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Abstract—This paper presents a formal language and frame-
work, OYSTER, to develop correct-by-construction design of
Integrated Modular Avionics (IMA). The OYSTER language is
created as an annex to the Architecture Analysis and Design
Language (AADL) for encoding constraints for aspects of IMA.
The OYSTER constraints involve determining the correct loca-
tions of hosted applications within an IMA system, validity of the
port connections involved in the design, and the conformance of
virtual links allocated with bandwidth and jitter requirements.
OYSTER also allows synthesis of communication paths for the
allocated virtual links. The OYSTER prototype tool is developed
as a plugin to the Open Source AADL Tool Environment
(OSATE), and invokes Satisfiability Modulo Theories (SMT)
solvers to synthesize correct-by-construction architecture designs
for IMA. In addition, behaviors of applications running on IMA
components and their safety properties can be modeled in the
Assume Guarantee REasoning Environment (AGREE) annex and
checked by the Kind2 model checker. The verification results
are guaranteed to be correct by the independently verifiable
proof certificates produced by Kind2. Finally, the paper evaluates
OYSTER on a GE Aviation use case – a fuel control system IMA,
and discusses the lessons learned.

I. INTRODUCTION

Integrated Modular Avionics (IMA) [36] are hybrid plat-
forms that provide computing, communication, and I/O ser-
vices for modern military and commercial aircraft. The im-
plemented real-time embedded systems are architected and
overlaid on the partitioned platform resources to form a highly-
integrated system with full isolation and independence of each
individual system. The platform elements are architected to
maintain a high-integrity, fault-tolerant environment necessary
for hosting critical system functionality. IMAs are able to
simultaneously support critical and non-critical applications (at
both high and low integrity levels) due to partitioned boundary
layers between the applications.

Since the failure of IMA systems can have catastrophic
consequences, the development of IMA platforms for modern
commercial and military aircraft involves rigorous processes
and tools along with tedious manual work to ensure that no

errors are introduced. Therefore, IMA solutions are oftentimes
produced by commercially available and/or internally devel-
oped proprietary tools, many of which have been certified
for use by regulatory authorities such as the Federal Aviation
Administration (FAA) and European Aviation Safety Agency
(EASA). However, this makes IMA architecture solutions
expensive to implement and changes to an IMA design (e.g.,
requirements changes) can be labor-intensive.

During a typical IMA development cycle today, a systems
integrator will spend thousands of person-hours collecting,
integrating, and fine-tuning an overall IMA system for qual-
ification and fielding on real aircraft. One of the main con-
tributors to the cost of integration of these network-based
systems is the management of their changes and impacts of
the changes on the rest of the IMA. Doing so requires systems
expertise, knowledge about the implementation details of the
IMA construction, and operational details of the qualified
verification and configuration tools that must be used. The
frequency of changes during IMA development can be very
high and can even get to a point where it may become
impractical/unsustainable for a human integrator to be able to
absorb and understand all of the changes and their potential
impacts. Additionally, the financial and scheduling constraints
usually do not allow for a full “stop work” to assess the
changes every time. Therefore, the access to tools that can aid
in decision-making and can recommend appropriate changes
for converging on a qualifiable and fieldable solution is crucial
when dealing with systems of this scale and complexity.

Formal methods are mathematically-rigorous means for the
specification, development, and verification of software and
hardware systems, that can be harnessed for ensuring error-free
system integration. Techniques such as model checking [17]
and Satisfiability Modulo Theories (SMT) [9] can be used
for automatically detecting if a given architecture violates
a given property and for synthesizing potential changes in
an architecture that might be needed in order to satisfy a
given property. Therefore, such formal methods techniques
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are well-suited for the development of IMA solutions. In
this paper, we introduce the OYSTER framework, which uses
model checking and SMT-based techniques for the synthesis
of correct-by-construction IMA architectures. We have eval-
uated the feasibility of using OYSTER on real-life industrial
applications by applying it on an IMA use case provided by
our industry partners at GE Aviation.

This paper makes the following contributions to aid in the
development of IMA solutions:

• Development of a formal language namely, OYSTER,
to encode IMA architecture constraints and a translation
scheme to SMT.

• An end-to-end tool prototype to synthesize a correct-by-
construction IMA architecture solution using SMT solver
and model checkers.

• A framework prototype for generating independently veri-
fiable solutions for behavior models towards certification.

• Evaluation of the OYSTER framework on a fuel control
system IMA use case provided by GE Aviation to show
its practical feasibility.

