
ARMOR: A Formally Verified Implementation of
X.509 Certificate Chain Validation (Full Version)

Joyanta Debnath∗§, Christa Jenkins∗§, Yuteng Sun†, Sze Yiu Chau†, and Omar Chowdhury§

§Stony Brook University †The Chinese University of Hong Kong
§{jdebnath, cjenkins, omar}@cs.stonybrook.edu †{sy021, sychau}@ie.cuhk.edu.hk

Abstract—We present ARMOR, the first substantial effort to-
wards an X.509 certificate chain validation logic (CCVL) im-
plementation with formal, machine-checked correctness guar-
antees for a large portion of RFC 5280. ARMOR is designed
with the twofold goal of providing 1) a formal, machine checked
alternative to the RFC specifications, and 2) a reference imple-
mentation and test oracle. ARMOR features a modular archi-
tecture in which the X.509 CCVL is decomposed into several
modules, each of which is independently specified, implemen-
ted, and verified. Currently, the formally verified modules of
ARMOR include those for the specification and parsing of (sub-
sets of) the PEM and ASN.1 X.690 DER languages, certificate
chain building, and many semantic properties concerning re-
quired properties of fields within a single certificate and across
certificates in a chain. To empirically evaluate its achievement
of these goals, we compare ARMOR with 11 open-source X.509
implementations and an open-source certificate linter for its
specificational accuracy and runtime overhead. In our evalu-
ation, although ARMOR incurs a high overhead, through its use
we are able to detect several noncompliances. Finally, we show
an end-to-end application of ARMOR by integrating it with the
TLS 1.3 implementation of BoringSSL and testing it with Curl.

1. Introduction

X.509 certificate chain validation logic (CCVL) im-
plementations, hailed as the “most dangerous code in the
world” [1], are critical for ensuring the authentication guar-
antees promised by the X.509 PKI [2]. Along with its au-
thentication guarantees, X.509 provides a scalable and flex-
ible mechanism for public-key distribution. The guarantees
of X.509 PKI are fundamental building blocks for achiev-
ing security assurances such as confidentiality, integrity, and
non-repudiation in many protocols and applications such as
IPSec, HTTPS, Email, Wi-Fi, code signing, secure boot,
firmware/software verification, and secure software update.
Given its pivotal role in system, software, and communica-
tion security, ensuring the correctness of X.509 CCVL im-
plementations is of utmost importance. Incorrect validation
could lead to a system accepting a malicious or invalid certi-
ficate, potentially exposing the system to man-in-the-middle
(MITM) and impersonation attacks; incorrectly rejecting a
valid certificate could induce interoperability issues.
∗. These authors contributed equally to this work.

The majority of prior work focuses on developing soft-
ware testing mechanisms specialized for checking the cor-
rectness of different X.509 libraries. These efforts can be
categorized into approaches that use Fuzzing [3], [4], [5],
[6], [7] and those that use Symbolic Execution [8], [9]. While
these methods have been beneficial in identifying numerous
vulnerabilities, they often fall short of providing any formal
correctness guarantees. This is corroborated through many
high impact bugs and vulnerabilities in some widely used
and tested applications and open-source libraries [10], [11],
[12], [13], [14]. One of the main challenges that these ap-
proaches have to address is the lack of a test oracle. Most
of the prior approaches rely on differential testing [3], [4],
[5], [9], where different implementations are used as cross-
checking test oracles. However, differential testing cannot
guarantee the absence of bugs, as it is possible that the tested
implementations have the same error.

In contrast, a formally verified X.509 CCVL implement-
ation can provide rigorous assurances of its correctness, set-
ting a benchmark for developing other implementations and
reducing undetected bugs during differential testing. How-
ever, of the minority of relevant prior work featuring formal
correctness guarantees [15], [16], none have X.509 CCVL
as their intended scope. For example, while ASN1∗ [15]
provides a general, formally verified library for parsing
ASN.1 X.690 DER (Distinguished Encoding Rules) [17], it
does not perform chain building or enforce the additional
semantics of the decoded values required for X.509 CCVL.

In summary, prior work has at least one of the following
limitations: it (1) has no formal guarantees [3], [4], [5], [6],
[7], [8], [9], [18], [19], [20], [21], [22]; (2) focuses only on
parsing and lacks formal correctness guarantees of semantic
aspects [15], [23], [24]; (3) lacks explicit proof of soundness
and completeness of certificate parsing [15], [23], [24], [25];
(4) focuses only on verified encoding of certificates, not
parsing [16]. The current paper takes a major step to address
this research gap with ARMOR, a substantial effort towards
developing a high-assurance implementation of X.509 CCVL
with formal, machine-checked proofs of compliance with the
standards. At time of writing, ARMOR boasts a formaliza-
tion of the grammar of X.509 certificates, with proofs these
grammars satisfy certain desirable properties, and formally
verified implementations of X.509 certificate parsing, cer-
tificate chain building, and several standards-required se-
mantic checks for certificates and certificate chains. Though

still a work in progress, ARMOR is, to the best of our know-
ledge, the first implementation of X.509 CCVL with such
an extensive scope of machine-checked correctness proofs.
Overall Design. ARMOR is designed and developed with
modularity in mind. Inspired by prior work [18], [22], [25],
we decompose the whole X.509 certificate chain validation
process into several modules, making both the implementa-
tion and formal verification efforts manageable. In particu-
lar, we formulate correctness guarantees for most modules,
which can then be discharged independently. ARMOR is
organized into five modules: parser, chain builder, string ca-
nonicalizer, semantic validator, and driver. The driver, writ-
ten in Python, stitches together the different components
and exposes an interface expected from an X.509 imple-
mentation. The rest of the modules, written in the depend-
ently typed functional programming language Agda [26],
[27], implement all the intermediate stages of certificate
chain validation. Notably, one can both write programs in
Agda and prove their correctness using interactive theorem
proving, and Agda’s built-in termination checker ensures
these are total correctness proofs. Once these proof obliga-
tions are discharged, we use Agda’s extraction mechanism
to obtain an executable, which is then invoked by the driver.
Verification Philosophy. Our general approach of verific-
ation carefully separates the specificational elements from
the implementation elements by using implementation-
independent, relational specifications. In particular, we use
parser-independent specifications of the PEM, X.690 DER,
and X.509 formats. Compared to approaches that verify
parsers with respect to serializers, such as EverParse [24]
and ASN1∗ [15], our approach reduces the complexity of the
specifications and provides a clear distinction between cor-
rectness properties of the language and the parser. Further-
more, implementation-independence affords our specifica-
tion greater utility as a formal, machine-checked alternative
to natural language specifications of the standard.
Guarantees and Scope. ARMOR’s machine-checked guar-
antees include the following (see Table 1 for the full listing).
For our X.690 DER and X.509 parsers we proved soundness
(bytestrings accepted by the parser conform to the format
specification) and completeness (bytestrings that conform to
the format specification are accepted by the parser). For our
X.690 DER and X.509 language formalizations, we proved
unambiguousness (e.g., one bytestring cannot encode two
distinct X.509 certificates) and non-malleability (e.g., two
distinct bytestrings cannot encode the same X.509 certific-
ate). For our chain builder, we proved soundness and com-
pleteness (the chain builder produces all and only chains sat-
isfying the chain specification). For our semantic validator,
each semantic check is proven sound and complete (a certi-
ficate or chain passes the check iff it satisfies the property).

ARMOR’s current guarantees do not include the driver
and string canonicalizer modules. It also does not yet have
support for certificate revocation or hostname verification.
We discuss these limitations further in Section 7.
Evaluation. As ARMOR, or any formally verified software,
is only as good as its specification, it is crucial to com-
pare ARMOR to other implementations to gain assurance

that our formalization of the natural language specification
is correct. We differentially test ARMOR against 11 open-
source X.509 libraries, sampling randomly from 4 million
certificates from four different datasets. We observe that
ARMOR agrees with most libraries at least 99.48% of the
time. For the remaining 0.52% (∼10K certificates), five of
these ARMOR rejected due to a specificational inaccuracy
in one semantic check; for all others, ARMOR either more
strictly follows the requirements in RFC 5280 [2] than the
other libraries, or implements aspects of X.509 CCVL in the
RFC unsupported by the other libraries. We also compare
ARMOR’s parser with X.509 certificate linter ZLint [28],
finding that ZLint is more lenient than ARMOR in most
cases (which we expected), but in two instances ZLint is
more restrictive, and its restrictiveness is noncompliant with
RFC 5280. Finally, to evaluate the practicality of ARMOR,
we measure its runtime overhead in terms of computational
time and memory consumption. We notice that ARMOR
has a much higher overhead compared to the X.509 librar-
ies written in C/C++, Python, Java, and Go. Our empir-
ical evaluation signifies that ARMOR may be a reasonable
choice of X.509 CCVL application in domains where formal
correctness is more important than runtime overhead.
Impact. ARMOR can substantially improve the security of
critical applications that rely on X.509 PKI (e.g., SSL/TLS).
As an example, the existing formally verified TLS 1.2 im-
plementation [29] still needs a correct X.509 implement-
ation to ensure its end-to-end guarantees, which ARMOR
can fulfill. To evaluate the practicality of using ARMOR
as part of a TLS implementation, we integrate it with the
TLS 1.3 implementation of BoringSSL [30] and evaluate its
performance. Unfortunately, in our evaluation, we observed
that ARMOR incurs substantial runtime overhead, which is
to be expected as ARMOR prioritized formal correctness
over efficiency. ARMOR can also be used as an oracle for
testing other X.509 implementations. Finally, our relational
language specifications can serve as a separate, formal ref-
erence for programmers to consult. With ARMOR, our main
goal is to develop a relational specification for X.509 certi-
ficate chain validation and demonstrate its formally verified,
not necessarily performant, realization. This is a substantial
first step toward developing a performant, low-overhead, and
formally verified X.509 CCVL implementation in the future.
Contributions. We make the following five technical con-
tributions in this work.

1) We are the first to present modular, implementation-
independent formalizations of the X.509 certificate
format, certificate chains, and several semantic require-
ments, facilitating development of other (especially
formally verified) implementations of X.509 CCVL.

2) We prove that our parser-independent specification of
the X.509 certificate format is unambiguous and non-
malleable. Since we carefully distinguish between lan-
guages and parsers, these results serve as further as-
surance that X.690 DER and X.509 certificate formats,
not a particular parser for them, is fit for purpose.

3) We prove total correctness (soundness, completeness,
and termination) for our parser, chain builder, and se-

2

mantic validator modules.
4) We evaluate ARMOR with respect to its specificational

accuracy and overhead against 11 open-source X.509
CCVL libraries and the X.509 certificate linter ZLint,
and analyze its performance and effectiveness.

5) We show an end-to-end application of ARMOR, integ-
rating it with TLS 1.3 implementation of BoringSSL
and testing with the widely-used application Curl [31].

Artifacts. The artifacts of ARMOR are available here: https:
//github.com/joyantaDebnath/armor/.
Responsible Disclosure. We have responsibly disclosed all
our findings to the corresponding library developers.

2. Background

This section presents a primer on X.509 CCVL.
Overview of X.509 PKI. The X.509 PKI standard [2]
provides a scalable way to verify the authenticity of the
binding of an entity’s identity with its public key. This
identity-public-key binding is represented as an X.509 certi-
ficate, which is digitally signed by an issuer (e.g., certificate
authority or CA), signifying the issuer’s trust in the authen-
ticity and integrity of this binding. To scalably establish the
authenticity and integrity of a certificate, the X.509 standard
takes advantage of the transitivity of this “trust” relation-
ship. This intuition is realized in the X.509 standard [2]
through a certificate chain validation algorithm (or, CCVL).
Concretely, when an entity e1 wants to check whether the
certificate (given as part of an input chain of certificates) of
another entity e2 is authentic, this algorithm conceptually
starts with the certificate of a trust anchor (i.e., an issuer
who is unconditionally trusted by e1) and then attempts to
transitively extend this absolute trust through a chain of the
input certificates, all the way down to e2.
Internal Structure of a Certificate. Though the X.509
standard is primarily defined in ITU-T X.509 [32], RFC
5280 [2] provides additional restrictions and directions
to use X.509 certificate for the Internet domain. Partic-
ularly, RFC 5280 concentrates on version 3 of the cer-
tificate standard and the usage of different extensions,
which is the main focus of this work. A version 3
certificate comprises of three top-level fields, namely,
TBSCertificate, SignatureAlgorithm, and SignatureValue.
The TBSCertificate field contains information such as the
certificate version, a unique serial number, the validity
period, the certificate issuer’s name, and the certificate
owner’s name (i.e., subject). It also includes the public key,
the algorithm employed by the issuer for signing the certi-
ficate, and a few optional fields such as the unique identi-
fiers and a sequence of extensions, specifically for version
3 of the X.509 standard. The issuer CA signs the entire
TBSCertificate content, generating a signature, denoted as
SignatureValue, which is appended to the end of the certific-
ate, creating a digitally secure and tamper-proof container.
The SignatureAlgorithm field specifies the algorithm used
by the issuer CA for generating the signature.
Certificate Chain Validation. A certificate chain C can be
conceptually viewed as an ordered sequence of certificates,

C = [C1, C2, . . . ,Cn−1, Cn], in which C1 to Cn−1 are the
(intermediate) CA certificates whereas Cn is the end-user
certificate to be authenticated. Each certificate Ci is issued
by its predecessor Ci−1 (see Figure 1). Roughly, the certific-
ate chain validation logic can be conceptually decomposed
into the following stages: parsing, transformation and pre-
processing, and semantic condition checking (See Figure 2).

The parsing stage checks to see whether each certificate
Ci in C is syntactically well-formed and then parses it in an
intermediate representation. After parsing, the intermediate
representation of C goes through a series of transformations
and pre-processing. The semantic condition checking stage
checks to see whether the standard-prescribed semantic con-
ditions are fulfilled. These conditions can be on a single
certificate (e.g., the certificate is not expired, the signature
is verified) or across certificates (e.g., the subject name of
the certificate Ci−1 is the same as the issuer name of the
certificate Ci). Finally, one checks to see whether C1 is
present in the trusted root store. All of these checks together
allows one to extend the unconditional trust of C1 through
the intermediate CA certificates (C2 to Cn−1), all the way
down to the end-user certificate (Cn).

TBSCertificate

Version*
Serial

Sign. Algo.
Issuer
Validity
Subject

Public-Key
Unique IDs*
Extensions*

Signature
Algorithm
Signature

Value

TBSCertificate

Signature
Algorithm
Signature

Value

TBSCertificate

Signature
Algorithm
Signature

Value

C1 (Trusted CA) C2 (Intermediate CA) C3 (End-User Entity)

Issues Issues TBSCertificate
is Signed by

Issuer's
Private Key

Version*
Serial

Sign. Algo.
Issuer
Validity
Subject

Public-Key
Unique IDs*
Extensions*

Version*
Serial

Sign. Algo.
Issuer
Validity
Subject

Public-Key
Unique IDs*
Extensions*

Fields marked with * are optional

Figure 1: Representation of an X.509 certificate chain

For ease of exposition, the CCVL described here is in-
tentionally simplified and left to be abstract. An implement-
ation additionally has to take into account different corner
cases, such as the presented input certificate chain C not be-
ing in the correct hierarchical order, the chain not including
some CA certificates, or even containing duplicates. It is the
implementation’s responsibility to construct potential chains
and try to verify them. For a detailed description of the en-
tirety of CCVL, interested readers can consult RFC 5280 [2].

3. Design of ARMOR

We now present the design of ARMOR along with its
verification philosophy and technical challenges.

