is

u ′i j (e
′
i j ) =

∑
k ∈M

(vi jk − βi jk (v−i j , c
′
k ))
+ − e ′i j

=
∑
k,j

(vi jk − βi jk (v−i j , ck ))
+ + (vi j j − βi j j (v−i j , c

′
j ))
+ − e ′i j

=
∑
k,j

(vi jk − βi jk (v−i j , ck ))
+ + (vi j j − βi j j (v−i j , c

′
j ))
+

− ei j (v−i j , c ) + dj

≥
∑
k,j

(vi jk − βi jk (v−i j , ck ))
+ + (vi j j − βi j j (v−i j , c j ))

+

−ei j (v−i j , c )

= ui j .

The inequality above is by Inequality 2.Moreover, ifvi j j−βi j j (v−i j , c
′
j ) ≥

0, then

u ′i j (e
′
i j ) = ui j . (3)

That is for any valuation profile vi j , buyer i j ’s utility under the

entry fee e ′i j and the cost vector c ′ is at least his utility under the

entry fee ei j (v−i j , c ) and the cost vector c . Therefore,

Pr

tij ∼Dij

[

∑
j ∈M

(ti j j − βi j j (v−i j ))
+ ≥ e ′i j ] ≥

1

2

.

Since the real entry fee ei j (v−i j , c
′) is selected to be the median of

the randomvariable

∑
j ∈M (ti j j−βi j j (v−i j ))

+
, we have ei j (v−i j , c

′) ≥
e ′i j .

Now if under cost vector c ′, item j is sold, then

vi j j − βi j j (v−i j , c
′
j ) ≥ 0,

and ∑
k ∈M

(vi jk − βi jk (v−i j , c
′
k ))
+ − ei j (v−i j , c

′) ≥ 0.

Thus under cost vector c , we have

vi j j − βi j j (v−i j , c j ) ≥ 0,

and by Equation 3,

ui j = u ′i j (e
′
i j ) =

∑
k ∈M

(vi jk − βi jk (v−i j , c
′
k ))
+ − e ′i j

≥
∑
k ∈M

(vi jk − βi jk (v−i j , c
′
k ))
+ − ei j (v−i j , c

′) ≥ 0.

Therefore, under cost vector c , item j is also sold. That is,MBVCG
is cost-monotone. □

By randomly selecting from MIT and MBVCG , Mechanism

MA is still cost-monotone. Therefore, by Theorem 3.4,MA can be

converted into a mechanism for two-sided markets, which is again

an 8-approximation to the optimal profit. Formally, we have the

following theorem.

Theorem 4.4. When the buyers have additive valuations, there
exists a DSIC mechanism that is an 8-approximation to the optimal
profit for two-sided markets.

5 CONCLUSION AND OPEN PROBLEMS.
In this paper we provide the first DSICmechanism that is a constant-

approximation to the broker’s optimal profit in multi-parameter

settings with more than one buyer. We use production-cost markets

as a bridge between auctions and two-sided markets, and provide

a general reduction from production-cost markets to two-sided

markets. How to design DSIC mechanisms for the broker’s profit in

multi-buyer multi-parameter settings under other valuation func-

tions of the buyers (e.g. unit-demand or sub-additive) is still open,

and it would be interesting to understand the role of production-

cost markets in those scenarios.
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A PROOF OF THEOREM 2
Similar to [5], we only need to consider the prior distribution D

with finite support.

Arbitrarily fix a BIC-BIR mechanismM = (x ,p). We consider

M in its ex ante form. Specifically, for any buyer i with valuation

vi and for any item j, let (a) xi j (vi ) ≜ Ev−i∼D−i xi j (vi ,v−i ) be the
probability that buyer i gets item j, over the randomness of the

mechanism and v−i ; and (b) pi (vi ) ≜ Ev−i∼D−ipi (vi ,v−i ) be the
expected payment made by i . Then the broker’s profit is

PFT (M;Ic ) =
∑
i ∈N

∑
vi ∈Ti

Di (vi )
*.
,
pi (vi ) −

∑
j
xi j (vi )c j

+/
-
,

where Di (vi ) is the probability of vi according to distribution Di .