The rest of the paper is structured as follows: Section II
provides an overview of the overall architecture of the OYS-
TER framework; Section III details the OYSTER language
for encoding IMA requirements; Section IV describes the
architecture synthesis and proof generation capabilities of
OYSTER; Section V presents an application of OYSTER on
our use case followed by a discussion about lessons learned
during the process; Section VI summarizes related work on
system architectures synthesis; and finally, Section VII con-
cludes the paper with a discussion on possible directions of
future work.

II. OYSTER OVERALL ARCHITECTURE

The OYSTER framework is depicted in Figure 1. The goal
of this framework is to leverage formal methods tools to auto-
synthesize a correct-by-construction IMA platform architec-
ture, and prove formal properties about IMA behaviors using
model checkers. The framework starts with modeling IMA
software and hardware components in Architecture Analysis
and Design Language (AADL) [23] that will be used to
construct an IMA platform (corresponding to 1 ). The IMA
architectural requirements are collected and encoded in OYS-
TER annex ( 2 ). The two pieces of information are translated
to input to Satisfiability Modulo Theories (SMT) solvers for
architecture synthesis ( 3 ). A satisfiable solution from the
solver is converted back to an instantiated AADL model
( 4 ) that meets all the constraints specified in OYSTER. In
addition, the model behavior and safety properties ( 5 ) can
be manually added to the synthesized model to be further
checked by a model checker – Kind2 [16] ( 6 ). In case the
formal properties are proved valid, Kind2 ( 7 ) will produce
three kinds of proof certificates in SMT-LIB [8] and Logic
Framework with Side Condition (LFSC) [39] formats ( 8 ).
In case the formal properties are disproved, we will leverage
the counter-example and the blame assignment feature [28]
of Kind2 to help system engineers to localize the issues.

The first one certifies the front-end translation faithfulness,
which is in SMT-LIB format. It requires an independently
developed model checker for Lustre, e.g., JKind by Collins
Aerospace [25], to be part of the certificate generation process.
The second one encodes the k-inductive proof steps in SMT-
LIB format for the validity of formal properties and can
be independently verified by third-party SMT solvers, e.g.,
Z3 [33], cvc5 [7], Yices2 [22] etc. Finally, the LFSC proof
certificate is a formal proof that the safety properties are
invariants in the system, and can be independently verified
by LFSC proof checkers ( 9 ).

The framework enables a system architect/developer to use
SMT techniques to auto-generate system architecture models
and utilize a back-end model checker (Kind2) to produce proof
certificates from verification of safety properties of system
behavior models.

III. OVERVIEW OF IMA REQUIREMENTS & OYSTER
ANNEX

IMA architectural requirements state several constraints
about the location of components on the IMA cabinets along
with network connectivity and bandwidth constraints between
several several components situated within the cabinets. More-
over, Virtual Link flows specific information flows from vari-
ous sensors to actuators. Initially, all the components present
in the cabinet are stated along with their port connections and
virtual link flows as the OYSTER AADL annex [3].

Essentially, annexes enable descriptions of Domain Specific
Languages extending the basic AADL definitions. In our case,
the OYSTER annex captures the IMA requirements. OYSTER
is a front-end AADL annex language to capture these archi-
tectural constraints. Then the actual synthesis is performed
by translating the OYSTER annex into SMT and invoking
an SMT-solver. The solution returned by the SMT-solver is
translated back to AADL which represents the synthesized
IMA Architecture. If the set of OYSTER annex constraints
are unsatisfiable, we report the UNSAT core from Z3 back
to the user. Although UNSAT cores from SMT solvers are
not necessarily unique or minimal, reporting it back to the
user serves as an initial step towards providing actionable
feedback for the user while specifying IMA requirements. The
synthesized AADL architecture is subject to further behavior
analyses as mentioned in the OYSTER toolchain workflow.

The OYSTER language supports modeling the following
constraints: fixed-location constraints (FLCs), co-location con-
straints (CLCs), resource utilization constraints (UCs), sepa-
ration constraints (SCs), virtual link constraints (VLCs), and
port connection constraints (PCCs). The OYSTER language is
also equipped with syntax highlighting and type checking for
usability. The OYSTER language and its informal semantics
is presented next.
Fixed-location Constraints. FLCs constrain a component X
to map to another component Y within the IMA architecture.
For example, a General Processing Module (GPM) GPM_L1 is
mapped to a Common Computing Resource (CCR) CCR_L1
as:
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Fig. 1. High-level overview of OYSTER framework