3.1. Technical Challenges

Complexities in Specifications. The X.509 specification
is distributed across different documents (e.g., ITU-T
X.509 [32], RFC 5280 [2], RFC 6125 [33], RFC 4158 [34],
RFC 2527 [35], RFC 4518 [36]). The natural language spe-
cification has been shown to suffer from inconsistencies,

3

https://github.com/joyantaDebnath/armor/
https://github.com/joyantaDebnath/armor/

ambiguities, and under-specification [22], [25], [37]. As an
example, consider the following requirements of a certific-
ate’s serial number, quoted from RFC 5280 [2].

“The serial number MUST be a positive integer assigned by the

CA to each certificate. [...] CAs MUST force the serialNumber to

be a non-negative integer.”

The two requirements here are inconsistent, as one part ex-
cludes zero as a serial number while the other allows it.

Moreover, RFC 5280 encompasses rules not only for the
certificate issuers (i.e., producer rules) but also for the im-
plementations that validate certificate chains (e.g., consumer
rules). Alternatively, RFC 5280 rules can be categorized into
syntactic and semantic rules. While the syntactic rules are
concerned with the parsing of an X.509 certificate serialized
as a byte string, the semantic rules impose constraints on
the values of individual fields within a certificate and on the
relationships between field values across different certific-
ates in a chain. Unfortunately, these intertwined sets of rules
further complicate the specification, making it a challenge to
determine how an X.509 consumer implementation should
respond in certain cases (i.e., whether to accept a chain).
Complexities in DER Parsing. The representation of an
X.509 certificate, while described in the Abstract Syntax
Notation One (ASN.1), is eventually serialized using the
X.690 Distinguished Encoding Rules (DER) [17]. This DER
representation of the certificate byte string internally has the
form ⟨t, ℓ, v⟩, where t denotes the type, v indicates the actual
content, and ℓ signifies the length in bytes of the v field.
Additionally, the v field can include multiple and nested
⟨t, ℓ, v⟩ structures, adding additional layers of complexity to
the binary data. Parsing such binary data is challenging and
error-prone since it always requires parsing the value of the
ℓ field (length) to accurately parse the subsequent v field.
Since the internal grammar of a DER-encoded certificate
is context-sensitive, developing a correct parser for such a
grammar is non-trivial [20], [25].

To make matters worse, just correctly parsing the ASN.1
structure from the certificate byte string is insufficient, be-
cause the relevant certificate field value may need to be
further decoded from the parsed ASN.1 value. Take the ex-
ample of X.509 specification for using the UTCTime format
in the certificate validity field. It uses a two-digit year rep-
resentation, Y Y , and here lies the potential for misinter-
pretation. In this format, values from 00 to 49 are deemed
to belong to the 21st century and are thus interpreted as
20Y Y . In contrast, values from 50 to 99 are associated
with the 20th century and are consequently translated into
19Y Y . These restrictions on the UTCTime format allow the
representation of years only from 1950 to 2049. Therefore,
library developers need to be very careful when decoding
the actual value of UTCTime to avoid potential certificate
chain validation errors, a mistake previously found by Chau
et al. [9] in some TLS libraries (e.g., MatrixSSL, axTLS).
Supporting Different Certificate Representations. An
X.509 implementation has to support different representa-
tions of an X.509 certificate. As an example, the certificates
in a root store are often saved in the PEM format whereas

the certificates obtained during a TLS connection are rep-
resented as a DER encoded byte string.
Complexities in Individual Stages. The X.509 CCVL can
be conceptually decomposed into different stages, each of
which has its own challenges. To give a few examples: (1)
building a valid certification path can be difficult due to
the lack of concrete directions as well as the possibility of
having multiple certificate chain candidates [38]; (2) string
canonicalization [36], where strings are converted to their
normalized forms, is also a complex process, since the valid
character sets vary depending on the chosen string type; and
(3) during signature verification, the implementation needs
to carefully parse the actual contents of the SignatureValue
field with relevant cryptographic operations to prevent at-
tacks (e.g., RSA signature forgery [39], [40]). While these
intermediate stages are conceptually straightforward, imple-
menting them securely and proving their correctness, how-
ever, is non-trivial.

3.2. ARMOR’s Verification Philosophy

Relational Specifications. The central tenant of our ap-
proach to formally verifying ARMOR is to use high-level,
relational, and implementation-independent specifications.
We have remained faithful to this tenant except in the case
of the Base64 decoder module, whose correctness is instead
given with respect to an encoder. Our motivation for adher-
ing to this discipline is two-fold.

1) Specifications are part of the trusted computing
base (TCB). Formally verified software is only as
trustworthy as its specification. Relational specifica-
tions that describe how the input and output are re-
lated without referencing implementation details are, in
general, simpler. Such specifications are also easier for
humans to evaluate for trustworthiness than those that
reference implementation details [25].

2) A specification can be valuable in its own right.
Specifications are useful documentation, and made all
the more valuable by being applicable to a wide range
of implementations for a particular software task. Due
to the inherent complexity of X.509 CCVL, there is
a vast space for non-trivial variations in implement-
ations (e.g., combining parsing with semantic valida-
tion), something that RFCs specifying X.509 CCVL ex-
plicitly acknowledge and aim to accommodate. Rather
than providing correctness proofs that are limited to our
particular implementation, we seek to provide a formal,
machine-checked alternative to the RFCs by giving
implementation-agnostic correctness specifications.

As a concrete example, consider the task of formally
verifying a particular sorting algorithm. We could either
prove it correct by showing it is extensionally equal to
some other sorting algorithm (e.g., mergesort), or state the
correctness property relationally: the output of the sorting
function is a permutation of the input with the property that
for every adjacent pair of elements, the first is no greater
than the second. Not only is it clear that it is the second,

4

relational property that we ultimately care about for a sorting
algorithm, if we did not already have this as our intuition
for what sorting should achieve, then the usefulness of the
first property as a form of communication is limited.
Modularity. We decompose ARMOR into independent
modules (see Figure 2), which facilitates both our imple-
mentation and verification efforts. Also lying behind this
design choice is a philosophical concern, namely what
should the formal end-to-end guarantees of X.509 CCVL
even be? The input to ARMOR is a character string and the
result is a verdict and a public key. While we could present
a relational join of each of the correctness properties of each
module as an end-to-end guarantee, in our view this “leaks”
implementation details, specifically our modular decomposi-
tion of X.509 CCVL (an approach not shared by most imple-
mentations). We thus refrain from positioning our results as
an end-to-end guarantee, leaving such a task for future work.
Strict Adherence to the Standards. We believe that strict
adherence to the standards governing X.509 PKI is the best
practice for application developers and CAs to ensure secur-
ity and trust across the digital ecosystem. While it is sensible
for many applications to accommodate certain widespread,
low risk deviations from the standard (such as permitting 0
for a certificate serial number), we have chosen not to do
this for ARMOR. One goal of ARMOR is that its correctness
specifications should serve as a formal, machine-checked,
and implementation-independent alternative to the natural
language specifications for X.509 PKI, and so codifying
common deviations would run counter to this.

PEM
Parser

Base64
Decoder

X.690 DER
and X.509

Parsers

String
Canonicalizer

Semantic
Validator

Chain
Builder

Driver

Input Certificates (PEM / DER)
Trusted CA Certificates (PEM)
Current System Time (CST)

Expected Certificate Purpose (ECP) *

Verdict
Public-key

PEM

DER

DERBase64 X.509
IR

String Normalized
String

Candidate
Chains

Chain
Information

Input
Output

L

A

B

C D

K

I

H
G

F

E

Verified
Modules

CST, ECP *

J

Inputs marked with * are optional

Figure 2: Conceptual design and workflow of ARMOR

3.3. ARMOR’s Architecture

Figure 2 shows the architecture and workflow of
ARMOR. ARMOR A takes a certificate chain, a list of trus-
ted CA certificates, the current system time, and optionally
the expected certificate purpose as input, and L outputs
the certificate validation result (i.e., verdict) as well as the
public key of the end-user certificate. B The PEM parser
reads a PEM certificate file and converts each certificate
into its Base64 encoded format (sextets, i.e., unsigned 6 bit
integers). C The Base64 Decoder converts the sextet strings

into octet strings (i.e., unsigned 8-bit integers). D The X.690
DER parser and X.509 parser collaboratively parse the DER
byte string and convert each certificate into an intermedi-
ate representation (X.509 IR). Note that if a certificate is
already given in DER format as input, E we directly call the
DER parser. Next, F The chain builder constructs candidate
chains from the parsed certificates, G – H utilizing the
string canonicalizer to normalize strings in the certificate’s
Name field for accurate comparison. The semantic validator
evaluates each candidate chain against certain semantic rules
upon receiving I the candidate chains, J the current system
time, and the expected certificate purpose and K informs the
driver whether any chain passes all the semantic checks. In
this design, the driver is the central component that orches-
trates the entire process. The driver’s role is multifaceted:
(1) it activates the parser modules with the correct input; (2)
it initiates the chain builder to form candidate chains; (3) it
directs the semantic validator with the required input; and
(4) upon success of the previous stages, the driver verifies
signatures of the chain, and finally displays the validation
outcome to the verifier.

4. Verification Goals and Correctness Proofs

We now discuss ARMOR’s correctness proofs. We
provide formal correctness guarantees for the following
modules of ARMOR: parsers (i.e., PEM, X.690 DER, and
X.509 parsers), Base64 decoder, Semantic validator, and
Chain builder. See Table 1 for a listing and brief description
of all formal guarantees proven.

For these verification tasks, which took 12 person
months to complete, we use the Agda interactive theorem
prover [26], [27]. We choose Agda over other dependently
typed languages (e.g., Coq, F*) for three reasons. First, Agda
provides features convenient for proof development (e.g.,
dependent pattern matching) and essential to our proof goals
(e.g., runtime erasure of proof terms). Second, Agda’s TCB
is small relative to languages that integrate with SMT solvers
(e.g., F*). Finally, we have significant expertise in Agda.
TCB for Agda Modules. Our TCB comprises of the Agda
toolchain (v2.6.2.2), which includes its native type-checker,
compiler, and standard library (v1.7.1). Our use of Agda’s
standard library includes the module Data.Trie (for the
String canonicalizer), which requires the --sized-types
language feature, and the module IO, which requires the
--guardedness feature. Using these two features together
in the declaration of a coinductive type causes logical incon-
sistency [41]. The only module enabling both features is the
Agda main module (the execution entry point). It, however,
does not define any coinductive types. ARMOR also uses
Agda’s FFI for two Haskell packages: time (∼9.7K Haskell
LoC) and bytestring (∼13K Haskell LoC).

Finally, ARMOR’s Agda source code TCB constitutes:
the specifications for its parsers and the PEM, X.690 DER
and X.509 formats (4826 LoC); the specifications for its
Base64 decoder (202 LoC); the X.509 certificate and chain
semantic validator specifications (627 LoC); the unverified
String canonicalizer (4077 LoC); and Haskell FFI bindings

5

Table 1: Total Correctness Guarantees

Property Purpose Proven For Description
Unambiguous Format security PEM, X.690 DER, X.509 One string cannot be the encoding of two distinct values.
NonMalleable Format security X.690 DER, X.509 Two distinct strings cannot be the encoding of the same value.
UniquePrefixes Format security X.690 DER, X.509 (⟨t, ℓ, v⟩) At most one prefix of a string is in the language.

Isomorphism Impl. correctness Base64 decoder The Base64 decoder forms an isomorphism with a specificational encoder between
the set of octet strings and the subset of sextet strings that are valid encodings.

MaximalParser Impl. correctness PEM If the parser consumes a prefix, that prefix is the longest one in the language.
Sound (parser) Impl. correctness PEM, X.690 DER, X.509 If the parser accepts some prefix, that prefix is in the language.

Complete (parser) Impl. correctness PEM, X.690 DER, X.509 If the string is in the language, the parser accepts some prefix of it.
StronglyComplete Impl. correctness PEM, X.509 If a string is in the language and encodes value v , the parser consumes exactly that

string and produces v .

Valid chain Impl. correctness X.509 Our specification Chain for chains consisting of a sequence of n certificates satisfies
the following properties by construction:

(a) for all x ∈ {1 . . . n−1}, the subject of certificate x is the issuer of certificate x+1;
(b) certificate 1 is issued by a trusted CA;
(c) certificate n is the certificate to be validated

Chain uniqueness Impl. correctness X.509 Under the following assumptions, sequences of certificates satisfying our Chain spe-
cification have no duplicates.

● The input certificate sequence has no duplicates.
● The certificate to be validated is not in the trusted root store.

Sound chain builder Impl. correctness X.509 The chain builder produces only chains satisfying the specification Chain .
Complete chain builder Impl. correctness X.509 The chain builder generates all certificate lists satisfying the specification Chain .

Sound semantic checker Impl. correctness X.509 If a certificate/chain passes the semantic check, it satisfies the semantic property.
Complete semantic checker Impl. correctness X.509 If a certificate/chain satisfies the semantic property, it passes the semantic check.

(including IO) (435 LoC). A full listing of ARMOR’s Agda
files considered to be part of the TCB, with a script reporting
LoC, can be found in the artifact repository.
Termination. ARMOR’s correctness guarantees are total,
with Agda enforcing termination. By default, Agda employs
a syntactic termination checker that ensures recursive func-
tions respect a certain well-founded ordering [42]. This syn-
tactic termination checker can be disabled through the ex-
plicit use of certain pragmas, or replaced with a type-based
termination checker through the use of sized types. ARMOR
does not use any pragmas that disable termination check-
ing, so its termination is guaranteed by Agda’s syntactic
checker everywhere except the String canonicalizer and its
co-dependencies, whose termination guarantee additionally
rests on the correctness of Agda’s type-based checker.
Other Assumptions. We also make the following assump-
tions: (1) the GHC Haskell compiler correctly generates
the executable; (2) the specifications for the formally veri-
fied libraries HACL∗ [43] and Morpheus [44] are correct (3)
the verifier’s trusted root CA store is up-to-date and does
not contain any malicious certificates; (4) the system time
is accurate.

4.1. Preliminaries on Agda

Agda is dependently-typed, meaning that types may in-
volve program-level expressions. This capability helps ex-
press rich properties of programs in the types of those pro-
grams, and checking that programs satisfy those proper-
ties reduces to typechecking. This paradigm, known as the
Curry-Howard correspondence [45], means we can view
Agda’s types as propositions and its programs as proofs of
the propositions expressed by their types.

Consider the example shown in Figure 3 of nonnegative
integers strictly less than some upper bound, provided as
part of the Agda standard library as Fin . Fin defines an

data Fin ∶Nat → Set where
fzero ∶ {n ∶Nat }→ Fin (1 + n)
fsuc ∶ {n ∶Nat }→ (i ∶ Fin n)→ Fin (1 + n)

toNat ∶ ∀ {n }→ Fin n → Nat
toNat fzero = 0
toNat (fsuc i) = 1 + (toNat i)

Figure 3: Bounded natural numbers in Agda

inductive family of types, where the family is indexed by a
non-negative integer. In other words, each type in the family
is parameterized by a nonnegative integer: for every n ∶Nat ,
Fin n is a unique type whose inhabitants correspond to the
nonnegative integers strictly less than n .

We now explain the declaration of Fin .
● The data keyword introduces a new inductive type or

type family, in this case Fin .
● Set is the type of (small) types (we omit the details of
Agda’s universe hierarchy).

● Fin has two constructors, both of which have dual
readings as “mere data” and as axiomatizations of the
“is strictly less than” relation. As mere data, fzero
corresponds to the integer 0; as an axiom, it states that
0 is strictly less than the successor 1 + n of any non-
negative n . Similarly, as mere data fsuc is a primitive
successor operation (like the Peano numbers), and as
an inference rule, it states that if i is strictly less than
n , then its successor is strictly less than 1 + n .

