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Abstract. Increasingly more mobile browsers are developed to use prox-
ies for traffic compression and censorship circumvention. While these
browsers can offer such desirable features, their security implications are,
however, not well understood, especially when tangled with TLS in the
mix. Apart from vendor-specific proprietary designs, there are mainly 2
models of using proxies with browsers: TLS interception and HTTP tun-
neling. To understand the current practices employed by proxy-based
mobile browsers, we analyze 34 Android browser apps that are rep-
resentative of the ecosystem, and examine how their deployments are
affecting communication security. Though the impacts of TLS intercep-
tion on security was studied before in other contexts, proxy-based mobile
browsers were not considered previously. In addition, the tunneling model
requires the browser itself to enforce certain desired security policies (e.g.,
validating certificates and avoiding the use of weak cipher suites), and
it is preferable to have such enforcement matching the security level of
conventional desktop browsers. Our evaluation shows that many proxy-
based mobile browsers downgrade the overall quality of TLS sessions, by
for example allowing old versions of TLS (e.g., SSLv3.0 and TLSv1.0)
and accepting weak cryptographic algorithms (e.g., 3DES and RC4) as
well as unsatisfactory certificates (e.g., revoked or signed by untrusted
CAs), thus exposing their users to potential security and privacy threats.
We have reported our findings to the vendors of vulnerable proxy-based
browsers and are waiting for their response.

Keywords: TLS interception · HTTP tunneling · Proxy-based
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1 Introduction

Smartphones have proliferated in the last decade, and consequently there has
been a strong growth in Internet traffic powered by mobile devices. The high
portability and mobility, however, often comes at a cost, in terms of limitations
on bandwidth and latency. Unlike conventional Internet access, mobile data is
typically metered, and services offer limited capacity within a specific period.
Because of this, increasingly there are more browsers offering a so-called “data-
saving” feature, which leverage a proxy to help cache and compress objects that
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need to be sent to the mobile browser, with the aim of reducing mobile data
consumption and in some cases lowering the latency as well.

There are other reasons for using proxy-based browser apps on mobile plat-
forms. For example, some use the proxy to conceal their own IP addresses for
privacy protection against potentially malicious Web servers. Some would use
these apps to bypass geo-blocking, a technology commonly used to adjust and
restrict contents based on estimations of the users’ geolocation. Others rely on
these apps to circumvent various forms of censorship [15,22,24,35,38].

Despite their desirable features, the use of proxy-based browsers is not with-
out its complications, especially when the users’ security and privacy are taken
into considerations. In this paper, we set out to investigate the implications
on security when using these browsers, specifically the scenario where they are
entangled with TLS. As we will explain later, based on our investigations, there
are primarily two ways of deploying proxies with mobile browsers, along with
some other proprietary technologies. The first way follows the TLS interception
model, where the proxy acts as an active man-in-the-middle (MITM) and estab-
lishes 2 TLS connections (one with the browser, one with the actual Web server).
We note that the impact of TLS interception on security has been examined
before in the context of anti-virus and parental control software [11], as well as
network middleboxes in enterprise environments [14,37]. However, proxy-based
browsers that follow the TLS interception model constitute another class of
TLS-intercepting appliances that was not considered by previous work. In this
model, the proxy is in charge of enforcing security policies (e.g., avoiding the
use of weak ciphers, and validating certificates). It is also desirable to have the
two TLS connections exhibit some degree of symmetry in terms of the strength
of their corresponding security parameters. Adapting some of the metrics pro-
posed by previous work, we design experiments to evaluate the quality of the
TLS connections established by these browsers. Another common way of deploy-
ing proxies with mobile browsers is through HTTP tunneling. In this model, the
end-to-end nature of a TLS connection is preserved, and the proxy merely helps
to relay traffic. Thus the browser apps themselves need to carefully enforce secu-
rity policies, and ideally they should be as robust as their desktop counterparts.
Given that major desktop browsers have gone through years of scrutiny from the
security research community, we distillate some of the best practices and design
experiments to determine whether the tunneling browser apps are offering ade-
quate protection to their users.

To our surprise, we found that many proxy-based browsers accept weak
ciphers, weak TLS versions, and vulnerable certificates offered by a Web server.
One notable example is the UC Mini - Best Tube Mate & Fast Video Downloader
app, which has more than a hundred million downloads, accepts legacy TLS
versions (e.g., TLSv1.0, SSLv3.0, and SSLv2.0), and broken ciphers (e.g., RC4,
and 3DES). These findings are worrisome, particularly when one takes into con-
sideration that many users rely on these apps to circumvent censorship. When
these apps do not provide an adequate level of security, an oppressive censor can
tamper with the TLS connections to attack the users. We believe this research
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is beneficial in helping the community understand the risks associated with the
current practices embraced by vendors of proxy-based mobile browsers, and we
have shared our findings with the browser vendors so that they can and improve
the overall security of proxy-based browsers.

2 Background

Here we explain technical details of the TLS interception and HTTP tunneling
models, using TLSv1.2 handshake messages, employed by most of the proxy-
based browsers studied in this paper. However, as we will explain later, some
might use a proprietary protocol that is slightly different from these two models.