{Fixed-Location-Constraint FLC1: (GPM_L1 -> CCR_L1);

Co-location Constraints. CLCs co-locate components {C1,
..., Ck} within a same target component Cτ . For example, a
GPMApp and ACSApp can be co-located to CCR L1 as:
Co-Location-Constraint CLC1 :
(GPMApp APP_FIDO) and (ACSApp SwitchApp_L1) -> CCR_L1;

Utilization Constraints. UCs state that the resources allocated
to the various hosted applications (CPU, RAM, ROM) should
not exceed the resources available on a computing resource.
For example, in OYSTER, one could state that the sum
of CPU allocated to applications named APP_FIDO and
APP_FILE_SYSTEM should not exceed the CPU provided
for the computing resource CCR_L1, as shown below.
Utilization-Constraint UC1 [CPU]:
(CCR CCR_L1: cpuProvided) > (GPMApp APP_FIDO: cpuUsed) +

(GPMApp APP_FILE_SYSTEM: cpuUsed);↪→

Separation Constraints. Separation constraints specify that a
given set of components shall not be mapped to same compo-
nents. The following separation constraint states that the ap-
plications APP_FUEL_SYSTEM_CONTROL, APP_FIDO and
APP_FILE_SYSTEM should be hosted on different GPM
component.
Separation-Constraint SC1:
(GPMApp APP_FUEL_SYSTEM_CONTROL, APP_FIDO,

APP_FILE_SYSTEM) -> distinct GPM;↪→

Virtual Link Constraints. A virtual link constraint (VLC)
defines both unicast and multicast flows of a virtual link.
All the flows in a virtual link can have only one source
publisher, but may have one or more destination subscribers.
In addition, a VLC constraint allows users to specify a set of
messages for each flow in the virtual link. Each of these sets
are separated by a “#”. A message in a VLC is represented as
MessageSize@RefreshPeriod.
-- Message size unit = byte, Refresh period unit = msec
Virtual-Link-Constraint VL1: (App1 ∼> App2, App3)

{12@1000} # {12@1000, 12@1000};↪→
Virtual-Link-Constraint VL2: (App4 ∼> App5) {20@80};

Port Connection Constraints. PCCs specify physical bidi-
rectional connections between two components.
--- GPM <=> ACS connections bandwidth unit = byte
Port-Connection-Constraint PCC1: (GPM_L1.portA <->

ACS_L1.port1) 1000000000; -- 1 Gigabyte↪→

IV. IMA SYNTHESIS & PROOF CERTIFICATES
GENERATION

The goal of IMA synthesis is to automatically synthesize an
IMA architecture that satisfies all the constraints encoded in
the OYSTER annex. The inputs to the synthesis task comprise
of an AADL model annotated with AADL properties along
with OYSTER constraints. The inputs are then translated to
SMT-LIB for constraint solving. In our case, OYSTER uses
the Z3 SMT solver. A satisfiable solution from Z3 is then au-
tomatically translated to an AADL model containing detailed
AADL implementations respecting component locations, their
port connections, and virtual link flows satisfying required
OYSTER constraints. The OYSTER toolchain provides a
plethora of options and toggles for the user to either check or
uncheck for Virtual Link Synthesis (feasible or optimal solu-
tion), check the Virtual Links’ Network Bandwidth Utilization
and also the capability to schedule GPM Applications hosted
on a designated GPM Processor.

A. From OYSTER Annex to SMT

The components are categorized by their avionics types and
declared as SMT enumerated types. For instance, we declare
enumerate types ACS and GPM in SMT for the Avionics
Cabinet Switch (ACS) and General Processing Module (GPM)
respectively.
Fixed-Location Constraints. FLCs are translated to uninter-
preted functions. For an FLC, GPM_L1 -> CCR_L1, An un-
interpreted function gpm to ccr : GPM → CCR is declared
and an assertion will be declared: gpm to ccr(gpm l1) =
ccr l1.
Co-Location Constraints. For each component, Ck that is
mapped to a target component Cτ , a function f(Ck,Cτ ) is
declared and its type is (TypeCk

→ TypeCτ
). The co-

location of two components Ci, Cj itself to Cτ is declared
as a constraint asserting the equality of f(Ci,Cτ ) and f(Ci,Cτ ).
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Separation Constraints. Separation Constraint is the dual of
Co-location constraint. For components, Ci, Cj to be separated
with respect to a target component Cτ . The entire process is
the same as that of Co-location constraint, but for the last step
where we state f(Ci,Cτ ) ̸= f(Ci,Cτ ).