● Curly braces {} indicate function arguments that need
not be passed explicitly. For example, if i has type

6

Fin 5, then Agda can determine fsuc i has type Fin 6.
Since Fin is inductive, we can define functions over

it by pattern matching and recursion. This is shown with
function toNat , which takes a nonnegative n and a Fin n
and returns a nonnegative integer; we can think of toNat as
extracting the “mere data” contained in the Fin n argument.
● In the type signature, we use the syntactic sugar ∀ to

omit the type of the parameter n , as Agda can infer
this from the occurrence of n in the rest of the type.

● The definition of toNat is given with two equations,
one each for the two constructors of Fin .
– In the first equation, we map fzero to 0.
– In the second equation, our argument is of the form

fsuc i . We make a recursive call toNat i and in-
crement the result by 1. Agda’s termination checker
accepts this, as i is structurally smaller than fsuc i .

4.2. Input Strings and Base64 Decoding

Fin plays a central role as the type of the language
alphabet for our X.690 DER and X.509 parsers, as well as
the input and output types for Base64 decoding. In general,
parser inputs have types of the form List A, where A is the
type of language alphabet; for our X.690 DER and X.509
parsers, this is UInt8 , an alias for Fin 256, modeling an
octet. The ultimate result of our PEM parser is a string of
sextets, i.e., a value of type List UInt6 , where UInt6 is an
alias for Fin 64.

The hand-off between the result of PEM parsing and the
input to X.509 parsing (Figure 2, C – D) is managed by
the Base64 decoder, whose formal correctness properties are
established with respect to a specificational encoder. Spe-
cifically, we prove: (1) the encoder always produces a result
accepted by the decoder; and (2) the encoder and decoder
pair forms an isomorphism between octet strings and valid
sextet strings for encoding them. This is summarized below
in Figure 4 (definitions omitted), which we now explain.

Valid64Encoding ∶ List UInt6 → Set

encode ∶ List UInt8 → List UInt6
decode ∶ (bs ∶ List UInt6)→ Valid64Encoding bs → List UInt8

encodeValid ∶ ∀ bs → Valid64Encoding (encode bs)

encodeDecode ∶ ∀ bs → decode (encode bs) (encodeValid bs) ≡ bs
decodeEncode ∶ ∀ bs → (v ∶Valid64Encoding bs)

→ encode (decode bs v) ≡ bs

Figure 4: Base64 encoding and decoding (types only)

● Valid64Encoding is a predicate for sextet strings that
expresses what it means for them to be valid encodings
of an octet string. Recall that Base64 decoding pro-
ceeds by mapping each group of four sextets to three
octets (24 bits in total).
– If a single sextet remains after this grouping, then

the sextet string is invalid (6 bits is not enough to
encode an 8 bit value).

– If two sextets remain, then they encode a single octet
iff the last 4 bits of the second sextet are set to 0.

– If three sextets remains, then they encode two octets
iff the last 2 bits of the third sextet are set to 0.

● Next in the figure are the encoder, encode, and de-
coder, decode. While the domain of the encoder is all
octet strings, for the decoder the domain is restricted
to only those sextet strings for which the predicate
Valid64Encoding holds.

● Lemma encodeValid is a proof that the specificational
Base64encoder always produces a valid Base64 encod-
ing.

● Finally, our main correctness result for the Base64
module is given by the proofs encodeDecode and
decodeEncode, which together state that the encoder
and decoder form an isomorphism (≡ is the sym-
bol for propositional equality). In the first direction
(encodeDecode), we pass to the decoder the result of
encoding octet string bs together with a proof that this
encoding is valid, and the result we get is the very same
octet string bs . In the second direction, we assume that
the given sextet string bs is already a valid encoding,
and we obtain that the result of first decoding and then
re-encoding bs is bs itself.

4.3. Verification of Parsers

We conceptually separate each parser verification task
into language specification, language security verification,
and parser correctness verification.

4.3.1. Language specification. We provide parser-
independent formalizations of the PEM, Base64, X.690
DER, and X.509 formats, greatly reducing the complexity
of the specification and increasing trust that they faithfully
capture the natural language description. Much current re-
search [15], [24] on applying formal methods to parsing uses
serializers to specify their correctness properties. Formal
proofs of correctness (in any context) are only ever as good
as the specification of those correctness properties, and this
earlier research swells the trusted computing base by intro-
ducing implementation details for serialization. To avoid this
issue, we use relational specifications of languages. This
has two other advantages: (1) it allows for a clear distinction
between correctness properties of the language and parser;
and (2) it brings the formal language specification into
closer correspondence with the natural language description.
This second point also means the formal specification can
serve as a machine-checked, rigorous alternative for the
developers seeking to understand the relevant specifications.

The relational specifications we give are of the following
form. For a given language G with alphabet A, we define
a family of types G ∶ List A → Set , where the family G
is indexed by strings xs ∶ List A over the alphabet. Such a
family serves dual roles: a value of type G xs is both the
proof that xs is in the language G and the internal repres-
entation of the value decoded from xs (e.g., the X.509 IR).

7

MinRep ∶UInt8 → List UInt8 → Set
MinRep hd [] = ⊺
MinRep hd (b2 ∶∶ tl) =
(hd > 0 ∨ (hd ≡ 0 ∧ b2 ≥ 128))
∧ (hd < 255 ∨ (hd ≡ 255 ∧ b2 ≤ 127))

record IntegerValue (@0 bs ∶ List UInt8) ∶ Set where
field

@0 hd ∶UInt8
@0 tl ∶ List UInt8
@0 minRep ∶MinRep hd tl
val ∶ Z
@0 valeq ∶ val ≡ Base256 .twosComp bs
@0 bseq ∶ bs ≡ hd ∶∶ tl

Figure 5: Specification of integer values

We illustrate our approach with a concrete example: our
specification of X.690 DER integer values, shown in Fig-
ure 5. This specification takes the form of an Agda record
that is parameterized by a bytestring bs .
● Erasure annotations. The annotation @0 marks the

accompanying identifier as erased at runtime. In
IntegerValue , only val (the integer encoded by bs) is
present at runtime; the remaining fields and parameter
bs are erased by Agda’s GHC backend. Erasure annota-
tions not only improve performance but also document
the components that serve only specificational purposes
for programmers using ARMOR as a reference.

● Minimum representation. X.690 DER requires the
two’s complement encoding of an integer value con-
sists of the minimum number of octets. We express
this property with MinRep, which defines a relation
between the first byte of the encoding and the remain-
ing bytes. We enforce the property with field minRep
of IntegerValue: in order to construct an expression
of type IntegerValue bs , one must prove that MinRep
holds for the head and tail of bs .
The definition of MinRep is by pattern matching on tl .

1) If tl is empty, we return the trivially true proposition
⊺, because a single byte is always minimal.

2) Otherwise, if the first byte is 0, the second byte must
not be less than 128; and if the first byte is 255, then
the second byte must not be greater than 127.

● Nonempty encoding. Fields hd , tl , and bseq together
ensure the encoding of an integer value “consists of one
or more octets” [17]. Specifically, bseq ensures that bs
is of the form hd ∶∶ tl , where hd is the first content
octet and tl contains the remaining octets (if any).

● Linking the value and its encoding. Field valeq en-
forces that val be populated with a value equal to the
result of decoding bs as a two’s complement binary
value (Base256 .twosComp is the decoding operation).

4.3.2. Language security verification. A major advantage
of our approach to specifying X.509 is that it facilitates
proving properties about the grammar without having to
reason about parser implementation details. We have proven:
unambiguousness for the supported subsets of formats PEM,

X.690 DER, and X.509; non-malleability for the supported
subsets of formats X.690 DER and X.509; and unique pre-
fixes for all ⟨t, ℓ, v⟩ structures.
Unambiguous– We formally define unambiguousness of a
language G in Agda as follows.

Unambiguous G = ∀ {xs }→ (a1 a2 ∶G xs)→ a1 ≡ a2

Read this as saying for every string xs , any two inhabitants
of the internal representation of the value encoded by xs in
G are equal. In the context of X.509, format ambiguity could
result in interoperability issues between standards-compliant
producers and consumers (e.g., rejection because the de-
coded certificate does not match the encoded certificate).

Challenges. One challenging aspect in proving unam-
biguousness for X.690 DER is its support for sequences with
optional and default fields, that is, fields that might not be
present in the sequence. We are threatened with ambiguity
if it is possible to mistake an optional field whose encod-
ing is present for another optional field whose encoding is
absent. To avoid this scenario, the X.690 format stipulates
that every field of any “block” of optional or default fields
must be given a tag distinct from every other such field.
Our proof of unambiguousness for X.509 relies heavily on
lemmas proving the X.509 format obeys this stipulation.
Non-malleable– Informally, in the context of X.509 non-
malleability means that two distinct bytestrings cannot be
encodings for the same certificate. Compared to unambigu-
ousness, non-malleability requires more machinery to ex-
press, so we begin by discussing the challenges motivating
this machinery. Since the bytestring encodings are part of the
very types of internal representations, e.g., IntegerValue xs ,
it is impossible to express equality between internal repres-
entations a1 ∶G xs1 and a2 ∶G xs2 without already assuming
xs1 is equal to xs2 . Thus, to make non-malleability non-
trivial, we must express what is the “raw” internal datatype
corresponding to G , discarding the specificational compon-
ents. We express this with Raw , given below.

record Raw (G ∶ List A→ Set) ∶ Set where
field

D ∶ Set
to ∶ {@0 xs ∶ List A}→ G xs → D

An inhabitant of Raw G consists of a type D (the “mere
data” of G) together with a function to that extracts this
data from any inhabitant of G xs . Consider the case for
IntegerValue below.

RawIntegerValue ∶Raw IntegerValue
Raw .D RawIntegerValue = Z
Raw .to RawIntegerValue = IntegerValue.val

This says that the raw representation for X.690 DER integer
values is Z, and the extraction function is just the field ac-
cessor IntegerValue.val . Note that the integer type used for
the raw representation is unbounded, and so the size of the
bytestring encoding for an integer value can be multiple KB.

Once we have defined an instance of Raw G , we express
non-malleability of G with respect to that raw representa-
tion with the following property: given two “proof-carrying”

8

internal representations g1 ∶ G xs1 and g2 ∶ G xs2 , if the
mere data of g1 and g2 are equal, then not only the strings
xs1 and xs2 are equal but also the g1 and g2 are equal. In
Agda, we write:

NonMalleable ∶ {G ∶ List A→ Set }→ Raw G → Set
NonMalleable {G } R =
∀ {@0 xs1 xs2 }→ (g1 ∶G xs1) (g2 ∶G xs2)
→ Raw .to R g1 ≡ Raw .to R g2 → (xs1 , g1) ≡ (xs2 , g2)

Proving NonMalleable RawIntegerValue requires proving
Base256 .twosComp is injective.
Unique prefixes– The final language property we discuss,
dubbed as “unique prefixes,” expresses that a language per-
mits parsers no degrees of freedom over which prefix of
the input it consumes. Striving for parser independence, we
formulate this property as follows: for any two prefixes of
an input string, if both prefixes are in the language G , then
they are equal. In Agda, we express this as UniquePrefixes
below.

UniquePrefixes G = ∀ {xs1 ys1 xs2 ys2 }
→ xs1 ++ ys1 ≡ xs2 ++ ys2 → G xs1 → G xs2 → xs1 ≡ xs2

Given that X.509 uses ⟨t, ℓ, v⟩ encoding, it is unsurprising
that we are able to prove UniquePrefixes holds. However,
we call explicit attention to this property for two reasons: (1)
it is an essential lemma in our proof of strong completeness
of our X.509 parser (see Section 4.3.3); and (2) this property
does not hold for the PEM format due to leniency in end-
of-line encoding, so to show strong completeness for PEM
parsers we need an additional parser property, maximality.

4.3.3. Parser correctness. We now describe our approach
to verifying parser soundness and completeness. For a lan-
guage G, parser soundness means every prefix it consumes
is in the language, and completeness means if a string is
in the language, it consumes a prefix of it (we later show
a strengthening of this notion of completeness). Our ap-
proach to verifying these is to make our parsers correct-
by-construction, meaning that parsers do not merely indic-
ate success or failure with e.g. an integer code, but return
proofs. Precisely, our parsers are correct-by-construction by
being proofs that membership of an input’s prefix in G is
decidable: parsers return either a proof that some prefix of
its input is in the language, or a proof that no prefix is.
Correct-by-construction parsers. Our first step is to form-
ally define success. In first-order logic (FOL), we would ex-
press the condition for the parser’s success on a prefix of xs
as ∃ys zs, xs = ys ++zs ∧G ys . That is to say, on success the
parser consumes some prefix of the input string that is in the
language G . In Agda, we express this as the record Success ,
shown below. In the definition, parameters G and xs are the
language denoted by a production rule and an input string,
respectively. The fields of the record are: prefix , the con-
sumed prefix of the input (erased at runtime); suffix , the re-
maining suffix of the input from which we parse subsequent
productions; pseq , which relates prefix and suffix to the in-
put string xs (also runtime erased); and value, which serves
dual roles as both the internal data representation of the

record Success
(G ∶ List UInt8 → Set) (@0 xs ∶ List UInt8) ∶ Set where
field

@0 prefix ∶ List UInt8
suffix ∶ List UInt8
@0 pseq ∶ prefix ++ suffix ≡ xs
value ∶G prefix

Figure 6: Success conditions for parsing

value encoded by prefix and a proof that prefix is in the lan-
guage G . As a consequence, soundness will be immediate.

Failure is the negation of the success condition,
¬ Success G xs , meaning no prefix of the input xs is in the
language of G . To have the parser return Success G xs on
success and ¬ Success G xs on failure, we use the Agda
standard library datatype Dec, shown below.

data Dec (Q ∶ Set) ∶ Set where
yes ∶Q → Dec Q
no ∶ ¬ Q → Dec Q

Reading Dec as programmers, Dec Q is a tagged union type
which can be populated using either values of type Q or type
¬ Q ; as mathematicians, we read it as the type of proofs that
Q is decidable. Expressed as a formula of FOL, Dec Q is
simply Q∨¬Q; however, note that constructive logic (upon
which Agda is based) does not admit LEM (law of excluded
middle). Therefore, this disjunction must be proven on a
case-by-case basis for each Q (there are some undecidable
propositions).

We can now complete the definition of Parser , shown
in Figure 7. Parser is a family of types: for each language

Parser ∶ (List A→ Set)→ Set
Parser G = ∀ xs → Dec (Success G xs)

MaximalSuccess ∶ ∀ (G ∶ List A→ Set) xs
→ Dec (Success G xs)→ Set

MaximalSuccess G xs (no) = ⊺

MaximalSuccess G xs (yes s) = ∀ pre suf → pre ++ suf ≡ xs
→ G pre → length pre ≤ length (Success.prefix s)

record MaximalParser (G ∶ List A→ Set) ∶ Set where
field

p ∶Parser G
max ∶ ∀ xs →MaximalSuccess (p xs)

Figure 7: Definition of Parser and MaximalParser

G , type Parser G is the proposition that, for all bytestrings
xs , it is decidable whether some prefix of xs is in G .