2.1 TLS Interception

TLS interception [19] is a common technique used to defeat the end-to-end secu-
rity of TLS and allows the MITM to inspect contents transmitted between the
client and the Web server. In this model, the proxy acts as an active MITM,
so that some of the contents sent by the Web server could be cached and com-
pressed before sending to the client. The cached objects might be reused later for
other clients as well. In a typical setup of TLS interception, a trusted Certificate
Authority (CA) certificate of the MITM is installed on the client’s machine, so
that any MITM-signed certificates will be accepted by the certificate validation
procedure. As shown in Fig. 1a, the whole process starts with the client initi-
ating a TLS handshake with a ClientHello sent to remote Web server. The
proxy however captures and blocks this, and sends its own ClientHello to the
Web server. The Web server replies back with ServerHello, Certificates,
and ServerHelloDone handshake messages to the proxy. The proxy server
should then validate the received certificate chain, and if the validation is suc-
cessful, then it sends back to the client its own ServerHello, MITM-signed
Certificates, and ServerHelloDone handshake messages. The MITM-signed
certificate chain will then be validated by the client, and the rest of the handshake
(i.e., ClientKeyExchange, ChangeCipherSpec, Finished) happens for the two
TLS sessions. Hence, through the proxy, two related TLS sessions (i.e., TLSCP ,
TLSPS) are established between the client and the remote Web server, instead
of one. The proxy server can now decrypt any incoming data (i.e., Application
data) from the client or the server, inspect, or even modify the data before
encrypting again to forward it.

2.2 HTTP Tunneling

In HTTP tunneling, the client requests the proxy to relay a TCP connection to
the Web server. In most cases, the tunnel is established using the HTTP CONNECT
[RFC7231], though other HTTP methods can also be used depending on the
setup. As shown in Fig. 1b, the client initiates by requesting a tunnel with HTTP
CONNECT, and specify the port and the Web server that it wants to communicate
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Fig. 1. Comparison of the two proxy deployment models. The yellow boxes illustrate
our measurement setup. (Color figure online)

with. After receiving the request, the proxy server tries to establish a TCP
connection with the Web server specified by the client. If the TCP connection is
successful, the proxy server sends back to the client an HTTP 200 OK, indicating
success. The client can then start communicating with the Web server, and
the proxy server relays all the subsequent TCP stream between the client and
the remote Web server, including the TLS handshake messages between the two
sides, as well as the encrypted records. Because of this, the proxy cannot decrypt,
read, or modify the contents of these messages, assuming proper cryptographic
algorithms are being used. However, from the perspective of the Web server, it
would appear that the proxy is the client, as the proxy’s IP address would be used
in the IP header. Compared to the TLS interception model, though there are
also two TCP connections, only one TLS session (i.e., TLSCS ) is established.

3 Scopes and Methodologies

In this section, we define the scope of our study. We first discuss how we selected
proxy-based mobile browsers apps, and then we describe the experiments used
to evaluate their security.

3.1 Selection of Proxy-Based Mobile Browsers

We initially select a total of 36 proxy-based mobile browsers on Android ; the full
list is available at our website [12]. We focus on Android because it is currently
the most popular operating system. As discussed before, proxy-based browsers
are typically motivated by reduced mobile data consumption, privacy protec-
tion, and censorship circumvention. We thus looked for mobile browsers that are
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advertised with these keywords on app stores like Google Play and AppBrain. In
addition to the popular ones, we also consider some relatively lesser known ones,
in order to get a more comprehensive picture of the entire landscape.

3.2 Test Environment

Our experiment setup consists of three major components controlled by us: an
Android device, a Linux laptop acting as a Wi-Fi access point (AP), and a TLS
enabled test website. The goal of this test environment is to analyze all traffic
between a proxy-based browser installed on the Android device, and the test
website visited by the browser. In general, we refer the traffic between browser
and proxy as browser-side and the traffic between proxy and test website as
server-side. We configure the Android device to connect to the Wi-Fi AP pro-
vided by the Linux laptop, which allows us to capture browser-side traffic using
common network analyzer tools (e.g., Wirehark , and tshark ). To capture server-
side traffic, we run tshark on the Web server hosting the test website. The yellow
boxes with blue borders in Fig. 1 illustrate this idea.

In some of the apps, the proxy-based mode (e.g. data-saving feature) is
optional and not turned on by default. Hence for these apps, we switch on the
relevant options prior to any of the experiments.

3.3 Identification and Classification of Proxy

Now we describe our approach for identifying the (IP address of) proxy server
which is necessary to carry out our security evaluations. We also classify the
browsers according to the model of their proxy deployment. We have written a
Python program to automatically find out these information by analyzing the
traffic captured from both browser-side and server-side.

Determining Proxy Server Address. A browser can automatically gener-
ate or receive extra traffic from different websites without user interaction. For
instance, when a browser uses Google as its default search engine, additional traf-
fic may be present due to auto-complete. Therefore, browser-side traffic tends to
be noisy. To filter out the extra traffic and facilitate subsequent analysis, it is use-
ful to know the IP address of the proxy server. Hence, we obtain this information
by matching the browser-side and server-side traffic with some heuristics.

Since the server-side traces tend to be cleaner (highly unlikely to have addi-
tional visitors beyond our experiments), we can use the Unix epoch time to help
match the traffic between the two sides. We use the following steps to automat-
ically identify the proxy server address.

1. We find out the epoch times of the first (let this be fT ime) and last (let this
be lT ime) frames of the server-side trace.