Utilization Constraints. The utilization constraints state that
the computing resources provided to the CCR are sufficient
to the usage needs of hosted applications. We encode an
uninterpreted function of type (TypeC × TypeR → Int) for
each component – resource pair, and assert that the sum of
the resources used meets the resources provided.

Port Connection Constraints. A port connection constraint
c, from portA to portB is represented by declaring a function
of type (Port × Connection) → Port, where the sort
Connection is used to capture the name of the connection
itself, from portA to portB. Then, the definition is instantiated
as an assertion: port connection port(portA) = portB.

Virtual Link Constraints. There is a Virtual Link Constraint
between a source s and a destination t, with a refresh rate of
r and message size m. Then, Virtual Link Constraints induce
multiple sets of SMT constraints, with each set constraining
the desired Virtual Link specification in the IMA System. Each
such criteria and their associated constraints are described:

• Path Constraints. The port connections involved in the
Virtual Link from si and ti need to be synthesized for a
virtual link i. This synthesis can be formulated as a con-
nection selection problem. The set of connections selected
constitute the path between si and ti. Each connection
cxy represents a port connection between component x
and component y. If a connection cxy is selected, then
it should be assigned a weight of 1, otherwise a weight
of 0. Furthermore, the sum of all outgoing connections
csk from the source si to k must be 1, to enforce only
one outgoing flow. The sum of all connections involving
an intermediate component not in s, t must equal 2,
to enforce one incoming flow and one outgoing flow.
Finally, the sum of all incoming connections to ckt must
equal 1, to enforce only one incoming flow. Formally,

outdeg(s)∑
l=1

cisl =

indeg(t)∑
l=1

cilt = 1

indeg(x)∑
l=1

cilx +

outdeg(x)∑
l=1

cixl = 2 for x ̸= s, x ̸= t

The shortest path can be selected by optimizing over the
sum of weights of all connections in a path from si to ti

while satisfying the above constraints. The optimization
is performed using MaxSMT solving capabilities of Z3
[13].

• Bandwidth Constraints. The virtual links specified in
the OYSTER annex must also adhere to the bandwidth
constraints on the Aircraft Data Network. The constraints
and concepts are defined the ARINC 664 specification

[4]. And two important parameters need to be synthe-
sized for each virtual link: Bandwidth Allocation Gap
(BAG), Maximum Transmission Unit (MTU). The BAG
represents the minimum interval between frames on the
virtual link. The MTU represents the largest size of data
packet in a single frame that can be transmitted over
a network connection. They should also satisfy BAG,
MTU, and the jitter constraints. The complete set of
ARINC 664 constraints can be found elsewhere [4]. To
ensure the paper remains self-contained, we incorporate
the summarized formulas from the literature [6]. All the
constraints involved are linear constraints over integers
and can be straightforwardly encoded in SMT-LIB. For
virtual link i, BAGi denotes its BAG, ni represents total
number of messages in i (indexed from 1 to ni), sij the
message size of jth message, pij the refresh period for
the jth message and MTU i its MTU. Let B denote
the bandwidth of the entire network. Then, the following
constraints need to satisfied:

Real-time Constraints on Messages:

ni∑
j=1

⌈sji/MTU i⌉
pij

≤ 1/BAGi

Bandwidth Constraints:

8 ∗
n∑

i=1

(MTU i + 67)

BAGi
∗ 103 ≤ B

Jitter Constraints:

40 + 8 ∗
n∑

i=1

MTU i + 67

B
≤ 500

General BAG and MTU Constraints:

BAGi ∈ {2k|k ∈ N ∧ 1 ≤ k ≤ 7}

MTU i ∈ N ∧ 1 ≤ MTU i ≤ 1471

GPM Applications Scheduling. The OYSTER toolchain can
also generate static schedules for applications hosted on GPM
using SMT solvers. Four important characteristics are as-
sociated with applications: start time, duration, period, and
priority. The start time denotes when to execute an application.
Duration defines the time taken to execute an application.
Period refers to the frequency of execution of the application.
Priority indicates the order to execute an application relative to
the other applications. The input to the scheduling problem is
the priority, duration and period of applications. The output
is the start time for each application so that the priorities
are respected and no duration overlaps. The inputs for GPM
application scheduling are captured in AADL as an OYSTER
property and annotated against GPM applications specified
within the IMA system.