Challenges. The parser’s guarantee of ¬ Success G xs
on failure is very strong, as it asserts a property concerning
all prefixes of the input. This strength is double-edged: while
having this guarantee makes proving completeness straight-
forward, proving it means ruling out all possible ways the
input could be parsed. In some cases, we implemented pars-
ers to facilitate the proofs concerning the failure case (see
Proof Engineering in Section 7 for further discussion).
Maximal parsers. The PEM format does not enjoy the
unique prefixes property. To facilitate our implementation of

9

Sound ∶ (G ∶ List A→ Set)→ Parser G → Set
Sound G p =
∀ xs → (w ∶ IsYes (p xs))→ G (Success.prefix (toWitness w))

Complete ∶ (G ∶ List A→ Set)→ Parser G → Set
Complete G p = ∀ xs → G xs → IsYes (p xs)

soundness ∶ ∀ {G }→ (p ∶Parser G)→ Sound G p
soundness p xs w = Success.value (toWitness w)

trivSuccess ∶ ∀ {G } {xs }→ G xs → Success G xs

completeness ∶ ∀ {G }→ (p ∶Parser G)→ Complete G p
completeness p xs inG = fromWitness (p xs) (trivSuccess inG)

Figure 8: Parser soundness and completeness

correct-by-construction PEM parsers and prove a stronger
completeness result, we have augmented the specifications
of these parsers to guarantee they consume the largest pre-
fix of the input compliant with the format. The formal-
ization of this in Agda is shown in Figure 7. Definition
MaximalSuccess expresses that if parsing xs was success-
ful (yes s), then any other prefix pre of xs in G is not
greater than that consumed by the parser. In the record
MaximalParser , we couple together a parser p with a proof
max that, for every input string xs , if p is successful parsing
xs then that success is maximal.
Correctness properties. We now show our definitions and
proofs of parser soundness and completeness.
Soundness– The Agda definition and proof of soundness
for all of our parsers is shown in Figure 8. Beginning with
Sound , which expresses that parser p is sound with respect
to language G , the predicate IsYes (definition omitted) ex-
presses the property that a given decision (in this case, one
of type Dec (Success G xs)) is affirmative (i.e., constructed
using yes). The function toWitness ∶∀ {Q } {d ∶Dec Q }→
IsYes d → Q takes a decision d for proposition Q and

the proof that it is affirmative, and produces the underlying
proof of Q . Thus, we read the definition of Sound G p as:
“for all input strings xs , if parser p accepts xs , the prefix it
consumes is in G .” The proof soundness states that all pars-
ers are sound. As our parsers are correct-by-construction,
the definition is straightforward: we use toWitness to ex-
tract the proof of parser success (i.e., an expression of type
Success G xs), and then the field accessor Success.value
obtains the desired proof that the consumed prefix is in G .
Completeness– Figure 8 also shows our definition and proof
of completeness in Agda. The definition of Complete dir-
ectly translates our notion of completeness: for every input
string xs , if xs is in G , then parser p accepts some prefix
of xs . For the proof, a straightforward lemma trivSuccess
(definition omitted) states any proof that xs is in G can be
turned into a proof that some prefix of xs (namely, xs itself)
is in G . With this lemma, the proof of completeness uses
the function fromWitness ∶{Q ∶Set }→ (d ∶Dec Q)→ Q →
IsYes d , which intuitively states that if a proposition Q is
true, then any decision for Q must be in the affirmative.
Strong completeness– In isolation, completeness does not
rule out all bad behavior that threatens security. Specific-
ally, it does not constrain the parser’s freedom over (1)

StronglyComplete ∶ (G ∶@0 List A→ Set)→ Parser G → Set
StronglyComplete G p = ∀ xs → (inG ∶G xs)
→ ∃ (w ∶ IsYes (p xs)) (let s = toWitness w in

(xs , inG) ≡ (Success.prefix s , Success.value s))

strongCompleteness
∶ ∀ {G }→ Unambiguous G → UniquePrefixes G
→ (p ∶Parser G)→ StronglyComplete G p

strongCompletenessMax ∶ ∀ {G }→ Unambiguous G
→ (m ∶MaximalParser G)
→ StronglyComplete G (MaximalParser .p m)

Figure 9: Strong completeness (types only)

which prefix it consumes and (2) how the internal data-
structure is constructed. As discussed in Section 4.3.1, these
should be thought of as language properties. To rule out
both bad behaviors, it suffices that G satisfies the properties
Unambiguousness and UniquePrefixes .

Figure 9 shows the types used in our proof of our strong
completeness. StronglyComplete G p says that, if we have
a proof inG that xs is in G , then not only does there exist
a witness w that the parser accepts some prefix of xs but
also this prefix is xs and the proof it returns is inG . Recall
that the assumption inG and the value field of the Success
record serve dual roles: they are not only the proofs that a
string is in a language but also the internal data representa-
tion of the value encoded by xs . Therefore, saying they are
equal means the internal representations are equal.

Strong completeness from maximality. For PEM, even
though the format lacks the unique prefixes property, we can
still prove strong completeness by leveraging the fact that
our parsers are guaranteed to be maximal. Intuitively, this
is because: if xs is in G , then the largest possible prefix
of xs in G is the xs itself. We show the formal statement
of the theorem in Figure 9, omitting the proof for space
considerations.

4.4. Verification of Chain Builder

The section presents the Chain builder, for which we
have proven soundness and completeness with respect to a
partial specification. Adhering to our discipline of providing
high-level, relational specifications, we dedicate the bulk of
this section to describing the specification used, present-
ing at the end the type of our sound-by-construction chain
builder and its proof of completeness.

4.4.1. Chain Specification. Our operative definition of cor-
rectness for the Chain Builder module is as follows (cf.
RFC 5820, Section 6.1). Given a list of certificates c1 . . . cn
where n ≥ 2, this list forms a chain when:
● c1 is the certificate to be validated;
● cn is a certificate in the trusted root store;
● for all i ∈ {1 . . . n − 1}, the issuer field of ci matches

the subject field of ci+1; and
● if c1 is not a self-signed certificate that is present in the

trusted root store, then for all i, j ∈ 1 . . . n, if ci = cj
then i = j.

10

IsIssuerFor ∶ ∀ {@0 xs1 xs2 }→ Cert xs1 → Cert xs2 → Set
issuer IsIssuerFor issuee =

NameMatch (Cert .getIssuer issuee) (Cert .getSubject issuer)

_IsIssuerFor_In_ ∶ ∀ {@0 xs1 xs2 }→ Cert xs1 → Cert xs2
→ (certs ∶ List (∃ Cert))→ Set

issuer IsIssuerFor issuee In certs =
issuer IsIssuerFor issue ∧ (-, issuer) ∈ certs

removeCertFromCerts ∶ ∀ {@0 xs }→ Cert xs
→ List (∃ Cert)→ List (∃ Cert)

removeCertFromCerts cert certs = filter (λc → c
?

/≡ (-, cert)) certs

data Chain (trust candidates ∶ List (∃ Cert))
∶ ∀ {@0 xs }→ Cert xs → Set where
root ∶ ∀ {@0 xs1 xs2 } {c1 ∶Cert xs1 } (c2 ∶Cert xs2)

→ c2 IsIssuerFor c1 In trust
→ Chain trustedRoot candidates c1

link ∶ ∀ {@0 xs1 xs2 } (issuer ∶Cert xs1) {c ∶Cert xs2 }
→ issuer IsIssuerFor c In candidates
→ Chain (removeCertFromCerts issuer trust)

(removeCertFromCerts issuer candidates)
issuer

→ Chain trust candidates c

Figure 10: Definition of a sound Chain

Note that it is the Semantic validator that checks whether
the certificate validity period contains the current time, that
cryptographic signature verification is outsourced to external
libraries (see Section 5), and that we currently perform no
policy mapping. Thus, our specification is partial in the
sense that we do not claim it captures the full set of desired
correctness properties of chain building.

Figure 10 lists our formalization of the specification for
a sound chain, defined as Chain , which we now describe.
● _IsIssuerFor_ is a binary relation on certificates ex-

pressing that the subject field of the first certific-
ate matches the subject of the second. In Agda,
one can define mixfix operators and relations by
using underscores in the identifier to mark the
locations of arguments. This allows us to write
issuer IsIssuerFor issuee as syntactic sugar for
IsIssuerFor issuee issuer .

● The three-place relation _IsIssuerFor_In_ augments
the previous relation by allowing us to track where the
issuer came from using the membership relation _ ∈ _.
– In the signature of _IsIssuerFor_In_, the type of

the third argument, List (∃ Cert), is the type of
lists of tuples of byte strings xs ∶List UInt8 together
with proofs Cert xs that the byte string encodes a
certificate.

– In the definition of _IsIssuerFor_In_, since certs is
a list of tuples, to express that issuer is present in
certs we must tuple it together with its octet string
encoding. This is neatly achieved with (-, issuer),
which forms a tuple where only the second compon-
ent need by passed explicitly, leaving Agda to infer
the value of the first component.

● Function removeCertFromCerts takes a certificate

toList ∶ ∀ {trust candidates } {@0 xs } (c ∶Cert xs)
→ Chain trust candidates c → List (∃ Cert)

toList c (root issuer) = (-, c) ∶∶ [issuer]
toList c (link issuer isIn chain) = (-, c) ∶∶ toList issuer chain

ChainUnique ∶ ∀ {trust candidates } {@0 xs } {c ∶Cert xs }
→ Chain trust candidates c → Set

ChainUnique c = List .Unique (toList c)

chainUnique
∶ ∀ trust candidates {@0 xs } {issuee ∶Cert xs }
→ (-, issuee) ∉ candidates → (-, issuee) ∉ trust
→ (c ∶Chain trust candidates issuee)→ ChainUnique c

Figure 11: Chain Uniqueness

cert and list of tupled certificates certs and uses the
Agda standard library function filter to remove all cer-
tificates from certs that are equal to cert .

● Finally, we come to the definition of Chain , an induct-
ive family of types indexed by: trust ∶ List (∃ Cert),
the certificates in the trusted root store; candidates ∶
List (∃ Cert), the intermediate CA certificates

provided by the end entity to facilitate chain building;
and the certificate we are attempting to authenticate.
Chain has two constructors, axiomatizing the two ways
we can extend trust to the end entity.
– Constructor root expresses that we can trust certi-

ficate c1 when we can find a certificate c2 in the
trusted root store representing an issuer for c1 .

– Constructor link expresses that we can trust certi-
ficate c if we can find an issuer’s certificate issuer
in candidates , and furthermore that we (inductively)
trust issuer through the construction of a Chain .
To avoid duplicate certificates in the chain (and en-
sure termination by ruling out cycles), the chain of
trust extended to issuer must use a trusted root
store and candidate certificate list from which issuer
has been removed; we express this using function
removeCertFromCerts .

4.4.2. Chain Uniqueness. As we did with our language
formalizations, by having an implementation-independent,
relational specification Chain we can prove that certain
properties hold of all chains constructed by our chain
builder, without reasoning about its implementation details.
Given the limited scope of our specification of correct-
ness for chains, we are primarily interested in verifying the
uniqueness property: “A certificate MUST NOT appear more
than once in a propsective certification path.” We are able
to verify this property under the assumption that the end
entity certificate is neither in the candidate list (ensured by
a preprocessing step before the Chain Builder is invoked)
nor in the trusted root store.

The specification and proof of chain uniqueness are lis-
ted in Figure 11, which we now describe.

● Function toList extracts the list of certificates from the
chain, including the issuer found in the trusted root.

11

buildChains
∶ ∀ trust candidates {@0 bs } (issuee ∶Cert bs)
→ List (Chain trust candidates issuee)

ChainEq ∶ ∀ {trust candidates } {@0 bs } {issuee ∶Cert bs }
→ (c1 c2 ∶Chain trust candidates issuee)→ Set

ChainEq c1 c2 = toList c1 ≡ toList c2

buildChainsComplete
∶ ∀ trust candidates {@0 bs } (issuee ∶Cert bs)
→ (c ∶Chain trust candidates issuee)
→ Any (ChainEq c) (buildChains trust candidates issuee)

Figure 12: Verified chain builder

● Predicate ChainUnique expresses the uniqueness of
each certificate in a chain by first using toList to ex-
tract the underlying list of certificates, then uses the
predicate List .Unique from Agda’s standard library.

● Finally, the proof chainUnique (definition omitted)
establishes that the predicate ChainUnique holds for
every chain c∶Chain trust candidates issuee, provided
that issuee is not present in either the candidate certi-
ficate list or the trusted root.

4.4.3. Sound and Complete Chain Building. We now
present our chain builder, verified sound and complete with
respect to the specification Chain , in Figure 12. First, ob-
serve that by its type buildChains (definition omitted) is
sound by construction: every chain that it returns has type
Chain trust candidates issuee. Of course, the trivial chain
builder (one that always returns the empty list) is also sound
by construction, and so the other property we are interested
in is completeness: if there exists a chain of trust extend-
ing to the issuee from the trust store using intermediate
certificates pulled from candidates , then our chain builder
enumerates it. This is formalized in the remainder of the
figure, which we now describe.
● Relation ChainEq expresses that the under-

lying certificate lists of two chains c1 c2 ∶

Chain trust candidates issuee are equal. Observe
that were we to define ChainEq c1 c2 as c1 ≡ c2 , this
would be much stronger than is required: a value of
type Chain trust candidates issuee carries with it not
only the underlying certificate list, but also proofs re-
lating each certificate with the next and with trust and
candidates . It is not necessary that these proof terms
are also equal, so ChainEq discards these using toList .

● In the type signature of buildChainsComplete, we use
Any from the Agda standard library Any . Given any
type T , a predicate Q ∶T → Set and a list xs ∶List T ,
Any Q xs is the proposition that there exists some
element of xs for which Q holds.

● Putting these together, we can read the type signature
of buildChainsComplete as follows: for every chain
c ∶Chain trust candidates issuee, there exists a chain
in the result of buildChains trust candidates issuee
which is equal to c modulo some proof terms (i.e.,
the proofs that issuers are present in either candidates

or trust and the proofs that for each adjacent pair of
certificates, the issuer of the first matches the subject
of the second).

4.5. Verification of Semantic Validator

We now describe our verification approach to the task of
semantic validation. The checks performed by the Semantic
validator are separated into two categories: those that apply
to a single certificate, and those that apply to a candidate cer-
tificate chain. For each property to validate, we formulate in
Agda a predicate expressing satisfaction of the property by a
given certificate or chain, then prove that these predicates are
decidable (Dec, Section 4.3.3). In what follows, we illustrate
with two relatively simple concrete examples: one predicate
for a single certificate and one for a certificate chain.

Before we illustrate with examples, we stress that the
purpose of this setup is not merely to give decidability res-
ults for the semantic checks of the X.509 specification, as
this fact is intuitively obvious. Instead, and just like with
our approach to verified parsing, formulating these semantic
checks as decidability proofs (1) forces us formalize the
natural language property we wish to check independently
of the code that performs the checking, and (2) enables us to
write the checking code that is correct-by-construction, as
these decidability proofs are themselves the very functions
called after parsing to check whether the certificate or chain
satisfies the property in question.

4.5.1. Single Certificate Property. For a given certificate,
it must be the case that its SignatureAlgorithm field
contains the same algorithm identifier as the Signature
field of its TBSCertificate (R1 in Table 2 of the Ap-
pendix). As a formula of FOL, we could express this prop-
erty with respect to certificate c as

∀s1 s2,SignAlg(s1, c)∧TBSCertSignAlg(s2, c) Ô⇒ s1 = s2

where SignAlg(s1, c) and TBSCertSignAlg(s2, c) express
respectively the properties that s1 is the signature algorithm
identifier of c and that s2 is the signature algorithm identi-
fier of the TBSCertificate of c. In Agda, we express
this property, and the type of its corresponding decidability
proof, as follows.