2. Since browser initiates the communication to server, and server sends data
back to the browser, traffic of browser-side begins before the first frame of
server-side, and traffic of browser-side ends after the last frame of server-
side. We also find client-server communication tends to happen very quickly,
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and empirically a 1-second threshold is enough to handle most cases. So we
subtract 1 second from fT ime and add 1 second with lT ime to estimate the
corresponding epoch time range for the client-side traffic.

3. Then, we separate destination addresses of the browser-side’s trace and source
addresses of the server-side’s trace into two different sets.

4. If we find any common IP address in both of these sets, this IP address is
the address of the proxy server. Otherwise, we know the IP addresses of the
proxy server are different in these two traces. So, we go to step 5.

5. Since we have not found any exact match yet, we check whether any two
IP addresses from these sets are from same network. In this step, we start
matching with a 31-bit netmask and continue till a 28-bit netmask is used.
When there is no match, we go to step 6.

6. In this step, we consider a 27-bit netmask down to a 20-bit netmask. In
addition, we find out the locations of an IP address using the netaddr Python
api. We match the ASN number, city name, region name, and country name
from the locations of each pair of IP addresses. If this step still cannot find
any match, we go to step 7.

7. Here, we consider netmask 19 to netmask 16 and location matching just like
step 6. In addition to these two checkings, we consider the volume of traffic
generated per IP address. If two IP addresses from our two sets have almost
similar volume (for a particular TCP stream), we conclude both of these IP
addresses belong to the same proxy server. Otherwise, we go to step 8.

8. If none of our above heuristics works, we manually analyze the two traces to
determine what happened.

Identifying Two Models of Proxy. We classify these proxy-based browsers
into two categories according to the role of their proxy servers : HT browser and
TI browser, where ‘HT’ stands for HTTP tunneling, and ‘TI’ stands for TLS
interception. Proxy server of an HT browser uses HTTP tunneling to create
a TLS session between the browser and the website. As shown in Fig. 1b, these
browsers most commonly use the HTTP CONNECT method to initiate the tunnel.

Moreover, our Python program looks at the certificate chain received from the
identified proxy server in browser-side traffic. In the HT model, the proxy would
forward the server’s certificate chain to the browser without any modifications.
Therefore, if the certificate chain received on the browser-side is exactly the
same as the one that server sent, we classify the browser as an HT browser. If
the certificate chain is different from the server’s original certificate chain, then
we classify the browser as a TI browser. From our list of browser applications,
we found 18 to be HT browsers, and 16 to be TI-like browsers. We note that
some TI-like browsers use a slightly unorthodox approach for TLSCP (i.e., TLS
session between browser and proxy server). For example, we found 3 browsers are
performing relaxed variants of TI: BROXY Browser and X Web Proxy establish
TLS connections only for server-side traffic, and no TLS is used for browser-side;
Unblock Sites forces HTTP on both sides and sends all data in plaintext, even
if the user explicitly requests HTTPS (i.e., by typing https:// in the URI).
Therefore, these browsers are listed as variants of TI browsers [12].
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Finally, we categorize 1 browser as Unidentified since we cannot observe
its proxy-based traffic. The ‘Turbo Mode’ of Yandex Browser is supposed to
leverage proxy servers for data compression, however, we were unable to activate
this feature even when we downgrade our uplink and downlink bandwidth to
10kbps. For this reason, we exclude Yandex Browser from our subsequent security
evaluations and focus on the remaining 34 apps.

3.4 Security Evaluations

We run multiple experiments to evaluate the strength of overall TLS session
between a proxy-based browser and our test website. To do so, we capture traffic
from both browser-side and server-side, and perform automatic analysis with a
Python program that performs the following security evaluations. The first three
security evaluations focuses on TI browsers whereas the last three are applicable
for both TI and HT browsers.

Evaluation 1 : Maintaining Strength of Certificate Parameters. The
strength of a TLS session depends highly on important certificate parameters
such as signature key length and signature hash algorithm. The use of short
key length (e.g., RSA-512) and deprecated hash algorithms (e.g., MD5) can
pose serious threats to a TLS session [RFC6151]. Therefore, it is recommended
that the proxy server use strong parameters in its MITM-signed certificates for
browser-side TLS session, or at least it should maintain the same strength as the
server’s certificates. This is primarily a requirement for TI but not HT browsers.

To evaluate this property, we consider different signature hash algorithms
(e.g., SHA256, SHA384, and SHA512), and different certificate key lengths (e.g.,
RSA-2048, RSA-3072, and RSA-4096). Then, we consider all possible combina-
tions of these certificate parameters to obtain 9 valid certificates from different
trusted commercial CAs. For each of these 9 certificates, we load a certificate
chain and its corresponding private key to the test Web server and visit the test
website from each of the TI browsers. We find out the signature hash algorithms
and signature key lengths used in the MITM-signed certificates and investigate
whether the proxy server mirrors or downgrades the signature hash algorithms
and certificate key lengths with respect to the test Web server’s certificates.