Consider the constraints forM. LetT+i = Ti∪{⊥}, where “⊥” is a

special symbol not in the support Ti . Moreover, xi (⊥) ≜ (0, . . . , 0)

and pi (⊥) ≜ 0. BecauseM is BIC and BIR, we have

xi (vi ) · vi − pi (vi ) ≥ xi (v
′
i ) · vi − pi (v

′
i ),

∀i ∈ N ,vi ∈ Ti ,v
′
i ∈ T

+
i (4)

In particular, when v ′i = ⊥, the above constraint restricts the mech-

anism to be BIR. Therefore, the problem of designing BIC-BIR mech-

anisms is to maximize PFT (M;Ic ) subject to Inequality 4.

To upper-bound PFT (M;Ic ), we first introduce some nota-

tions. For any buyer i , item j and valuation sub-profile v−i ∈
T−i , let Pi j (v−i ) = maxi′,i vi′j and βi j (v−i ) = max{Pi j (v−i ), c j },
as in MechanismMBVCG . In Mechanism 2 we generalize the 1-

lookahead mechanism [21] to production-cost markets, denoted

byM1LA. For any buyer i with valuation vi and for any item j , let
ri j (v−i ) = maxp≥βi j (v−i ) (p − c j ) · Pry∼Di j [y ≥ p] and ri (v−i ) =∑
j ∈M ri j (v−i ). Moreover, let ri = Ev−i∼D−i ri (v−i ) and r =

∑
i ri .

Then the profit ofM1LA is exactly r andwill be atmost PFT (MIT ;I
c ).

Next, let R
(v−i )
0

= {vi ∈ Ti |vi j ≤ βi j (v−i ) for all j} and R
(v−i )
j =

{vi ∈ Ti |j is the smallest index such that j ∈ argmaxk ∈M {vik −
βik (v−i )} and vi j−βi j (v−i ) > 0}. Moreover, let I[E] be the indicator
of an event E. Now we are ready to upper-bound PFT (M;Ic ). By
adopting the duality framework in [5] to production-cost markets,

we have the following.

Mechanism 2M1LA for Production-Cost Markets

1: Collect the valuation profile v from the buyers.

2: for each item j do
3: If no buyer has value for j higher than βi j (v−i ), keep j unsold.
4: Otherwise, let i be the highest bidder for j, and

ρi j (v−i ) ≜ argmax

p≥βi j (v−i )
(p − c j ) · Pr

y∼Di j
(y ≥ p).

Sell the item j to buyer i with price ρi j (v−i ) if and only if

vi j ≥ ρi j (v−i ).
5: end for

LemmaA.1. For any BIC-BIRmechanismM = (x ,p) and production-
cost instance Ic = (N ,M,D, c ),

PFT (M;Ic ) ≤ Single + Under + Over + Tail + Core,

where ϕi j (vi j ) is Myerson’s (ironed) virtual value and

Single =
∑
i ∈N

∑
vi ∈Ti

∑
j ∈M

Di (vi )xi j (vi ) (ϕi j (vi j ) − c j ),

· Pr

t−i∼D−i
[vi ∈ R

(t−i )
j ]

Under =
∑
i ∈N

∑
vi ∈Ti

∑
j ∈M

Di (vi )xi j (vi )

·
( ∑
t−i ∈T−i

D−i (t−i ) (vi j − c j ) · I[vi j < βi j (t−i )]
)
,

Over =
∑
i ∈N

∑
vi ∈Ti

∑
j ∈M

Di (vi )xi j (vi )

·
( ∑
t−i ∈T−i

D−i (t−i ) (βi j (t−i ) − c j ))

·I[(vi j ≥ βi j (t−i )]
)
,

Tail =
∑
i ∈N

∑
j ∈M

∑
t−i ∈T−i

D−i (t−i )

·
∑

vi j>βi j (t−i )+ri (t−i )

Di j (vi j ) (vi j − βi j (t−i ))

· Pr

vi,−j∼Di,−j
[∃k , j,vik − βik (t−i )

≥ vi j − βi j (t−i )],

Core =
∑
i ∈N

∑
j ∈M

∑
t−i ∈T−i

D−i (t−i )

·
∑

βi j (t−i )≤vi j ≤βi j (t−i )+ri (t−i )

Di j (vi j )

·(vi j − βi j (t−i )).

In the following, we use our mechanisms to bound the above

terms separately. For any production-cost instanceIc = (N ,M,D, c ),
we define its corresponding single-parameter COPIES instance

ˆIc = (N̂ ,M,D, c ). More precisely, for each buyer i ∈ N , there are

m copies for i in set N̂ , and the j-th copy of i (also denoted by

(i, j )) is only interested in item j. Since in Ic , buyers’ valuations

are additive, OPT ( ˆIc ) = PFT (MIT ;I
c ).
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In the following, we first use OPT ( ˆIc ) to bound Single, Under

and Over, which implies that these terms are upper-bounded by

PFT (MIT ;I
c ).