R1 ∶ ∀ {@0 bs }→ Cert bs → Set
R1 c = Cert .getTBSCertSignAlg c ≡ Cert .getCertSignAlg c

r1 ∶ ∀ {@0 bs } (c ∶Cert bs)→ Dec (R1 c)
r1 c = Cert .getTBSCertSignAlg ∼∼∼? Cert .getCertSignAlg c

The predicate R1 expresses that the two signature algorithm
fields are equal using the binary relation ≡, which is defined
in Agda’s standard library. Compared to the proof r1 , R1 is
relatively simple: ≡ is parametric in the type of the values it
relates (meaning it uses no specifics about the SignAlg type
family), and is defined as the smallest reflexive relation. In
contrast, the checking code r1 must concern itself with the
specifics of SignAlg . In X.509, signature algorithm fields
are defined as a pair where the first component is an object

12

IsConfirmedCA ∶ ∀ {@0 bs }→ Cert bs → Set

isConfirmedCA? ∶ ∀ {@0 bs } (c ∶Cert bs)
→ Dec (IsConfirmedCA c)

R23 ∶ ∀ {trust candidates } {@0 bs } (issuee ∶Cert bs)
→ Chain trust candidates issuee → Set

R23 issuee c = All (IsConfirmedCA ○ proj 2) (tail (toList c))

r23 ∶ ∀ {trust candidates } {@0 bs } (issuee ∶Cert bs)
→ (c ∶Chain trust candidates issuee)→ Dec (R23 c)

r23 c = All .all? (isConfirmedCA? ○ proj 2) (tail (toList c))

Figure 13: Semantic check for R23

identifier (OID) and the second is an optional field for para-
meters whose type depends upon that OID. So, to implement
r1 we must prove equality is decidable for OIDs and for all
the signature algorithm parameter types we support.

4.5.2. Certificate Chain Property. For a certificate chain,
it must be the case that every issuer certificate is a CA
certificate. Specifically, RFC 5280 (Section 6.1.4) makes the
following requirement for issuer certificates:

“If certificate i is a version 3 certificate, verify that the basicCon-

straints extension is present and that cA is set to TRUE. (If certi-

ficate i is a version 1 or version 2 certificate, then the application

MUST either verify that certificate i is a CA certificate through out-

of-band means or reject the certificate. Conforming implementa-

tions may choose to reject all version 1 and version 2 intermediate

certificates.) ”

In ARMOR, we take the approach suggested in the last line
of the quote (see entry R19 of Table 2 in the Appendix), so
our task reduces to checking that for each issuer certificate,
the basicConstraints extension is present and its cA
field is set to true.

We formalize this semantic condition, listed as R23
in Table 2 in Figure 13. Predicate IsConfirmedCA
(definition omitted) expresses the condition that the
basicConstraints extension is present in a certificate
with field cA set to true, and function isConfirmedCA?
(definition omitted) is the correct-by-construction imple-
mentation of that check. Predicate R23 is extends this prop-
erty to all issuer certificates of a chain.
● The Agda standard library definition All is to Any (see

Section 4.4.3) what ∀ is to ∃. Given a predicate Q ∶A→
Set and a list xs ∶ List A, All Q xs is the proposition
that every element of xs satisfies Q .

● The list we are concerned with in predicate R23 is
every certificate in the chain except the first (i.e., the
end entity). This is expressed by tail (toList c) ∶
List (∃ Cert).

● Since the elements of this list are tuples of type ∃ Cert
(where the first component is an octet string and the
second is a proof that string encodes a certificate),
we form the predicate supplied to All by precom-
posing IsConfirmedCA with proj 2 ∶ (c ∶ ∃ Cert) →
Cert (proj 1 c).

Finally, the sound-by-construction checker for this semantic
condition is r23 , which is defined using All .all? , defined

in the Agda standard library. All .all? takes a decision
procedure that applies to a single element (in this case,
isConfirmedCA? ○proj 2) and returns a decision procedure
that decides whether the predicate holds for all elements of
the given list.

5. Implementation

Driver and Input Interface. ARMOR’s driver module is
developed using Python and Agda. The Python component
is responsible for taking inputs from users such as certi-
ficates (DER/PEM) to be validated, trusted CA certificates
(PEM), and optionally the expected purpose of the end-user
certificate (e.g., Server/Client Client Authentication, Code
Signing). After receiving these inputs, the Python driver
invokes the Agda component passing the user inputs directly.
The Agda component then invokes the parsers, builds the
candidate certificate chains, and conducts semantic valida-
tion. Finally, it returns a verdict along with some parsed in-
formation (i.e., TBSCertificate bytes, SignatureValue bytes,
SignatueAlgorithm) to the Python side, which performs
signature verification. The final result of chain validation
is then output by the Python component. Notably, for the
certificate expiration check, the Agda component reads the
current time directly from the user’s system.
Chain Building and String Canonicalization. After pars-
ing, the Agda component calls the chain builder module to
build all candidate chains for semantic validation. For ease
of formal verification, we first create all candidate chains and
then check each for their validity, terminating when we have
either identified one valid chain, or exhausted all candidates.
Our chain builder module uses name matching, instead of
AKI (Authority Key Identifier) and SKI (Subject Key Identi-
fier) extensions as these may not be present in an input cer-
tificate. For name matching, we normalize the names using
LDAP StringPrep profile described in RFC 4518 [36]. Our
chain building module’s total correctness ensures that we
consider all potential chains, all chains start with a CA cer-
tificate in the trust anchors, and the chain builder terminates.
Semantic Validation. For semantic validation, we consider
a total of 27 rules. The complete list is provided in Table 2.
The first 18 rules (R1 - R18) are applicable to individual
certificates in a chain, whereas the last 9 rules (R19 - R27)
are for a chain of certificates. Note that all rules except R26
are implemented in Agda. R26 (signature verification) is
enforced by the Python side of driver module. Also, R24
(subject and issuer name chaining) and R25 (trust anchor
check) are not explicitly enforced by the semantic validator
since these checks are already enforced by the chain builder.
Some rules such as R7, R11, R14, and R16 are also directly
enforced by the parser.
Signature Verification. ARMOR currently only supports
RSA signature verification, as our analysis of the 1.5 bil-
lion Censys [46] certificates finds that 96% of certificates
employ RSA public keys. Since we do not model or verify
cryptography in Agda, we use Python’s cryptography lib-
rary for doing modular exponentiation of RSA. However, for
high-assurance, we utilize HACL∗ [43] and Morpheus [44].

13

Table 2: Semantic restrictions enforced by ARMOR

Name Description
R1 SignatureAlgorithm field MUST contain the same algorithm identifier

as the Signature field in the sequence TbsCertificate.
R2 Extension field MUST only appear if the Version is 3 .
R3 The Serial number MUST be a positive integer assigned by the CA

to each certificate. Certificate users MUST be able to handle Serial
number values up to 20 octets.

R4 The Issuer field MUST contain a non-empty distinguished name (DN).
R5 If the Subject is a CA (e.g., the Basic Constraints extension, is

present and the value of CA is TRUE), then the Subject field MUST be
populated with a non-empty distinguished name.

R6 Unique Identifiers fields MUST only appear if the Version is 2 or
3. These fields MUST NOT appear if the Version is 1.

R7 Where it appears, the PathLenConstraint field MUST be greater than
or equal to zero.

R8 If the Subject is a CRL issuer (e.g., the Key Usage extension, is
present and the value of CRLSign is TRUE), then the Subject field
MUST be populated with a non-empty distinguished name.

R9 When the Key Usage extension appears in a certificate, at least one of
the bits MUST be set to 1.

R10 If subject naming information is present only in the Subject
Alternative Name extension , then the Subject name MUST be
an empty sequence and the Subject Alternative Name extension
MUST be critical.

R11 If the Subject Alternative Name extension is present, the sequence
MUST contain at least one entry.

R12 If the KeyCertSign bit is asserted, then the CA bit in the Basic
Constraints extension MUST also be asserted. If the CA boolean is not
asserted, then the KeyCertSign bit in the Key Usage extension MUST
NOT be asserted.

R13 A certificate MUST NOT include more than one instance of a particular
Extension.

R14 A certificate-using system MUST reject the certificate if it encounters a
critical Extension it does not recognize or a critical Extension that
contains information that it cannot process.

R15 A certificate policy OID MUST NOT appear more than once in a
Certificate Policies extension.

R16 While each of these fields is optional, a DistributionPoint MUST
NOT consist of only the Reasons field; either distributionPoint or
CRLIssuer MUST be present.

R17 The certificate Validity period includes the current time.
R18 If a certificate contains both a Key Usage extension and an Extended

Key Usage extension, then both extensions MUST be processed inde-
pendently and the certificate MUST only be used for a purpose consistent
with both extensions. If there is no purpose consistent with both exten-
sions, then the certificate MUST NOT be used for any purpose.

R19 Conforming implementations may choose to reject all Version 1 and
Version 2 intermediate CA certificates .

R20 The PathLenConstraint field is meaningful only if the CA boolean
is asserted and the Key Usage extension, if present, asserts the
KeyCertSign bit. In this case, it gives the maximum number of non-self-
issued intermediate certificates that may follow this certificate in a valid
certification path.

⋆ R21 For DistributionPoint field, if the certificate issuer is not the CRL
issuer, then the CRLIssuer field MUST be present and contain the Name
of the CRL issuer. If the certificate issuer is also the CRL issuer, then
conforming CAs MUST omit the CRLIssuer field and MUST include the
distributionPoint field.

R22 A certificate MUST NOT appear more than once in a prospective certific-
ation path.

R23 Every non-leaf certificate in a chain must be a CA certificate.

R24 Certificate users MUST be prepared to process the Issuer distinguished
name and Subject distinguished name fields to perform name chaining
for certification path validation.

R25 Validate whether the chain starts from a trusted CA.
R26 Validate RSA signatures.
R27 For every non-leaf certificate in a chain, if the Key Usage extension is

present, the KeyCertSign bit must be asserted.
⋆ This check is omitted in the latest version of ARMOR since it depends on
processing CRL, which ARMOR does not support.

HACL∗ is a formally verified cryptographic library de-
veloped in F ∗ and compiled down to C. In ARMOR, we
utilize HACL∗’s hash function implementations. In contrast,
Morpheus is a formally verified implementation of RSA
PKCS#1 − v1 .5 [47] signature verification. Morpheus
checks the correctness of the signature format after perform-
ing modular exponentiation of the SignatureValue using the
public exponent of the certificate issuer’s RSA public key,
avoiding signature forgery attacks [39].
Supported Extensions. ARMOR supports 14 certificate ex-
tensions for parsing: Basic Constraints, Key Usage, Exten-
ded Key Usage, Authority Key Identifier, Subject Key Iden-
tifier, Subject Alternative Name, Issuer Alternative Name,
Certificate Policy, Policy Mapping, Policy Constraints, In-
hibit anyPolicy, CRL Distribution Points, Name Constraints,
and Authority Information Access. These extensions are se-
lected based on their frequencies of occurrence in practice,
providing a comprehensive coverage for the most common
scenarios encountered in certificate parsing [25]. When any
other extension is present, our parser only consumes the cor-
responding bytes of the extension and continues parsing rest
of the certificate fields. Our supported semantic validation
rules are spread across the following 4 extensions: Basic
Constraints, Key Usage, Extended Key Usage, and Subject
Alternative Name. ARMOR rejects any unrecognized crit-
ical extensions in compliance with RFC 5280.
From Agda to Executable. The Agda toolchain can produce
executable binaries by compiling Agda code to Haskell,
then use the GHC [48] compiler to generate an executable.

6. Empirical Evaluation

This section evaluates ARMOR’s efficiency, robustness,
and applicability in real-world scenarios. Particularly, we
aim to find answers to the following research questions.
Q1. Correctness of Specification’s Interpretation. How
accurate is our interpretation of the RFC 5280 specification?
Q2. Runtime Overhead. What are the execution time and
memory consumption overheads of ARMOR?
Q3. Performance in a Real Application. What delay does
ARMOR introduce when it is used in a practical application?

6.1. Experimental Setup

Table 3 shows a high-level overview of our experiments
to find answers to the questions Q1, Q2, and Q3.
Datasets. We used the following 4 certificate datasets
across our experiments: Censys [46], Frankencert [3],
OpenSSL [49], and EFF [50]. Notably, among these data-
sets, only OpenSSL comes with a ground truth; that means
each certificate in this dataset contains a verdict from the
OpenSSL regression testing.

1) Censys is a large-scale certificate repository, from
which we took a snapshot of 1.5 billion real certificates
in January 2022. We then randomly sampled 2 million
certificates from this snapshot. As the original dataset
contained only leaf certificates (i.e., Censys (leaf)), we

14

Table 3: Summary of experimental setup

Evaluation
Question

CCVL
Coverage

Input
Type

Dataset
Used

Dataset
Size

Test
Subjects

vs ARMOR

Testbed
Config.

Specificational
Accuracy

(Q1)

End-to-End Full Chain Censys
Frankencert

2,000,000
2,000,000

11 X.509
Libraries

OS: Linux
CPU: Intel

Xeon
2.10 GHz
100 core

Parser Only Certificate OpenSSL
EFF

2242
12,387

11 X.509
Libraries

Parser with
RFC 5280

Restrictions
Certificate Censys (leaf) ⋆

EFF
2,000,000

12,387
ZLint

Runtime
Overhead

(Q2)
End-to-End Full Chain Censys 100,000 11 X.509

Libraries
OS: Linux
CPU: Intel

Core-i7
3.10 GHz

Performance in
Real Application

(Q3)
End-to-End

List of
Websites
to Visit

Alexa’s
Top 100
Websites

100 Curl with
BoringSSL

⋆ considered only the leaf certificate of a chain

used the cert-chain-resolver [51] tool to retrieve the
associated CA certificates from the web.

2) The Frankencert dataset contains 2 million syn-
thetic certificate chains generated by the Frankencert
fuzzer [3] to mimic bad inputs.

3) The OpenSSL dataset contains 2242 certificates, which
are used as part of OpenSSL’s regression testing, each
time the library is updated. It includes a comprehensive
collection of known ASN.1 vulnerabilities and addi-
tional variants created through fuzzing.

4) The EFF dataset is part of the SSL Observatory project
and is created by attempting TLS handshakes with all
accessible IPv4 addresses on port 443, and recording
the received certificates. For our evaluations, we used
a subset of this EFF dataset (12,387 certificates).