In addition to signature hash algorithm and signature key length, we
also analyze the validation level of the MITM-signed leaf certificate. We
check whether the MITM-signed leaf certificate is Extended Validated (EV),
Organizational Validated (OV), or Domain Validated (DV). EV certificates
are the most trus-ted ones, as CAs are supposed to issue this type of certificate
only after thorough validation of Web server’s identity. On the other hand, DV
certificates are issued very quickly after some basic validation process, and it
offers the least amount of trust among these three. It is preferable that the
proxy server should not downgrade the trust level in the MITM-signed certifi-
cate compared to the server certificate. For instance, if the server-signed certifi-
cate is EV certificate, the MITM-signed certificate should also be EV. For this
experiment, we visit Twitter’s website (https://mobile.twitter.com/) to explore

https://mobile.twitter.com/
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the validation level of the MITM-signed certificate with respect to Twitter’s EV
certificate. The validation level of a certificate can be found by inspecting the
policy identifier value of the policy extension.

Evaluation 2 : Mirroring TLS Version and Strength of Cipher Suites.
This is another desirable property for TI class browsers. The TLS version used
by the browser-side TLSCP should not be weaker than that of the server-side
TLSPS . This property is necessary to ensure that the proxy is not downgrading
the protocol version. We enumerate different versions of TLS (and SSL) and see
if the TLS versions negotiation observed in the ClientHello and ServerHello
pairs from both sides match with each other and determine whether the proxy
mirrors, upgrades, or downgrades the TLS version.

In addition to the TLS version, when the proxy receives a set of cipher suites
proposed by the browser through ClientHello, the ClientHello sent by the
proxy to the remote Web server should offer a comparable set of cipher suites,
or it should at least ensure no weak or insecure cipher suites are being offered.
Similarly, after the Web server chose a particular cipher suite to use for TLSPS ,
the proxy should choose one with similar strength, if not exactly the same, for
TLSCP . This property is important to ensure similar strength of key exchange
algorithms, ciphers, and message authentication code are used in both sides of
the proxy (i.e., TLSCP and TLSPS). We find out the sets of cipher suites being
negotiated by monitoring the pairs of ClientHello and ServerHello in TLSCP

and TLSPS . Then, we can investigate whether the proxy offers better/weaker
cipher suites to the Web server.

Evaluation 3 : Validation of Proxy Certificates. For TI browsers, they need
to properly validate certificates coming from their proxies, unless they employ
other means for authenticating the proxy servers. Without a robust certificate
chain validation, it might be possible for an MITM to perform impersonation
attacks against TLSCP and intercept the data exchanged between the browser
and its proxy. For this evaluation, we deploy the open source mitmproxy on our
Linux wireless AP, to inject invalid certificates to TLSCP when it gets established
and see if any of the TI browsers would accept such certificates. Considering the
certificate chains of the proxies, we are also interested in seeing the length of the
chains and for how long would they be valid for.

Evaluation 4 : Avoiding Weak Cipher Suites. If a Web server is config-
ured to only use weak cipher suites (e.g., those using flawed ciphers like RC4,
3DES and other export-grade ciphers), the proxy (TI browsers) or browser (HT
browsers) should not establish a TLS session with it, or some warning messages
should be shown to the users. This property is required to provide some basic
guarantees on the strength of the overall TLS session between the browser and
the remote website. The users might be misled into a false sense of security if
the apps silently establish TLS sessions with weak ciphers being used.

In HT browsers, weak cipher suites should be avoided by the browser appli-
cation itself since the proxy does not actively interfere with the communica-
tion with the Web server. However, for TI browsers, the proxy needs to enforce
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policies regarding weak ciphers. In this experiment, we initially configure the test
website with different cipher suite parameters (e.g., OpenSSL’s HIGH, MEDIUM,
LOW, or EXPORT). LOW and EXPORT level cipher suites are expected to be blocked
by the proxy server or the browser because these cipher suites should not be
used due to their weaknesses. We also try some additional weak cipher suites
involving vulnerable ciphers (i.e., RC4 and 3DES) and modes that are known to
be tricky to implement (i.e., block cipher in CBC mode with HMAC-SHA1 and
HMAC-MD5) in the test Web server to see if any of the HT and TI browsers
consider these acceptable.

Evaluation 5 : Validation of Server’s Certificate Chain. In TLS hand-
shake, server sends a certificate chain with ServerHello message as a reply to
Client’s ClientHello message. The leaf certificate of this certificate chain con-
tains server’s public key which is signed by some trusted CA. The client after
receiving this certificate chain verifies it to make sure that the client is com-
municating with the correct server, not an impersonator. The validation process
should check the trustworthiness of issuers on the chain, the cryptographic signa-
tures, hostname, revocation status, and validity period. Otherwise, an attacker
can exploit some of the missing checks for potential attacks.

The browser (in the HT model) or its proxy (in the TI model) has to perform
the aforementioned checks on the received certificate chain, and if the validation
fails, it should decline to establish a TLS session, or show appropriate warning
messages to the user. To check whether the apps adequately perform such valida-
tions, we use the following types of certificates in our experiments: self-signed
certificates, certificates signed by an untrusted issuer (Custom CA), certifi-
cates with invalid signatures and incorrect common names, revoked cer-
tificates, and expired certificates. We configure our test Web server to use these
certificates, one at a time, and visit the test website from each of the browsers
to determine the robustness of their certificate chain validation process.