Lemma A.2. Single ≤ OPT ( ˆIc ).

Proof. Note that if the allocation rule ofM is feasible for Ic ,

then it is also feasible for
ˆIc . Thus,

Single ≤
∑
i ∈N

∑
vi ∈Ti

∑
j ∈M

Di (vi )xi j (vi ) (ϕi j (vi j ) − c j )

≤ OPT ( ˆIc ).

The first inequality holds because Prt−i∼D−i [vi ∈ R
(t−i )
j ] ≤ 1, and

the last inequality holds because the optimal mechanism for single-

parameter buyers maximizes the virtual social welfare. □

Next we upper-bound Under. Essentially, the proof of Lemma

A.3 shares the same idea with Lemma 15 in [5], but here we have

to deal with multiple reserve prices for each item.

Lemma A.3. Under ≤ OPT ( ˆIc ).

Proof. It suffices show that for any BIC-BIR mechanismM for

Ic , there is a mechanismM ′ for the single-parameter instance
ˆIc ,

which achieves profit at least as much as Under.

Given M = (x ,p), we define M ′ = (x ′,p′) as follows. Ran-
domly draw v ∼ D and run M on v . If item j is sold to buyer

i , let vi j be item j’s reserve price in M ′. Then for instance
ˆIc

with reported valuation profile t , run second-price auction with

multiple reserve prices for each item. That is for item j , the highest-
bid buyer, say (i j , j ), gets the opportunity to buy it and the price

is max{vi j , βi j j (t−i j )}. If ti j j < max{vi j , βi j j (t−i j )}, item j is kept
unsold.

Nextwe compare the profit ofM ′ andUnder. Recall thatxi j (vi ) =∑
v−i∼T−i D−i (v−i )xi j (vi ,v−i ). Thus Under can be rearranged as

follows.

Under

=
∑
i ∈N

∑
vi ∈Ti

∑
j ∈M

Di (vi )xi j (vi )

·
∑

t−i ∈T−i

D−i (t−i ) (vi j − c j ) · I[vi j < βi j (t−i )]

=
∑
i ∈N

∑
v ∈T

∑
j ∈M

D (v )xi j (v )
∑
t ∈T

D (t ) (vi j − c j )

·I[vi j < βi j (t−i )]

=
∑
v ∈T

D (v ) (
∑
i ∈N

∑
t ∈T

D (t )
∑
j ∈M

xi j (v ) (vi j − c j )

·I[vi j < βi j (t−i )]).

It is easy to see that Under is maximized by some deterministic

allocation. So we focus on a deterministic allocation rule x .
Let us consider the innermost summation. For any item j , denote

by i the buyer such that xi j (v ) = 1 and I[vi j < βi j (t−i )] = 1. Then

vi j is one of the reserve prices for item j inM ′. Next we see how
much profit does mechanismM ′ make from selling item j.

If c j ≥ Pi j (t−i ), I[vi j < βi j (t−i )] = 1 implies vi j < c j . InM
′
,

item j will be either sold with price at least c j or unsold, which
means the profit is always nonnegative from selling item j and
naturally greater than vi j − c j < 0.

If c j < Pi j (t−i ), I[vi j < βi j (t−i )] = 1 implies vi j < Pi j (t−i ).
Note that the highest bidder for item j (denoted by (i j , j )) must

have value at least Pi j (t−i ). Since Pi j (t−i ) > vi j and Pi j (t−i ) > c j ,
(i j , j ) is willing to take item j at pricemax{vi j , c j , Pi j j (t−i j )} which
is at least vi j . Then the profit is at least vi j − c j .

Combining the above two cases,

PFT (M ′; ˆIc ) ≥
∑
i ∈N

∑
t ∈T

D (t )
∑
j ∈M

xi j (v ) (vi j − c j )

·I[vi j < βi j (t−i )].

Therefore,

Under ≤
∑
v ∈T

D (v )PFT (M ′; ˆIc ) ≤ OPT ( ˆIc ),

which finishes the proof of Lemma A.3. □

Over is also upper-bounded byOPT ( ˆIc ), and the proof is almost

the same with Lemma 14 of [5], thus omitted here.

Lemma A.4. Over ≤ OPT ( ˆIc ).