Tested X.509 Implementations. We tested the latest
versions (till June 2023) of 11 open-source X.509 imple-
mentations: OpenSSL-v3.1.1 [49], Mbed TLS-v3.4.0 [52],
GnuTLS-v3.7.9 [53], BoringSSL-vfips-20220613 [30],
MatrixSSL-v4.7.0 [54], WolfSSL-v5.6.2 [55], Sun-
v1.20 [56], Certvalidator-v0.11.1 [57], Crypto-
v1.21rc2 [58], Bouncy Castle-v1.75 [59], and CERES [25].
Among these, OpenSSL, Mbed TLS, GnuTLS, BoringSSL,
MatrixSSL, and WolfSSL are written in C/C++, Sun and
Bouncy Castle are in Java, Certvalidator and CERES are
in Python, and Crypto is in Go. We developed test harness
for each X.509 implementation, consulting the official doc-
umentation of their certificate parsing and validation APIs.
Evaluation Plan for Q1. For addressing Q1, we performed
3 types of experiments: (a) testing the end-to-end CCVL,
(b) testing the core certificate parser, and (c) testing the
certificate parser considering RFC 5280 restrictions. For
(a) and (b), we performed differential testing of 11 X.509
implementations against ARMOR. For (c), we compared
ARMOR against a certificate linter tool named ZLint [28].
ZLint is a Go-based linter for X.509 certificates, designed
to ensure compliance with standards such as RFC 5280 and
the CA/Browser Forum Baseline Requirements [60]. How-
ever, its functionality is limited to parsing and evaluating
individual certificates against semantic rules. That means,
ZLint lacks the capability to test CCVL. To facilitate a dir-
ect comparison, we modify ARMOR to similarly focus on

single certificate parsing and relevant semantic rule enforce-
ment (i.e., R1–R18 except R17 since ZLint does not check
certificate expiration), and run ZLint constrained to just the
RFC 5280 profile. Note that, for any end-to-end CCVL test-
ing, we used certificate datasets with full chain (i.e., Censys
and Frankencert datasets). For testing certificate parsers, we
only need to feed a single certificate in the test harness (i.e.,
OpenSSL, EFF, Censys (leaf) datasets).
Evaluation Plan for Q2. We computed runtime overhead
of end-to-end CCVL for 11 X.509 implementations and
ARMOR. For this, we used 100,000 certificate chains ran-
domly sampled from our 2 million Censys certificate chains.
Evaluation Plan for Q3. We modified TLS 1.3 implement-
ation of the BoringSSL library to integrate ARMOR. This
modified BoringSSL was then linked to the Curl [31], a pop-
ular data transfer utility. Using this setup, the top 100 web-
sites (till 2022) from Alexa were visited [61]. To evaluate
the impact of the ARMOR integration, these visits were also
conducted using the standard (unmodified) BoringSSL im-
plementation, and we compared the execution times and out-
comes between the normal and modified cases. Steps taken
to modify the BoringSSL library are listed in Appendix A.1.
Adjustment of System-Time. There is a 2 years time differ-
ence between the collection of our Censys certificate dataset
and our actual evaluation. Therefore, using these certificate
chains directly in the experiment could result in the expir-
ation of many of the certificate chains. To solve this chal-
lenge, we implemented a probabilistic approach within our
experimental setup. Specifically, for 95% certificate chains
(randomly selected), we adjusted the system-time to older
dates falling within the validity periods of the leaf certific-
ates. For the remaining 5% cases, we maintained the cur-
rent system-time. Our time adjustment process is based on
the Libfaketime [62] library, which allows modifying the
system-time a program sees without having to change the
time system-wide. This strategy allowed us to evaluate all
the semantic rules, not only navigating the issue of certificate
expiration but also ensuring a comprehensive and realistic
assessment of the certificate validation process.

6.2. Findings on Q1

6.2.1. End-to-End CCVL with Real-world Certificates.
Our findings on Censys dataset is summarized in Table 4,
which illustrates the rigorous approach ARMOR takes to-
ward certificate chain validation compared to most librar-
ies. This is particularly evident in the ‘Rej-Acc’ column,
highlighting instances where ARMOR rejected a certificate
chain that some other libraries accepted, and in the ‘Acc-Rej’
column, highlighting instances where ARMOR accepted a
certificate chain that some other libraries rejected. A closer
investigation of these discrepancies reveals that they stem
from violations of guidelines specified in RFC 5280, signi-
fying ARMOR’s strict adherence to RFC 5280. Moreover,
ARMOR agrees with most certificate chain validations con-
ducted by the test libraries. In the ‘Acc-Acc’ and ‘Rej-Rej’
columns, ARMOR matches the results with almost all test

15

libraries (i.e., > 99% similarity). The noncompliance issues
found based on the Censys dataset are discussed below.

Table 4: Analysis on validation outcomes of Censys chains
Acc = Accept Rej = Reject Sim = Similarity Diff = Difference

ARMOR vs Others Acc-Acc Acc-Rej Rej-Acc Rej-Rej Sim Diff
BoringSSL 1,435,897 0 5058 559,045 99.75% 0.25%
GnuTLS 1,435,897 0 5058 559,045 99.75% 0.25%
MatrixSSL 1,435,897 0 5058 559,045 99.75% 0.25%
Mbed TLS 1,435,897 0 5058 559,045 99.75% 0.25%
OpenSSL 1,435,897 0 5058 559,045 99.75% 0.25%
WolfSSL 1,435,897 0 5058 559,045 99.75% 0.25%
Crypto 1,435,897 0 5058 559,045 99.75% 0.25%

Bouncy Castle 1,430,644 5253 5058 559,045 99.48% 0.52%
Sun 1,430,644 5253 5058 559,045 99.48% 0.52%

Certvalidator 1,435,806 91 5058 559,045 99.74% 0.26%
CERES 1,430,629 5268 0 564,103 99.74% 0.26%

a. Allowing invalid serial number. ARMOR rejected
5053 certificate chains because at least one certificate in
those chains had 0 as a serial number, contrary to the RFC
5280 requirement for a positive integer (violation of R3).
This violation is present in all the libraries except CERES.
For example, Sun represents certificate serial number as a
BigInteger, which includes the value 0.

b. Failure to build valid chain. There are 5253 inputs
for which Bouncy Castle, Sun, and CERES failed to build
any valid certificate chain, indicating the presence of bugs
in their chain building algorithms. On a closer look of those
inputs, we found that multiple candidate chains can be built
from the given input certificates; however, just one chain is
rooted to a trust anchor. Since the input list of certificate did
not have the certificate of that trust anchor, these libraries
failed to find the trusted path. We anticipate such cases to
arise in practice and implementations should be prepared to
handle such cases and prioritize finding a certificate for an
issuing CA in the trusted root store, which may be absent
in the input list of certificates.

c. No support for emailAddress in Name. There were
15 chains CERES rejected, due to parsing failure of the
Name field, that ARMOR accepted. These certificates con-
tain strings of type IA5String to represent emailAddress.
Although RFC 5280 recommends new certificates include
emailAddress in the Subject Alternative Name ex-
tension, the specification does not prohibit including it in
Name (see 4.1.2.6 in RFC 5280). ARMOR correctly accepts
those certificate chains.

d. No support for standard extension. Certvalidator
rejected 91 certificate chains that ARMOR accepted.
Upon examination, we found that this discrepancy arises
from Certvalidator’s lack of support for the Subject
Alternative Name (SAN) extension, reporting errors for
these chains. However, this is a standard extension docu-
mented in RFC 5280, essential for hostname verification.
When Subject field contains an empty sequence, CAs can
mark this extension as critical as well.

e. Incorrect Semantic Validation for CRL Distribu-
tionPoint Fields. ARMOR found 5 certificate chains to be
in violation of semantic rule R21 (Table 2), which places
requirements on the presence and values of fields used in
the certificate revocation list (CRL) distribution point exten-
sion. Lacking full CRL processing in ARMOR, we wrote a

preliminary specification for this requirement. Upon further
analysis, however, we determined this specification was in-
correct, and have suspended enforcement of this semantic
requirement in ARMOR, pending a fully verified implement-
ation of CRL processing. This result is discussed further
under Threats to Validity in Section 7.

6.2.2. End-to-End CCVL with Synthetic Certificates.
Surprisingly, we found the Frankencert fuzzer could not
generate a single valid certificate chain for our dataset, and
almost all of our test libraries rejected those chains for dif-
ferent parsing issues. This highlights a potential limitation
of the Frankencert fuzzer in creating valid certificate chains,
also pointed out in a prior work [25]. However, we still
found noncompliance issues through Frankencert dataset.

a. Missing length restriction checks in Name. When
RFC 5280 explicitly states the minimum length requirement
for a string in subject or issuer Name, except ARMOR and
CERES, no other implementations enforce this. For example,
OpenSSL, GnuTLS, Mbed TLS, and others do not reject a
certificate with empty (e.g., “”) strings in its Name, despite
the specification mandating a minimum string length of 1.

b. Extensions with random bytes. We found that
most Frankencert certificates are generated with one or
more extensions containing random bytes that are not
further parseable. However, some implementations per-
mit random bytes for certain extensions, including known
extensions like Certificate Policies (i.e., OpenSSL,
GnuTLS, WolfSSL, MatrixSSL, Sun) and the Subject
Alternative Name (i.e., Sun). Surprisingly, widely-used
implementations like OpenSSL, GnuTLS, and WolfSSL do
not reject such random Certificate Policies extension
even if the extension is marked as critical (violation of R14).

c. Lenient certificate version check. The RFC 5280
specification permits only version 1, 2, and 3 certificates,
explicitly restricting the use of extensions to version 3 certi-
ficates. Notably, any other versions is considered an invalid
version according to the specification. Despite this, few im-
plementations do not enforce checks on the version value.
For example, Crypto and Certvalidator allows presence of
(version 3) extensions even if the certificate version is 1
or 2. Unexpectedly, OpenSSL, GnuTLS, and Certvalidator
allow presence of extensions even if the version is greater
than 3. Listing 1 shows an example of weaker version check
in OpenSSL (see the unexpected ‘>=’ in ‘if’ condition).

static int check_extensions(...) {
...
if (X509_get_version(x) >= X509_VERSION_3) {
// processes certain extensions
...

} else { // error: extensions require version 3
...

}
}

Listing 1: Lenient version check in OpenSSL

6.2.3. Parser Only. From the set of 2242 OpenSSL cer-
tificates, ARMOR’s DER parser accepted 55 certificates
and rejected 2187 certificates. In contrast, out of 12,387

16

EFF certificates, it accepted 10,958 certificates and rejected
1042 certificates. This significant difference in acceptance
rates between the two datasets was anticipated because the
OpenSSL dataset was primarily composed of intentionally
flawed certificates, while the EFF dataset contained real-
world certificates. A comparison with other libraries under
test showed that ARMOR’s results were consistent with
those libraries. Further manual inspection of both “accep-
ted” and “rejected” cases confirmed that ARMOR’s parser
correctly enforced syntactic restrictions.

6.2.4. Parser with RFC 5280 Restriction. ZLint is de-
veloped as a library for integration within CA software
and does not differentiate between rules applicable to
certificate consumers and producers. This is in contrast
to ARMOR, leading to significant discrepancies in our
findings–specifically, 252,700 instances where ZLint and
ARMOR diverge. ZLint, for example, flags errors for miss-
ing AKI extensions, non-critical status of certain extensions
(e.g., basic constraints and name constraints), and absence of
the SKI extension in CA certificates. These are overlooked
by ARMOR, under the premise that such rules are the re-
sponsibility of CAs during the certificate issuance process
(i.e., producer rules), not mandated during certificate chain
validation. Additionally, we found several instances where
ZLint is too lenient or incorrectly interprets characters.

a. Lenient restriction on country name attribute.
RFC 5280 requires that the country name within the sub-
ject or issuer Name must consist of two printable string
characters. ZLint does not enforce this length restriction
under the RFC 5280 profile, instead enforcing it under the
CA/Browser Forum Baseline Requirements profile.

b. Lenient parsing of default values. Based on X.690
DER restrictions, when encoding a set or sequence, any field
that is equal to its default value should not be included in the
encoding. Nevertheless, ZLint’s parser does not adhere to
this requirement for specific fields that have default values,
such as the CA flag of the Basic Constraint extension,
the critical flag of extensions, and the Version.

c. Incorrect restriction on subject Name. RFC 5280 al-
lows for certain text attribute values in a subject Name, such
as X520CommonName, to be encoded in a variety of ways:
PrintableString, UTF8String, BMPString, UniversalString,
and TeletexString. When checking that text values are free
of nonprintable control characters, ZLint assumes these are
UTF-8 encoded. However, this is only true of PrintableString
and UTF8String, and in particular BMPStrings are encoded
using UTF-16. This results in ZLint mistakenly flagging cer-
tificates with printable BMPString common names as con-
taining nonprintable control characters.

6.3. Findings on Q2

Tables 5 and 6 show our execution time and memory
consumption analysis of the test libraries during runtime,
respectively. Considering the different programming lan-
guages in which the libraries are written, C/C++ libraries
(i.e., OpenSSL, GnuTLS, Mbed TLS, WolfSSL, MatrixSSL,

BoringSSL) generally exhibit greater efficiency regarding
memory usage and execution time. However, libraries writ-
ten in higher-level languages, such as ARMOR and the rest,
tend to consume more memory and have longer execution
times. We found ARMOR on average takes 2.641 seconds
when a certificate chain is accepted and 2.518 seconds when
a certificate chain is rejected. In terms of memory consump-
tion, it on average takes 1049 megabytes when a certificate
chain is accepted and 1069 megabytes when a certificate
chain is rejected. Compared to other libraries, ARMOR’s
runtime overhead is very large.

Table 5: Execution time analysis on Censys chains
S.D. = Standard Deviation

Accept Reject

Library Count Min
sec

Max
sec

Mean
sec

Median
sec

S.D.
sec

Count Min
sec

Max
sec

Mean
sec

Median
sec

S.D.
sec

BoringSSL 74,956 0.004 1.119 0.029 0.029 0.009 25,044 0.004 0.340 0.028 0.028 0.006
GnuTLS 74,956 0.004 0.340 0.028 0.028 0.006 25,044 0.001 0.952 0.015 0.014 0.006
MatrixSSL 74,956 0.009 0.257 0.011 0.011 0.003 25,044 0.003 0.065 0.009 0.009 0.004
Mbed TLS 74,956 0.008 0.125 0.009 0.009 0.002 25,044 0.007 0.129 0.009 0.008 0.002
OpenSSL 74,956 0.026 1.014 0.051 0.050 0.011 25,044 0.026 0.491 0.051 0.049 0.011
WolfSSL 74,956 0.006 1.039 0.009 0.009 0.006 25,044 0.007 0.072 0.009 0.008 0.002
Crypto 74,956 0.187 8.891 0.269 0.260 0.101 25,044 0.006 3.484 0.194 0.246 0.138

Bouncy Castle 74,956 0.573 6.019 0.956 0.920 0.382 25,044 0.251 5.714 0.709 0.627 0.219
Sun 74,956 0.129 2.140 0.285 0.271 0.085 25,044 0.147 1.882 0.215 0.194 0.075

Certvalidator 74,951 0.221 2.855 0.269 0.263 0.060 25,049 0.143 1.779 0.254 0.254 0.061
CERES 74,801 0.033 5.735 0.755 0.821 0.338 25,199 0.151 5.621 0.541 0.594 0.263
ARMOR 74,801 2.207 4.553 2.641 2.618 0.118 25,199 0.053 4.665 2.518 2.544 0.300

Table 6: Memory consumption analysis on Censys chains
S.D. = Standard Deviation
Accept Reject

Library Count Min
mb

Max
mb

Mean
mb

Median
mb

S.D.
mb

Count Min
mb

Max
mb

Mean
mb

Median
mb

S.D.
mb

BoringSSL 74,956 4.01 4.49 4.21 4.21 0.06 25,044 3.62 4.36 4.13 4.17 0.12
GnuTLS 74,956 8.18 8.82 8.51 8.52 0.13 25,044 4.50 8.57 7.74 8.00 0.91
MatrixSSL 74,956 3.02 3.50 3.31 3.32 0.08 25,044 2.34 3.49 3.17 3.29 0.30
Mbed TLS 74,956 3.82 4.20 3.99 3.98 0.07 25,044 3.80 4.19 4.00 4.01 0.07
OpenSSL 74,956 6.72 7.51 6.90 6.89 0.08 25,044 6.60 7.06 6.87 6.87 0.08
WolfSSL 74,956 7.86 8.61 8.35 8.41 0.17 25,044 8.27 8.58 8.44 8.46 0.06
Crypto 74,956 59.59 68.30 64.41 62.89 2.54 25,044 60.52 68.29 64.10 62.66 2.53

Bouncy Castle 74,956 84.34 130.99 105.79 101.91 8.42 25,044 82.55 119.71 89.96 86.02 6.44
Sun 74,956 47.50 62.83 53.60 53.19 1.19 25,044 44.42 61.52 50.30 49.88 1.86

Certvalidator 74,951 26.67 28.42 27.06 27.04 0.14 25,049 23.90 27.30 26.62 26.79 0.71
CERES 74,801 21.03 40.70 39.08 39.45 2.24 25,199 21.02 31.79 27.03 28.04 3.23
ARMOR 74,801 998 1187 1049 1032 61 25,199 994 1185 1069 1075 135

6.4. Findings on Q3

We found that both the modified and unmodified ver-
sions of the BoringSSL library, when linked to Curl, suc-
cessfully connected to the tested websites. However, there
was a noticeable difference in the time taken for these con-
nections. With the modified BoringSSL (which integrated
ARMOR), the average time for a visit was 3.45 seconds. In
contrast, using the unmodified BoringSSL, the average time
was significantly shorter, at 0.75 seconds. This shows that
the integration of ARMOR into BoringSSL substantially in-
creases the time required for connecting to a website (4.6×).