Unlike previous work [11], for TI browsers, we cannot install a custom trusted
CA to the proxy servers to enable fine-grained experiments. Instead, we have to
rely on common trusted commercial CAs to issue our test certificates, and hence
the combination of certificate issues that we can experiment with, especially
regarding X.509v3 extensions, are restricted by the certificate issuance policies
of the commercial CAs. While certificates with incorrect common name was
easily obtainable from commercial CAs, we manually modify the signature of a
valid certificate to obtain test certificates with invalid signatures. For revoked
certificates, we have waited for 2 months to allow the revocation information
to get properly disseminated before testing. Considering HT browsers, we also
attempt to install a trusted CA certificate on the Android test device, and if
the browsers trust the system CA store, additional fine-grained experiments
regarding problematic certificate can be performed.

Evaluation 6 : Avoiding Weak TLS Versions. If a remote website only
accepts legacy TLS (e.g., versions older than TLSv1.1), the browser or its proxy
server should prevent the TLS session from being established, or show appro-
priate warning message to the user. This is useful in providing the user some
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guarantees on the overall strength of the TLS sessions. Historic versions of TLS
often lack support for modern ciphersuites, and might be susceptible to different
kinds of MITM and downgrade attacks [RFC7568, RFC6176].

For the same reason explained in Evaluation 4, this should be performed by
the browser application (in case of HT browsers), or by the proxy server (in case
of TI browsers). We perform this experiment by configuring the aforementioned
weak TLS versions one-by-one in our test Web server. Then, for each of these
TLS versions, we visit the test website from each of the browsers and see if the
TLS sessions can be successfully established despite the weak TLS versions. This
is more reliable than simply monitoring the ClientHello messages for protocol
version numbers, as the browser/proxies might have fallback/retry mechanisms
upon encountering a server with incompatible versions.

4 Findings

4.1 Commercial CA Certificate Issuance Policy

The variety of experiments regarding problematic certificates that we can per-
form depends on the issuance policy of the trusted issuers. Hence, we set out
to explore the possibility of obtaining certificates with weak algorithms and/or
bad parameters through commercial CAs. We examined the certificate issuance
policies of 11 well-known CAs listed in online surveys1 and encyclopedia (e.g.,
Wikipedia). We found that none of the CAs agreed to issue certificates with weak
signature hash algorithms (e.g., SHA1, MD5) or short RSA keys (e.g., 512 bits,
1024 bits). At minimum, the issuance policies of these CAs require certificates
to use SHA256 with a RSA modulus of at least 2048-bit long, which is coherent
with the baseline requirements published by the CA/Browser Forum [1]. While
it is fortunate that the commercial CAs we considered all have a somewhat high
bar in terms of what kind of certificates they are willing to issue, this also means
that for Evaluation 5 (Validation of Server’s Certificate Chain), we are unable
to perform fine-grained analysis of how the certificate validation performed by
the TI proxies behave under different problematic certificates.

4.2 Maintaining Strength of Certificate Parameters

We found that the certificates issued by the proxies of the 11 TI browsers all use
a fixed signature hash algorithm and RSA key length, even when the Web server
itself uses certificates of longer hashes/keys. See columns 2 & 3 of Table 1 for
the results. Our experiments include different certificates with varying signature
hash algorithms (i.e., SHA-256/384/512) and different key lengths (RSA with
2048/3072/4096-bit modulus). However, all of these TI browsers use SHA256 as
the signature hash algorithm, and nine of these use 2048-bit RSA modulus in
their MITM certificates. The remaining one, Upx Browser uses a 1024-bit RSA

1 https://w3techs.com/technologies/overview/ssl certificate/all.

https://w3techs.com/technologies/overview/ssl_certificate/all
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Table 1. Results of security evaluations 1–3.

modulus. All in all, none of the these apps mirrored the strength of the
certificate parameters offered by the Web server.

We also evaluated whether the MITM certificates maintain the trust level
of server certificates. In our findings (column 4 of Table 1), the proxies of Puf-
fin Browser, Unblock Website Browser, Tenta Browser, and Tunnel Browser send
DV certificates to the browser even though the remote website (https://mobile.
twitter.com) sends an EV certificate to the proxy. Google Chrome’s proxy use an
OV certificate. For rest of the TI browsers, MITM certificates do not have any
policy extension fields. Hence, we can only confirm that these certificates are
not EV, but cannot determine whether they are OV or DV. According to our
findings, none of the proxy servers use the most trusted EV certificates
for TLSCP ; additionally, users are not warned about such discrepancies.

4.3 Mirroring TLS Version and Strength of Cipher Suites

We found that the TLS version of TLSCP for 10 TI browsers is fixed at TLSv1.2,
regardless of the version used by TLSPS . Google Chrome uses GQUIC to replace
TLSCP . To our pleasant surprise, UPX Browser, uses TLSv1.3 for its TLSCP .
Similarly, the cipher suite selected for TLSCP also appears to be fixed, irre-
spective of what is chosen for TLSPS , though different browsers have different
preferences over possible cipher suites. Fortunately, the cipher suites chosen are
all reasonably strong and with the property of forward secrecy. These results can
be found in columns 5–7 of Table 1.

https://mobile.twitter.com
https://mobile.twitter.com
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4.4 Validation of Proxy Certificates

Regarding certificate validation during the establishment of TLSCP , we found
that none of the 11 TI browsers silently accept the MITM-signed certificates
injected by mitmproxy; 8 of them outright reject the certificates, and the remain-
ing three (Opera, Opera Beta and Tunnel Browser) display warning messages
prompting the user to decide whether to continue or not. See column 10 of
Table 1 for the results. Moreover, columns 8–9 of Table 1 present the findings
on the certificate chain used by the TI proxies. Five of the TI proxies send only
a single certificate for authentication purposes, and the others send a chain of
two certificates. Most of the proxy certificates (leaf of the chain) have a short
validity period of a few months, and the only exceptions are Aloha Browser and
Aloha Browser Lite, where the proxy certificates are valid for 10 years (column 9
of Table 1). For the proxies that sent a chain of two certificates, all of the issuer
certificates are valid for more than a few years, with Puffin Browser having the
longest validity period of 20 years (column 8 of Table 1).