We first define the schedulability condition for a pair
of applications i, j, followed by constraints involved in the
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scheduling problem, where GCD(x, y) denotes the greatest
common divisor of integers x, y.

sched(i, j) ≜ startj > starti ∧ durationi ≤ startj −
starti ≤ GCD(periodi, periodj)− durationj

- No scheduling conflicts:

∀i, j starti ≥ 0 ∧ startj ≥ 0 =⇒ sched(i, j)

- High priority apps start early:

∀i, j priorityi < priorityj =⇒ starti < startj

- Applications start times are all distinct:

∀i, j i ̸= j =⇒ starti ̸= startj

- Every application must be scheduled: ∀i starti ≥ 0

UNSAT Cores and Feedback When the constraints specified
in the OYSTER annex are unsatisfiable, OYSTER toolchain
computes the UNSAT core using Z3 and reports the unsatis-
fiabile constraints at a high level. If the location constraints
are unsatisfiable, then OYSTER recommends the developer to
check all fixed-location, separation and co-location constraints
that may be inconsistent with each other. UNSAT cores con-
cerning utilization constraints are straightforwardly reported
recommending the developer to check the resources allocated
(CPU, Memory) against the resources being used. UNSAT
cores for virtual links often involving exceeding the maximum
bandwidth allocation. In such a case, OYSTER recommends
to the developer to either increase the maximum allocated
bandwidth or to reduce the number of virtual links allocated.
For GPM Application the conflicts in schedulability between
pairs of GPM apps are reported back to the developer.

B. Proof Certificates Generation by Model Checking

Another feature of OYSTER is to enhance the synthe-
sized architecture with behaviors and safety properties in the
Assume Guarantee REasoning Environment (AGREE) [18]
annex of AADL. It utilizes the Kind2 model checker to prove
whether the model satisfies the safety properties. In case the
properties are proved valid, accompanying proof certificates
will be generated by Kind2 and can be independently verified
by third party tools to ensure the correctness of the results.
Different behavior aspects of IMA such as application exe-
cution schedule and latency analysis can be encoded in this
framework. In this work, we consider the execution schedule
of applications on a GPM. The schedule defines the start
time, priority and duration of each task. It is essential for
ensuring that the system operates efficiently and effectively, as
it helps to resolve conflicts between different applications and
functions, prevent overloading of resources, and optimize the
use of processing power and memory. We have modeled the
application execution schedule as a behavior model in AGREE
annex [2]. The formal properties of interests are that pair-wise
applications shall not have any conflicts. To further increase
the stakeholders’ confidence in the correctness of the IMA
solutions, we introduce additional model checking layer to
ensure the correctness of schedules by the proof certificates
generated by the model checker.

V. EVALUATION

To demonstrate the capabilities of the OYSTER tool1, GE
Aviation developed a smaller-scale (yet fully-defined) IMA
Architecture for a rotorcraft air vehicle. One of the major
avionics systems of this architecture is the Fuel Control
System, which we have chosen as the basis of the OYSTER
use case. More specifically, the focus is on the IMA aspects of
the architecture that host this Fuel Control System ARINC 653
Application and gateway its data throughout the Aircraft Data
Network (ADN). The Fuel Control Application is responsible
for managing various aspects of the Fuel Control System of an
aircraft. These functions include pumping of fuel, delivering
fuel to the engines, monitoring fuel flow, etc. This application
allows the flight crew to control fuel tank selection, shutoff
valve functions, and the main and standby pumps. It also pro-
vides monitoring and reporting of fuel system characteristics
such as fuel quantity, temperature, and pressure. A notional
diagram of the IMA fuel system control application use case
can be found elsewhere [1].

The OYSTER toolchain was developed as a plugin for
the Open Source AADL Tool Environment (OSATE) [15].
The IMA use case involves 43 IMA components that also
involves 5 virtual links, and 6 applications to be scheduled on a
particular GPM (on GPM R2). The total number of OYSTER
constraints are in the order of hundred constraints. Configuring
them manually can be a challenging task. OYSTER makes it
easier to specify these constraints and uses formal methods
tools to synthesize correct-by-construction solutions. The IMA
architecture synthesis takes 7.751s. The schedule synthesized
for our use case was encoded in AGREE annex to simulate the
execution of schedules. We consider 15 formal properties for
6 applications, and the entire process for proving properties
takes 6.441s. However, with proof certificates generation,
the process takes 33.196s, which is expected because proofs
generation is expensive. We have also successfully validated
the correctness of the proof certificates by running Z3, cvc5,
and LFSC checker. The performance evaluation indicates that
OYSTER is usable practically. We leveraged a model checker
to generate proof certificates to ensure formal properties of
the behavior model are indeed valid. For our example use
case (application schedules), the model checking scales well
(proved all properties in under 3 mins) to a typical number of
applications (10 apps) that one would expect in practical IMA
systems. All experiments were conducted by running OYS-
TER on an Intel(R) Core(TM) i7 CPU @ 2.9GHz
Processor with 4 cores and 16 GB RAM running macOS
Ventura (Version 13.1) .