6.5. Responsible Disclosure

We diligently communicated all our findings to the cor-
responding library developers. GnuTLS acknowledged our
findings and recently fixed most of them. The majority of

17

other library developers have opted not to address our find-
ings, asserting that the reported noncompliance issues may
not lead to any known security risks. This indicates their
reluctance to adhere strictly to RFC 5280 requirements.

6.6. Experimental Resources

Our experimental framework (including the test har-
nesses, the datasets, the input certificates that trigger dis-
crepancies), and our modification of the BoringSSL library
to show an end-to-end application of ARMOR are publicly
available in the ARMOR’s GitHub repository [63].

7. Discussion

Limitations. Although ARMOR makes a substantial stride
towards having a high-assurance implementation of X.509
PKI with formally proven correctness properties, there is
still the following room for improvement before it can be
incorporated to an application such as a web browser.

1) In contrast to existing open-source libraries, ARMOR
does not yet support hostname verification and revoc-
ation. Although hostname verification is critical for
achieving the desired security guarantees of X.509 PKI,
we follow the lead of RFC 5280, in which it is not part
of the standard but is left to the application developer.
Revocation can be useful, but traditional CRL is known
to suffer from practical limitations [64], and some en-
tities (e.g., CAs [65], and mobile browsers [66], [67])
choose not to support revocation. Whether (and how)
to revoke is currently application specific.

2) We currently do not support the enforcement of Subject
key identifier (SKI) and Authority key identifier (AKI)
extensions. For generality, we use name matching as
our basis of certificate chain building instead of AKI
and SKI. Both AKI and SKI are non-critical extensions.
While these extensions can substantially simplify the
construction of candidate certificate chains, in a re-
cent measurement study on Censys data [25], SKI and
AKI are absent in ∼5% of the certificates. Thus, their
presence is not guaranteed. More importantly, they are
not crucial to the chain validation. Specifically, Section
4.2.1.2 of RFC 5280 states that “Applications are not
required to verify that key identifiers match when per-
forming certification path validation.” Because of this,
mismatched AKI/SKI pairs does not imply a certificate
chain should be rejected. Thus, this limitation will not
cause ARMOR to mistakenly accept certificate chains

∗

.
3) Due to its preference of formal correctness over effi-

ciency, ARMOR imposes a substantially high runtime
overhead. Before it can be incorporated in a perform-
ance demanding application (e.g., the Web browser), its
high runtime overhead must be substantially reduced.

4) Not all modules of ARMOR are currently formally
verified. ARMOR currently does not feature a form-
ally verified string canonicalizer, and its current string

∗. Following RFC 5280, certificates with critical extensions that
ARMOR cannot process will be rejected.

canonicalizer does not handle bidirectional characters
and only supports UTF-8 encoded unicode characters.
We, however, observe that none of the existing libraries
performs this suggested step. As ARMOR lacks a rela-
tional specification of its string canonicalizer, we cur-
rently do not compose the module level specifications
and proofs to provide end-to-end correctness guaran-
tees of the overall certificate chain validation.

5) Browsers often enforce additional requirements (e.g.,
CA/B) that are not in RFC 5280. These are currently
missing from ARMOR. ARMOR also yet to support
name constraints and policy checking, which are also
unsupported by some mainstream libraries. Improving
ARMOR in these directions is left as future work.

6) ARMOR currently only supports the RSA signature al-
gorithm. Extending ARMOR with other signature al-
gorithms (e.g., ECDSA) is a subject of future work.

Threat to Validity. Although ARMOR’s compliance with its
specification is mechanically proven, we cannot in principle
guarantee the specification’s consistency with the natural
language description in RFC 5280. Our empirical evaluation
evidences this gap: in the tested version of ARMOR, we
included a preliminary specification of semantic check R21
(Table 2) that, upon analysis of the results, we realized was
incorrect (it has now been removed). This result underscores
a core tenent of our verification philosophy: specifications
are part of the TCB, and thus it is important to keep it simple
to facilitate human review. Note that none of ARMOR’s
other guarantees depend upon R21, so its removal does
not break any other proofs. In addition, ARMOR does not
include formal guarantees on its cryptographic operations,
instead outsources signature verification to external libraries
like HACL∗ and Morpheus. Notably, an attempt to use the
formally verified WhyMP library [68] for modular exponen-
tiation proved unsuccessful for some inputs, leading to our
reliance on Python’s cryptography library for this task.
Proof Engineering. While formal methods is a field rooted
in mathematical rigor, proof engineering [69] is in many re-
spects similar to software engineering in that it is concerned
with design principles and best practices. In developing
each verified module of ARMOR, we pursued a type-driven
development [70], starting with high-level correctness spe-
cifications as types and writing implementations that were
correct by construction with respect to them. An effect of
this approach is that in some cases, our implementations
prioritize meeting proof obligations rather than efficiency.
For instance, to parse the ASN.1 CHOICE construct, we
used backtracking to facilitate the refutation case, which
allows us to prove the negation of a disjunction by proving
the conjunction of negations. More performant parsers avoid
backtracking by reading the tag, which determines the type
of the CHOICE construct. We believe there is a workable
solution for this, but did not implement it in time for the
submitted version of ARMOR.
Lessons Learned. Some constraints RFC 5280 places on
issuers lack clear directions regarding whether consumers
should reject noncompliance. For example, several legacy
CA certificates with a serial number 0 are accepted by most

18

libraries. As discussed in Section 3.2, ARMOR rejects such
certificates since one of our goals is to develop a formal,
machine-checked specification of RFC 5280 and test oracle
for X.509 CCVL. We believe ARMOR’s strict adherence to
RFC 5280 does not diminish its usefulness as a reference im-
plementation for future formally verified X.509 CCVL im-
plementations with greater weight placed on interoperability.
Overall, we believe the specification should be substantially
simplified and streamlined, removing bloat due to historical
features (such as the widely unsupported string canonicaliz-
ation), to ensure improved interoperability and security.

8. Related Work

Extensive research has previously been conducted to test
the X.509 CCVL of SSL/TLS libraries using techniques
such as fuzzing [3], [4], [5], [6], [7] and symbolic execu-
tion [8], [9]. Fuzzing is a popular software testing technique
in which malformed inputs are automatically generated and
injected into a target application to find implementation
flaws [71]. Symbolic execution, on the other hand, is a
way of executing a program abstractly so that one abstract
execution covers multiple possible inputs of the program
that share a particular execution path through the code [72].
Though these approaches found numerous implementation
flaws and noncompliance issues, none can avoid false neg-
atives in differential testing due to the lack of a formally-
verified reference implementation of X.509 CCVL. Despite
several efforts to implement and formally verify crypto-
graphic libraries [43], [73], [74], a formally verified imple-
mentation of X.509 CCVL is still missing.

Although our work presents a major step to address this
research gap, there are other works that motivate our high-
assurance implementation ARMOR. As an example, we rely
on the prior re-engineering effort of the X.509 specification
and implementation (nqsb-TLS [18], CERES [25], Hammur-
abi [22]) to distinguish between the syntactic and semantic
requirements of X.509 and design ARMOR in a modular
way. However, in comparison to ARMOR, these works lack
any formal correctness guarantees. Although Ramananandro
et al. proposed EverParse [24], a framework for generat-
ing verified parsers and serializers from Type-Length-Value
(⟨t, ℓ, v⟩) binary message format descriptions, with memory
safety, functional correctness (i.e., parsing is the inverse of
serialization and vice versa), and non-malleable guarantees,
it only focuses on parsing and lacks formal correctness guar-
antees of other stages of the certificate chain validation. Bar-
enghi et al. proposed an approach to automatically generate
a parser for X.509 with the ANTLR parser generator [23];
however, they do major simplifications of the X.509 gram-
mar to avoid complexities in parsing.

The most relevant prior works with formal guarantees
are DICE∗ [16] and ASN1∗ [15]. DICE∗ focuses on form-
ally proving the correctness of certificate creation, while
ARMOR does the opposite task, certificate decoding. ASN1∗
focuses on generating a memory-safe, zero-copy parser for
ASN.1 DER. However, ASN1∗ parser does not have explicit
proof of total correctness. It only proves the correctness of

parsing an ASN.1 DER byte stream in terms of a pair of
parser and serializer. For semantic checks in X.509 certific-
ate chain validation, ARMOR needs to further decode the
consumed DER bytes (under the value tag), which ASN1∗

does not do. Finally, ASN1∗ aims to be a general parser
generator for ASN.1 DER, whereas ARMOR focuses only
on the ASN.1 DER representation of an X.509 certificate.

Parallel to our research, some studies have unveiled that
the X.509 PKI is intentionally deployed to allow TLS in-
terceptions by antivirus programs, parental control applic-
ations, middleboxes, and proxy servers [67], [75], [76],
[77], [78]. This intervention disrupts the end-to-end security
guarantee that TLS is supposed to provide, posing potential
security risks. Furthermore, several studies also underlined
a key issue: user unawareness. Many users lack a proper
understanding of X.509 PKI and TLS, potentially overlook-
ing their browser’s certificate-related warnings and, in the
worst case, helping adversaries compromise users own trust
anchors [79], [80], [81], [82], [83], [84].

9. Conclusion

We presented ARMOR, the first substantial effort to-
wards a formally verified X.509 CCVL implementation.
ARMOR distinguishes itself from other research on form-
ally verifying components of X.509 through its broader cov-
erage of the standard and its emphasis on simpler, rela-
tional specifications, particularly to demarcate format and
parser correctness properties. Though still a work in pro-
gress, ARMOR’s modular design facilitated the relatively
quick development (12 person months) of each of the fol-
lowing aspects of X.509 CCVL, along with their total cor-
rectness proofs: formats and parsers for PEM, X.690 DER,
and X.509; certificate chain building; and several semantic
requirements on field values within a single certificate and
across certificates in a chain. We evaluated ARMOR’s spe-
cificational accuracy by differentially testing it with 11 open-
source libraries and the open-source certificate linter ZLint,
finding several non-compliances in these libraries and also
identifying a single case of specification inaccuracy. This
specification inaccuracy underscores the limits of formal
methods in establishing software correctness and highlights
the role of differential testing in building confidence that
formally verified software faithfully captures the intent ex-
pressed in natural language specifications. We also analyzed
ARMOR’s runtime overhead, concluding that it is a suitable
option for applications where correctness is preferred and
significant overhead can be tolerated, such as serving as a
test oracle. Our experience and analysis lead us to believe
the current standard is bloated with historical features (e.g.,
string types of different encoding and character sets, string
canonicalization) and lacks clear distinction between produ-
cer and consumer rules, which imposes a high overhead on
both engineering and formal verification efforts.

19

Acknowledgments

We thank the reviewers and shepherd for their paper
improvement suggestions. This work is supported in part by
State University of New York’s Empire Innovation Program
and a grant from the Research Grants Council (RGC) of
Hong Kong (Project No.: CUHK 24205021).

References

[1] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating
SSL certificates in non-browser software,” in ACM Computer and
Communications Security (CCS), 2012, pp. 38–49.

[2] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate 5280,” Tech. Rep.

[3] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov, “Using
frankencerts for automated adversarial testing of certificate validation
in SSL/TLS implementations,” in IEEE Symposium on Security and
Privacy. IEEE, 2014, pp. 114–129.

[4] Y. Chen and Z. Su, “Guided differential testing of certificate valid-
ation in SSL/TLS implementations,” in Proc. of the 2015 10th Joint
Meeting on Foundations of Software Engineering, 2015, pp. 793–804.

[5] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana,
“Nezha: Efficient domain-independent differential testing,” in IEEE
Symposium on Security and Privacy. IEEE, 2017, pp. 615–632.

[6] L. Quan, Q. Guo, H. Chen, X. Xie, X. Li, Y. Liu, and J. Hu, “Sadt:
syntax-aware differential testing of certificate validation in ssl/tls im-
plementations,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 524–535.

[7] C. Chen, P. Ren, Z. Duan, C. Tian, X. Lu, and B. Yu, “Sbdt: Search-
based differential testing of certificate parsers in ssl/tls implement-
ations,” in Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2023, pp. 967–979.

[8] C. Tian, C. Chen, Z. Duan, and L. Zhao, “Differential testing of
certificate validation in SSL/TLS implementations: An rfc-guided ap-
proach,” ACM Transactions on Software Engineering and Methodo-
logy (TOSEM), vol. 28, no. 4, pp. 1–37, 2019.

[9] S. Y. Chau, O. Chowdhury, E. Hoque, H. Ge, A. Kate, C. Nita-Rotaru,
and N. Li, “Symcerts: Practical symbolic execution for exposing non-
compliance in X. 509 certificate validation implementations,” in IEEE
Symposium on Security and Privacy. IEEE, 2017, pp. 503–520.

[10] “CVE-2020-14039,” https://nvd.nist.gov/vuln/detail/CVE-2020-
14039.

[11] “CVE-2020-1971,” https://nvd.nist.gov/vuln/detail/CVE-2020-1971.

[12] “CVE-2020-35733,” https://nvd.nist.gov/vuln/detail/CVE-2020-
35733.

[13] “CVE-2023-33201,” https://nvd.nist.gov/vuln/detail/CVE-2023-
33201.

[14] “CVE-2023-40012,” https://nvd.nist.gov/vuln/detail/CVE-2023-
40012.

[15] H. Ni, A. Delignat-Lavaud, C. Fournet, T. Ramananandro, and
N. Swamy, “ASN1*: Provably Correct, Non-malleable Parsing for
ASN. 1 DER,” in Proc. of the 12th ACM SIGPLAN International
Conference on Certified Programs and Proofs, 2023, pp. 275–289.

[16] Z. Tao, A. Rastogi, N. Gupta, K. Vaswani, and A. V. Thakur, “DICE*:
A Formally Verified Implementation of DICE Measured Boot,” in
USENIX Security Symposium, 2021, pp. 1091–1107.

[17] I. Rec, “X.690 Information technology–ASN. 1 encoding rules: Spe-
cification of Basic Encoding Rules (BER), Canonical Encoding Rules
(CER) and Distinguished Encoding Rules (DER),” Technical report,
ITU, Tech. Rep., 2002.

[18] D. Kaloper-Meršinjak, H. Mehnert, A. Madhavapeddy, and P. Sewell,
“Not-Quite-So-Broken TLS: Lessons in Re-Engineering a Security
Protocol Specification and Implementation,” in USENIX Security
Symposium, 2015, pp. 223–238.

[19] A. Barenghi, N. Mainardi, and G. Pelosi, “Systematic parsing of X.
509: eradicating security issues with a parse tree,” Journal of Com-
puter Security, vol. 26, no. 6, pp. 817–849, 2018.

[20] D. Kaminsky, M. L. Patterson, and L. Sassaman, “PKI layer cake:
New collision attacks against the global X. 509 infrastructure,” in
International Conference on Financial Cryptography and Data Se-
curity. Springer, 2010, pp. 289–303.

[21] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: validating
SSL certificates in non-browser software,” in ACM Computer and
Communications Security (CCS), 2012, pp. 38–49.