4.5 Avoiding Weak Cipher Suites

For this evaluation, we configure our test Web server with different cipher suites
as described in Sect. 3.4. When we use OpenSSL’s HIGH and MEDIUM level
cipher suites (consisting of key lengths greater than or equal to 128 bits), all TI
and HT browsers successfully established TLS sessions. On the other hand, none
of the browsers were willing to established TLS sessions with the test Web server
when it is using OpenSSL’s LOW and EXPORT level cipher suites (consisting
of key length less or equal to 64 bits). See columns 2–5 of Table 2 for the results.

Interestingly, a more fine-grained experiment with cipher suites revealed some
subtle issues that are worth considering. When we configure the test Web server
with cipher suites involving the use of algorithms like SHA1 and 3DES that are
considered to be weak, all of the 34 browsers tested turn out to be willing
to establish TLS sessions with the remote website, without showing any
warnings to their users warning. Moreover, we found that Tunnel Browser, and
the proxy servers of UC Mini and Unblock Website Browser, are willing to accept
without warning cipher suites involving weak algorithms like RC4 and
MD5. These behaviors are consistent with the ClientHello requests observed
on the Web server side. See columns 6–9 of Table 2 for the results. RC4 has
irreparable weaknesses that can open door to a variety of attacks [3,16,36],
3DES is susceptible to birthday attacks due to its small block size [7], and cipher
suites using MD5 and SHA1 are either using the flawed RC4 stream cipher, or
block ciphers in CBC mode which has proven to be tricky to implement and are
continuously haunted by padding oracle attacks [2,18,28].

4.6 Validation of Server’s Certificate Chain

Certificate chain validation ensures that a TLS session was established with the
intended entity, given that the claimed identity was verified and vouched by
some trusted authorities. The results of this evaluation can be found in Table 2.
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Table 2. Results of security evaluation 4–5.

When the server certificate is self-signed, signed by an untrusted issuers (Cus-
tom CA), or has an invalid signature, we found that all the HT browsers would
either reject it and terminate the TLS connection, or show warning messages
to the user before continuing. However, we noticed that four HT browsers (Hola
Browser, Super Browser, Unblock Site Browser, and Unblock VPN Browser) would
accept server certificates with an incorrect common name without show-
ing any warnings to the users. The rest of the HT browsers all reject certificates
with incorrect common name. Additionally, Super Browser, Unblock Site Browser,
and Unblock VPN Browser also appear to accept expired certificates.
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Table 3. Results of security evaluation 6.

For all the TI browsers except for Unblock Website Browser and Tunnel
Browser, these 5 types of invalid certificates are either outright rejected by their
corresponding proxies, or a warning is displayed to their users.

For revoked certificates, we found that out of all the browsers tested, only
Opera Mini and Opera Mini Beta would take the revocation status of certificates
into consideration, and reject revoked certificates. This is particularly interesting
because Opera and Opera Beta, which are from the same vendor and are supposed
to be more full-featured, do not seem to reject revoked certificates.

Finally, for the two TI-O browsers (BROXY Browser and X Web Proxy), which
uses TLS only for server-side traffic but not for browser-side, their certificate
chain validation also appears to be very weak, as the proxy servers do not reject
any of the 6 types of invalid certificates.

4.7 Avoiding Weak TLS Versions

For this evaluation, when the test server is configured to use TLSv1.2 or TLSv1.1,
only UC Mini declined to communicate, while all the other browsers established
TLS sessions without errors. Additionally, we noticed that quite a few proxy-
based browsers are still reluctant to support TLSv1.3. See column 2–4
of Table 3 for the detailed results.

We have also found that all the browsers continue to support the
twenty year old TLSv1.0. On the other hand, SSLv3.0 is blocked by all
the browsers except UC Mini and Unblock Website Browser. This is
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interesting since UC Mini’s proxy server does not support TLSv1.2 and TLSv1.1,
but instead supports much older and weaker SSLv3.0 and TLSv1.0. We suspect
that this is due to a lack of software upgrade and maintenance for these proxies.

Since SSLv2.0 is not supported by any reasonably recent versions of Apache
Web server, we have not performed similar experiments with SSLv2.0. Instead,
we used the Qualys SSL Client Test2 to check the list of TLS versions that are
supported by the proxy-based browsers. For HT browsers, such a test would
reflect the configuration of the browser itself, and for TI browsers, this would
effectively be testing the proxies. Through this additional experiment, we found
that the proxy server of UC Mini also supports SSLv2.0, the usage of
which is deprecated since 2011 [RFC6176].

5 Discussions

In this section, we discuss the implications of our findings, as well as some of the
limitations of our experiments.