Next, we use PFT (M1LA;I
c ) and PFT (MBVCG ;I

c ) to bound

Tail and Core. Recall that PFT (M1LA;I
c ) = r ≤ OPT ( ˆIc ) =

PFT (MIT ;I
c ).

Lemma A.5. Tail ≤ r .

Proof.

Tail

≤
∑
i ∈N

∑
j ∈M

∑
t−i ∈T−i

D−i (t−i )
∑

vi j>βi j (t−i )+ri (t−i )

Di j (vi j )

·(vi j − βi j (t−i ) + βik (t−i ) − ck )

· Pr

vi,−j∼DB
i,−j

[∃k , j,vik − βik (t−i )

≥ vi j − βi j (t−i )]

≤
∑
i ∈N

∑
j ∈M

∑
t−i ∈T−i

D−i (t−i )
∑

vi j>βi j (t−i )+ri (t−i )

Di j (vi j )

·(vi j − βi j (t−i ) + βik (t−i ) − ck )

·
∑
k,j

Pr

vik∼DB
ik

[vik − βik (t−i ) ≥ vi j − βi j (t−i )]

≤
∑
i ∈N

∑
j ∈M

∑
t−i ∈T−i

D−i (t−i )

·
∑

vi j>βi j (t−i )+ri (t−i )

Di j (vi j )
∑
k,j

rik (t−i )

≤
∑
i ∈N

∑
j ∈M

∑
t−i ∈T−i

D−i (t−i )ri (t−i ) ·
∑

vi j>βi j (t−i )+ri (t−i )

Di j (vi j )
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≤
∑
i ∈N

∑
j ∈M

∑
t−i ∈T−i

D−i (t−i ) (ri (t−i ) + βi j (t−i ) − c j )

·
∑

vi j>βi j (t−i )+ri (t−i )

Di j (vi j )

≤
∑
i ∈N

∑
j ∈M

∑
t−i ∈T−i

D−i (t−i )ri j (t−i ) = r .

The first and fifth inequalities are because βik (t−i ) ≥ ck for all

k ∈ M . The second inequality is by union bound. The third and

sixth inequalities hold by the definition of rik (t−i ). □

Lemma A.6. Core ≤ 2r + 2PFT (MBVCG ;I
c ).

Proof. For the random variable vi j ∼ Di j , define the follow-

ing two new random variables: bi j (t−i ) = (vi j − βi j (t−i ))I[vi j ≥
βi j (t−i )] and di j (t−i ) = bi j (t−i )I[bi j (t−i ) ≤ ri (t−i )]. Note that∑
j bi j (t−i ) is buyer i’ utility in the VCG mechanism with reserve

price c . Then

Core =
∑
i ∈N

∑
j ∈M

∑
t−i ∈T−i

D−i (t−i ) E
vi∼DB

i

di j (t−i ).

Set êi (t−i ) =
∑
j ∈M E

vi∼DB
i

[di j (t−i )]− 2ri (t−i ). By Lemma 12 in [5],

Pr[

∑
j ∈M

di j (t−i ) ≤ êi (t−i )] ≤
1

2

.

Thus

Pr[

∑
j ∈M

bi j (t−i ) ≥ êi (t−i )] ≥ Pr[

∑
j ∈M

di j (t−i ) ≥ êi (t−i )] ≥
1

2

.

Note that the entry fee ei (v−i ) is the median of the random vari-

able

∑
j ∈M (vi j−βi j (v−i ))

+
, then ei (v−i ) ≥ êi (v−i ) and Pr[

∑
j ∈M bi j (t−i ) ≥

ei (t−i )] =
1

2
. Therefore,

PFT (MBVCG ;I
c ) ≥

1

2

∑
i ∈N

∑
t−i ∈T−i

D−i (t−i )êi (t−i )

=
Core

2

− r .

□

Finally, we obtain the main theorem of this section.

Theorem A.2. When the buyers have additive valuations, Mecha-
nismMA is DSIC and is an 8-approximation to the optimal profit for
production-cost markets.

Proof. Combining Lemma A.1 with Lemmas A.2, A.3, A.4, A.5

and A.6, for any BIC mechanismM = (x ,p) for production-cost
markets and any production-costmarket instanceIc = (N ,M,D, c ),

PFT (M;Ic ) ≤ 6PFT (MIT ;I
c ) + 2PFT (MBVCG ;I

c ).

By selling items usingMIT with probability
3

4
and usingMBVCG

with probability
1

4
, we have an 8-approximation to the optimal

profit. □
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