[22] J. Larisch, W. Aqeel, M. Lum, Y. Goldschlag, L. Kannan, K. Torshizi,
Y. Wang, T. Chung, D. Levin, B. M. Maggs et al., “Hammurabi: A
Framework for Pluggable, Logic-Based X.509 Certificate Validation
Policies,” in ACM Computer and Communications Security (CCS),
2022, pp. 1857–1870.

[23] A. Barenghi, N. Mainardi, and G. Pelosi, “Systematic parsing of X.
509: eradicating security issues with a parse tree,” Journal of Com-
puter Security, vol. 26, no. 6, pp. 817–849, 2018.

[24] T. Ramananandro, A. Delignat-Lavaud, C. Fournet, N. Swamy,
T. Chajed, N. Kobeissi, and J. Protzenko, “EverParse: Verified Secure
Zero-Copy Parsers for Authenticated Message Formats,” in USENIX
Security Symposium, 2019, pp. 1465–1482.

[25] J. Debnath, S. Y. Chau, and O. Chowdhury, “On Re-engineering the
X. 509 PKI with Executable Specification for Better Implementation
Guarantees,” in ACM Computer and Communications Security (CCS),
2021, pp. 1388–1404.

[26] A. Bove, P. Dybjer, and U. Norell, “A brief overview of agda–a
functional language with dependent types,” in Theorem Proving in
Higher Order Logics: 22nd International Conference, TPHOLs 2009,
Munich, Germany, August 17-20, 2009. Proceedings 22. Springer,
2009, pp. 73–78.

[27] U. Norell, “Towards a practical programming language based on de-
pendent type theory,” Ph.D. dissertation, 2007.

[28] D. Kumar, Z. Wang, M. Hyder, J. Dickinson, G. Beck, D. Adrian,
J. Mason, Z. Durumeric, J. A. Halderman, and M. Bailey, “Tracking
certificate misissuance in the wild,” in IEEE Symposium on Security
and Privacy. IEEE, 2018, pp. 785–798.

[29] K. Bhargavan, C. Fournet, and M. Kohlweiss, “mitls: Verifying pro-
tocol implementations against real-world attacks,” IEEE Security &
Privacy, vol. 14, no. 6, pp. 18–25, 2016.

[30] “BoringSSL,” https://boringssl.googlesource.com/boringssl/.

[31] “Curl,” https://curl.se/.

[32] I. Rec, “X.509 information technology–open systems
interconnection–the directory: Public-key and attribute certificate
frameworks,” Technical report, ITU, Tech. Rep., 2005.

[33] P. Saint-Andre and J. Hodges, “Representation and verification of
domain-based application service identity within internet public key
infrastructure using x. 509 (pkix) certificates in the context of
transport layer security (tls),” Tech. Rep., 2011. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc6125

[34] M. Cooper, Y. Dzambasow, P. Hesse, S. Joseph, and R. Nicholas,
“RFC 4158: Internet X. 509 public key infrastructure: Certification
path building,” 2005.

[35] S. Chokhani, “Internet x.509 public key infrastructure certificate
policy and certification practices framework,” Tech. Rep., 1999.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc2527

[36] K. Zeilenga, “Rfc 4518: Lightweight directory access protocol (ldap):
Internationalized string preparation,” Tech. Rep., 2006.

20

https://nvd.nist.gov/vuln/detail/CVE-2020-14039
https://nvd.nist.gov/vuln/detail/CVE-2020-14039
https://nvd.nist.gov/vuln/detail/CVE-2020-1971
https://nvd.nist.gov/vuln/detail/CVE-2020-35733
https://nvd.nist.gov/vuln/detail/CVE-2020-35733
https://nvd.nist.gov/vuln/detail/CVE-2023-33201
https://nvd.nist.gov/vuln/detail/CVE-2023-33201
https://nvd.nist.gov/vuln/detail/CVE-2023-40012
https://nvd.nist.gov/vuln/detail/CVE-2023-40012
https://boringssl.googlesource.com/boringssl/
https://curl.se/
https://datatracker.ietf.org/doc/html/rfc6125
https://datatracker.ietf.org/doc/html/rfc2527

[37] J. Yen, R. Govindan, and B. Raghavan, “Tools for disambiguating
RFCs,” in Proc. of the Applied Networking Research Workshop, 2021,
pp. 85–91.

[38] R. Sleevi, “Path Building vs Path Verifying: The Chain of Pain,”
Tech. Rep., 2020. [Online]. Available: https://medium.com/@sleevi_/
path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6

[39] H. Finney, “Bleichenbacher’s rsa signature forgery based on
implementation error,” http://www. imc. org/ietf-openpgp/mail-
archive/msg14307. html, 2006.

[40] D. Bleichenbacher, “Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS# 1,” in Advances in Crypto-
logy—CRYPTO’98: 18th Annual International Cryptology Confer-
ence Santa Barbara, California, USA August 23–27, 1998 Proceed-
ings 18. Springer, 1998, pp. 1–12.

[41] “Guardedness checker inconsistency with copatterns #1209 ,” https:
//github.com/agda/agda/issues/1209.

[42] “The Agda User Manual (v2.6.2.2),” https://agda.readthedocs.io/en/
v2.6.2.2/index.html.

[43] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“Hacl*: A verified modern cryptographic library,” in ACM Computer
and Communications Security (CCS), 2017, pp. 1789–1806.

[44] M. Yahyazadeh, S. Y. Chau, L. Li, M. H. Hue, J. Debnath, S. C. Ip,
C. N. Li, E. Hoque, and O. Chowdhury, “Morpheus: Bringing the
(pkcs) one to meet the oracle,” in ACM Computer and Communica-
tions Security (CCS), 2021, pp. 2474–2496.

[45] M. H. Sørensen and P. Urzyczyn, Lectures on the Curry-Howard
Isomorphism, Volume 149 (Studies in Logic and the Foundations of
Mathematics). Elsevier Science Inc., 2006.

[46] “Censys,” https://censys.com/.

[47] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch, “Pkcs# 1: Rsa
cryptography specifications version 2.2,” Tech. Rep., 2016.

[48] “The Glasgow Haskell Compiler,” https://www.haskell.org/ghc/.

[49] “OpenSSL,” https://www.openssl.org/.

[50] “The EFF SSL Observatory.” https://www.eff.org/observatory, 2010.

[51] “cert-chain-resolver,” https://github.com/zakjan/cert-chain-resolver.

[52] “Mbed TLS,” https://www.trustedfirmware.org/projects/mbed-tls/.

[53] “GnuTLS,” https://www.gnutls.org/.

[54] “MatrixSSL,” https://github.com/matrixssl/matrixssl/.

[55] “wolfSSL,” https://www.wolfssl.com/.

[56] “Java,” https://www.java.com/en/.

[57] “certvalidator,” https://github.com/wbond/certvalidator.

[58] “crypto,” https://github.com/golang/crypto.

[59] “Bouncy Castle,” https://www.bouncycastle.org/java.html.

[60] C. Forum, “Baseline requirements for the issuance and management
of publicly-trusted certificates, version 2.” 2023.

[61] “Alexa Top Websites,” https://www.expireddomains.net/alexa-top-
websites/.

[62] “libfaketime,” https://github.com/wolfcw/libfaketime.

[63] “ARMOR,” https://github.com/joyantaDebnath/armor/, 2023.

[64] “CRLSets,” https:/dev.chromium.org/Home/chromium-security/
crlsets.

[65] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley, A. Flores-
López, J. A. Halderman, J. Hoffman-Andrews, J. Kasten, E. Rescorla
et al., “Let’s encrypt: an automated certificate authority to encrypt the
entire web,” in ACM Computer and Communications Security (CCS),
2019, pp. 2473–2487.

[66] J. Larisch, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and
C. Wilson, “CRLite: A Scalable System for Pushing All TLS Revoc-
ations to All Browsers,” in IEEE Symposium on Security and Privacy,
2017, pp. 539–556.

[67] J. Debnath, S. Y. Chau, and O. Chowdhury, “When TLS Meets
Proxy on Mobile,” in Applied Cryptography and Network Security.
Springer, 2020, pp. 387–407.

[68] G. Melquiond and R. Rieu-Helft, “WhyMP, a formally verified
arbitrary-precision integer library,” in Proc. of the 45th International
Symp. on Symbolic and Algebraic Computation, 2020, pp. 352–359.

[69] T. Ringer, K. Palmskog, I. Sergey, M. Gligoric, and Z. Tatlock,
“QED at large: A survey of engineering of formally verified
software,” Found. Trends Program. Lang., vol. 5, no. 2-3, pp. 102–
281, 2019. [Online]. Available: https://doi.org/10.1561/2500000045

[70] E. Brady, Type-driven development with Idris. Simon and Schuster,
2017.

[71] P. Godefroid, “Fuzzing: Hack, art, and science,” Communications of
the ACM, vol. 63, no. 2, pp. 70–76, 2020.

[72] J. C. King, “Symbolic execution and program testing,” Communica-
tions of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[73] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. Setty, and L. Thompson, “Vale: Verifying
{High-Performance} cryptographic assembly code,” in USENIX Se-
curity Symposium, 2017, pp. 917–934.

[74] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova,
K. Bhargavan, B. Beurdouche, J. Choi, A. Delignat-Lavaud, C. Four-
net et al., “Evercrypt: A fast, verified, cross-platform cryptographic
provider,” in IEEE Symposium on Security and Privacy. IEEE, 2020,
pp. 983–1002.

[75] X. d. C. de Carnavalet and M. Mannan, “Killed by proxy: Analyzing
client-end TLS interception software,” in Network and Distributed
Systems Security (NDSS) Symposium, 2016.

[76] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan,
E. Bursztein, M. Bailey, J. A. Halderman, and V. Paxson, “The Se-
curity Impact of HTTPS Interception,” in Network and Distributed
Systems Security (NDSS) Symposium, 2017.

[77] L. Waked, M. Mannan, and A. Youssef, “To intercept or not to in-
tercept: Analyzing tls interception in network appliances,” in ACM
Computer and Communications Security (CCS), 2018, pp. 399–412.

[78] L. S. Huang, A. Rice, E. Ellingsen, and C. Jackson, “Analyzing forged
SSL certificates in the wild,” in IEEE Symposium on Security and
Privacy. IEEE, 2014, pp. 83–97.

[79] A. Sasse, “Scaring and bullying people into security won’t work,”
IEEE Security & Privacy, vol. 13, no. 3, pp. 80–83, 2015.

[80] M. Ukrop, L. Kraus, V. Matyas, and H. A. M. Wahsheh, “Will you
trust this tls certificate? perceptions of people working in it,” in Pro-
ceedings of the 35th annual computer security applications confer-
ence, 2019, pp. 718–731.

[81] A. P. Felt, R. W. Reeder, H. Almuhimedi, and S. Consolvo, “Ex-
perimenting at scale with Google Chrome’s SSL warning,” in Proc.
of the SIGCHI conference on human factors in computing systems,
2014, pp. 2667–2670.

[82] D. Akhawe and A. P. Felt, “Alice in warningland: A large-scale field
study of browser security warning effectiveness.” in USENIX security
symposium, vol. 13, 2013, pp. 257–272.

[83] S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer, “The em-
peror’s new security indicators,” in IEEE Symposium on Security and
Privacy. IEEE, 2007, pp. 51–65.

[84] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor,
“Crying wolf: An empirical study of ssl warning effectiveness.” in
USENIX Security Symposium. Montreal, Canada, 2009, pp. 399–416.

21

https://medium.com/@sleevi_/path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6
https://medium.com/@sleevi_/path-building-vs-path-verifying-the-chain-of-pain-9fbab861d7d6
https://github.com/agda/agda/issues/1209
https://github.com/agda/agda/issues/1209
https://agda.readthedocs.io/en/v2.6.2.2/index.html
https://agda.readthedocs.io/en/v2.6.2.2/index.html
https://censys.com/
https://www.haskell.org/ghc/
https://www.openssl.org/
https://www.eff.org/observatory
https://github.com/zakjan/cert-chain-resolver
https://www.trustedfirmware.org/projects/mbed-tls/
https://www.gnutls.org/
https://github.com/matrixssl/matrixssl/
https://www.wolfssl.com/
https://www.java.com/en/
https://github.com/wbond/certvalidator
https://github.com/golang/crypto
https://www.bouncycastle.org/java.html
https://www.expireddomains.net/alexa-top-websites/
https://www.expireddomains.net/alexa-top-websites/
https://github.com/wolfcw/libfaketime
https://github.com/joyantaDebnath/armor/
https:/dev.chromium.org/Home/chromium-security/crlsets
https:/dev.chromium.org/Home/chromium-security/crlsets
https://doi.org/10.1561/2500000045

Appendix A.
Supplemental Information

A.1. Integration of ARMOR in BoringSSL

We integrate the executable binary of ARMOR in
BoringSSL library in the following way. Instructions for
building and linking this modified BoringSSL library in Curl
are available in ARMOR’s GitHub repository [63].

1) We adjust the tls13_process_certificate function found
in ssl/tls13_both.cc to capture the DER-encoded
certificate bytes from the incoming TLS Certificate
handshake message. Subsequently, we save these bytes
to a temporary file on the local disk.

2) We modify the ssl_crypto_x509_session_verify_cert_chain

function in ssl/ssl_x509.cc to employ a pipe to
execute the ARMOR binary, specifying the paths to the
root CA store and the temporary DER certificate file.

3) We do not modify or disable the standard certificate
verification process of BoringSSL. Rather, we determ-
ine the final result of the chain verification by also
taking into account the outcome from ARMOR. If
both BoringSSL and ARMOR return true, the certificate
chain is accepted. If not, the connection is terminated
due to a possible inconsistency or validation failure.

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

ARMOR is a formally verified implementation in Agda
of X.509 certificate chain validation. This is the first work
to verify both syntactic and semantic stages of X.509.

B.2. Scientific Contributions

● Addresses a long-known issue
● Provides a valuable step forward in an established field

B.3. Reasons for Acceptance

1) X.509 certificate validation is a keystone component in
many software and protocols, but it is complex and it
has often been the place where critical vulnerabilities
were found. Proposing a formal approach and a proved
stack to handle this task clearly addresses a long-known
issue.

2) By implementing ARMOR and comparing its results
with 11 independent libraries, the authors proved the
relevance of their tool and provided a valuable step for-
ward in the direction of a safe library to handle X.509
certificates.

B.4. Noteworthy Concerns

As indicated in the paper rationale and the discussion
section, ARMOR strictly follows the RFC 5280 standard,
but real-world certificate validation can deviate (through ex-
ceptions or additions) from RFC 5280. This is a relevant
point of view. It would however be interesting to accom-
modate common deviations to include a broader corpus of
certificates that would be accepted by the tool.

22

	Introduction
	Background
	Design of ARMOR
	Technical Challenges
	ARMOR's Verification Philosophy
	ARMOR's Architecture

	Verification Goals and Correctness Proofs
	Preliminaries on Agda
	Input Strings and Base64 Decoding
	Verification of Parsers
	Language specification
	Language security verification
	Parser correctness

	Verification of Chain Builder
	hsblue3Chain Specification
	Chain Uniqueness
	Sound and Complete Chain Building

	Verification of Semantic Validator
	Single Certificate Property
	Certificate Chain Property

	Implementation
	Empirical Evaluation
	Experimental Setup
	Findings on Q1
	End-to-End CCVL with Real-world Certificates
	End-to-End CCVL with Synthetic Certificates
	Parser Only
	Parser with RFC 5280 Restriction

	Findings on Q2
	Findings on Q3
	Responsible Disclosure
	Experimental Resources

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Supplemental Information
	Integration of ARMOR in BoringSSL

	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