5.1 Browsers with No/Broken TLS

First of all, some proxy-based browsers are effectively not benefiting from
TLS at all. For example, Unblock Sites strips TLS, and for the two TI-O
browsers (Broxy Browser and X Web Proxy), they do not use TLS between the
browser and the proxy, and certificate validation for TLSPS is so weak that an
impersonation+MITM attack can be mounted against it, which basically ren-
ders the TLS useless. Some other problematic browsers in this category include
the Unblock Website Browser and Tunnel Browser, both of which have a fairly
good TLSCP that uses TLSv1.2 and a reasonably strong ephemeral cipher suite
providing forward secrecy, but the TLSPS certificate validation is abysmal and
susceptible to impersonation+MITM attacks. Notice that these apps have hun-
dreds to several hundred thousands of downloads. If users of these apps rely on
them to exchange confidential data, there could be serious repercussions.

5.2 Leniency in Certificate Validation

Additionally, our experiments have revealed some other subtle unwarranted
leniencies in how the browser apps (and their proxies) validate server certifi-
cates. Some of them do not check for common names, opening doors to
potential impersonation attacks. One of the offenders, Hola Browser, had
more than 50 million downloads, leaving a large number of users potentially
vulnerable.

Moreover, some of the browsers, including ones that have garnered more than
hundred thousand downloads (e.g., Super Browser), do not reject expired certifi-
cates. While this does not seem immediately alarming, skipping the expiration

2 https://www.ssllabs.com/ssltest/viewMyClient.html.

https://www.ssllabs.com/ssltest/viewMyClient.html
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check is less than ideal for following reasons. First, accepting expired certificates
means old certificates whose private keys might have been leaked and exposed
(e.g., through OpenSSL heartbleed bug) can still be used by an attacker. Second,
given the support for revocation checks remains questionable, a phenomenon also
observed by our experiments, there is a new trend of favoring short-lived cer-
tificates [25,34] instead of conventional revocation mechanisms (e.g., CRLs and
OCSP) that are considered to be heavyweight and not scaling well. In such a
case, the ability to prevent certificates with leaked private keys from functioning
again critically hinges on the browsers rejecting expired certificates, and hence
we recommend browser vendors to properly implement expiration checks.

5.3 Weak Cipher Suites, TLS Versions and RSA Parameters

We have also noticed that usage of weak cipher suites is not universally
banned in the 34 browsers we have studied. For example, 3 of them still support
usage of RC4. RC4 is a stream cipher found to exhibit undesirable statistical
biases in its key stream, which leads to a variety of attacks [3,16,36]. Major
desktop browser vendors have disabled usage of RC4 for some years, and usage
of RC4 have since been deprecated [RFC7465]. Moreover, 3DES is also consid-
ered weak, especially after the emergence of SWEET32 [7], a birthday attack
exploiting its relatively short (64-bit) block size. NIST has since updated its
guidelines to restrict the use of 3DES to encrypting not more than 220 blocks
(8 MB) of data under one key bundle (made of 3 unique 56-bit keys) [4], which
is well within reach of a Web session involving a large amount of multimedia
contents. Recently, NIST has announced usage of 3DES is deprecated and will
be disallowed after year 2023 [5]. Interestingly, at the time of writing, we have
seen that all the tested proxy-based browsers still support 3DES. We hence
recommend browser vendors to consider disabling support for RC4
as soon as possible, and follow the NIST guidelines on phasing out
support for 3DES in the near future.

On the other hand, there exists a series of research on reducing the complex-
ity and monetary costs for finding SHA1 and MD5 collisions to within reach of
resourceful adversaries [20,29–32,39,40], and vendors of major desktop browsers
have already been rejecting SHA1 and MD5 certificates. However, their use as
HMAC in TLS is not immediately problematic [RFC6151], as the security argu-
ment for HMAC does not depend on the collision resistance of the hash func-
tion [6]. The problem of cipher suites involving HMAC-SHA1 and HMAC-MD5
is that all of them involve either the irreparably flawed RC4 cipher, or block
ciphers under the CBC mode, which when paired with the MAC-then-encrypt
design choice embraced by TLS, has proven to be tricky to implement and leads
to a variety of attacks [2,18,28]. TLSv1.2 has since introduced new cipher suites
with authenticated encryption (e.g., AES under GCM) [RFC5288], and TLSv1.3
has dropped all CBC-mode ciphers [RFC8446]. It is advisable to consider
removing support for such cipher suites in the future, or at least display
warnings to the users regarding these problematic cipher suites.
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Apart from the issues related to problematic ciphers, historic versions of
TLS like TLSv1.0 and TLSv1.1 are also found to have design flaws, for example,
the SLOTH attack [8] demonstrates how to exploit transcript collision, resulted
from the hash collision due to SHA1 and MD5, for breaking authentication
in TLSv1.0 and TLSv1.1. On top of that, TLSv1.0 deployments can also be
vulnerable to the BEAST attack [13], especially if the 1/1 − n split client-side
mitigation is not being implemented. As the result of which, vendors of major
desktop browsers have all agreed to phase out support for TLSv1.0 and TLSv1.1
in 2020 [9,33], and some industry standardization body has already deprecated
the use of TLSv1.0 [26]. There is also an IETF draft proposing to deprecate
the use of TLSv1.0 and TLSv1.1 [23]. Consequently, we recommend vendors of
proxy-based browsers to consider following suite in phasing out support
for TLSv1.0 soon, and TLSv1.1 as well in the near future. For SSLv3.0
and SSLv2.0, both of them have already been deprecated due to numerous issues
[RFC7568, RFC6176] and we recommend UC Mini and Unblock Website Browser
to stop supporting SSLv3.0 and SSLv2.0.

In the context of TI class proxy-based browsers, this class of offense is partic-
ularly worrisome, as the use of historic versions of TLS and weak cipher suites
for TLSPS is transparent to the users, especially when TLSCP itself is using
reasonably good algorithms, which can potentially lead to a false sense of secu-
rity. To the very least, there should be warning messages delivered to the
users when the quality of TLSPS is subpar.

Additionally, while UPX Browser is using TLSv1.3 with a reasonably strong
cipher suit for TLSCP , its proxy certificate has only a 1024-bit long RSA modu-
lus. NIST has already recommended against usage of RSA modulus shorter than
2048 bits [5], and browsers like Firefox have already been phasing out support
for certificates with 1024-bit RSA modulus [41]. Hence, we recommend UPX
Browser to upgrade its proxy certificate to use a longer RSA modulus.

5.4 Asymmetry of TI Browsers

Finally, we note that for TI browsers, strength of the certificates (in terms of size
of RSA modulus and hash algorithms) and cipher suites used by their TLSCP

and TLSPS are often not mirrored. This can lead to two contrasting problems.
First, as discussed in Sect. 5.3, a good quality TLSCP without any warning
messages could potentially mask the problem of a low quality TLSPS (e.g., bad
certificates or broken ciphers), leading to a false sense of security. On the other
hand, if a Web server is configured to use strong cipher suites and certificates with
long RSA modulus, the fixed parameters for TLSCP as presented in Table 1 can
be seen as downgrading the overall quality of the TLS sessions. A potentially
better approach is to choose matching parameters for TLSCP based
on the outcome of TLSPS , but it remains to be seen whether the vendors are
willing to deploy such a dynamic negotiation logic on their proxies.
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5.5 Limitations

During our experiments in this research, we faced a few technical challenges. We
could not locate IP addresses of the proxy servers for Opera Mini, Opera Mini
Beta, Opera, Opera Beta, and UC Mini automatically using our heuristic-based
approach, since the network addresses as well as the location of the proxy servers
appears to be completely different in the browser-side and server-side traffic.
Even the volume of traffic in both directions cannot be easily matched, since
these browsers compress data in TLSCP which reduces the volume significantly.
Therefore, we had to resort to manual analysis for those traces, and tried to
fully or partially match the organization name field from the locations of the
proxy servers to determine the addresses of proxy servers.

As discussed in Sect. 3.4, another limitation of our experiments is that unlike
previous work [11,37], we cannot install a custom CA certificate on the proxy
servers of TI class browsers, and we found that none of the HT class browsers
trust the Android system CA store. Consequently, we were not able to perform
a fine-grained analysis of their certificate validation procedures, as we have to
resort to obtaining certificates from commercial CAs, and they are quite restric-
tive in what to issue (Sect. 4.1).

6 Related Work

TLS interception and its effects on security was studied before, where Xavier et
al. [11] designed a framework to test TLS proxies used in some antivirus and
parental control software, Waked et al. [37] developed a framework for analyzing
TLS interception performed by enterprise-grade network appliances, and Zakir
et al. [14] presented a comprehensive study on the prevalence and security impact
of HTTPS interception made by middleboxes and antivirus software. Previous
research has also identified TLS intercepting antivirus and content filtering soft-
ware are the main contributors of forged certificates [17]. These studies have
shown that many TLS intercepting products are negatively impacting security,
and their proxy implementations are often problematic.

This paper makes new contributions in two directions. First, we note that
proxy-based mobile browsers is another class of appliances that performs TLS
interception but not studied before by previous work, and second we include
in our study browsers that use an alternative model of HTTP tunneling, which
comes with its own security trade-offs and considerations.

Orthogonal to this line of research, researchers have studied the affects of
TLS vulnerabilities on Web security [10]. Moreover, there have been studies on
whether general Web security mechanisms (e.g., HSTS, CSP, Referrer Policy,
etc.) are being supported by mobile browsers [21], and some Android banking
apps were also found to have weaknesses regarding certificate validation [27],
along with other issues in the choice of cipher suites, signature algorithms and
TLS versions, which resonate greatly with our findings presented in this paper.
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7 Conclusion

In this paper, we explore the security implications of proxy-based mobile
browsers on Android, and found that many of these browsers do not provide
adequate security guarantees to their users. Problems include the willingness to
support weak ciphers and insecure TLS versions, as well as unwarranted leniency
in certificate validation, which can open door to a variety of attacks. In many
cases, the proxies’ transparent leniency towards subpar TLS connections with
the remote server and resulting asymmetry in strength of TLS parameters could
potentially lead to a false sense of security. Apart from reducing bandwidth con-
sumption, part of the reason why proxy-based browsers are gaining popularity is
their supposed ability to protect user privacy and circumvent censorship. How-
ever, the findings of our study suggest that users should be cautions and make
informed decisions on which browser to use, or risk serious repercussions.
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