A. Lessons Learned

For any aircraft development program, the airworthiness
of the entire aircraft must be established through a rigorous
certification process. This extends not just to the airframe
itself, but also to the computing systems installed on the
aircraft (i.e. the IMA). One key aspect of an IMA is that a

1OYSTER GitHub: https://github.com/ge-high-assurance/OYSTER
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majority of system functions (both safety critical and non-
safety critical) are now implemented as software applications
running on the IMA platform. As such, this airborne software
is also required to adhere to the same rigorous certification
process. Guidance for certifying airborne software is provided
in DO-178C. In order to make OYSTER part of the GE
Aviation IMA development pipeline, there are several key
challenges to overcome.

• Since the goal of OYSTER is to automate and replace
some of the steps currently performed by the existing
qualified toolchain, it will have to meet all of the objec-
tives of DO-178C Software Considerations in Airborne
Systems and Equipment Certification or DO-330 tool
qualification standard.

• There are several steps in our process where translation
of data has to occur to go from one tool to the next. Each
of these points will have to have a qualified verifier de-
veloped to prove that nothing was corrupted/changed/lost
during transformation.

• One major concern is the format of the formal proof
certificates and other verification evidence that is being
produced. It is not easily human-readable, and even if
the format was changed to something easier to read, an
FAA certification authority with no knowledge of formal
methods would be unable to understand the proofs. We
cannot assume that aviation/avionics experts will have
this expertise.

• We expect the learning curve for a systems integrator
on a real aircraft development program to be able to use
these tools without help will be steep. Training for system
developers will be needed. We also need to understand
the level of expertise with formal methods tools such as
SMT, Kind2 model checker, and AADL modeling that
they are expected to have.

VI. RELATED WORK

Several works exist in the literature on the generation
of schedules and architectural models. SMT-based system
scheduling synthesis for applications have been proposed
for time-triggered platforms [12], [11], [10] and TTEthernet
networks [19]. SMT-based techniques have also been proposed
for the synthesis [24], [35] and refinement [21], [20], [26] of
system architectures. SAT-solving techniques have been pro-
posed for generating architectural models [31], [37]. Correct-
by-construction techniques for developing architectural models
include approaches that use the “B” method [29], linear
temporal logic [34], [41], mixed integer programming [42],
AADL-based tools and techniques have been developed for
synthesis [27], reconfiguration [43], and verification [32], [38],
[40], integrated design modeling [14], and domain-specific
languages [5]. The CoBaSa framework has been applied to
industrial-scale IMA architecture synthesis problems [31] and
is closely related to our work. The difference lies in the
use of solvers and solver theories. CoBaSa uses Pseudo-
boolean (PBSAT) and Integer Linear Programming (ILP)
solvers to perform IMA architecture synthesis [31], [30],

whereas OYSTER uses modern SMT solvers with combi-
nation of Quantifier-free Equality under Uninterpreted Func-
tions (QF EUF), Quantifier-Free Linear Integer Arithmetic
(QF LIA), Boolean and Algebraic Datatype theories. OYS-
TER encodes IMA constraints in SMT allowing for reporting
of UNSAT cores, which could easily localize issues and
provide useful feedback to journeyman developers about the
constraints being violated; whereas CoBaSa does not.

VII. CONCLUSION AND FUTURE WORK

We have presented a formal language and end-to-end frame-
work called OYSTER to automatically synthesize aspects of
industrial IMA platforms. The language enables users to en-
code IMA architecture constraints. The toolchain takes in the
AADL models annotated with OYSTER constraints as input
and auto-synthesizes a correct-by-construction IMA architec-
ture instantiated with implementation details. The synthesized
architecture can be annotated with behavior models and safety
properties. The safety properties can then be discharged by the
Kind2 model checker, which is guaranteed to be correct by
the formal proofs generated by the model checker. Users may
independently verify the correctness of the proofs by using
third-party SMT solvers and proof checkers. The framework
was applied on a use case provided by GE Aviation, and
the evaluation showed promising results along with lessons
learned. One potential direction of future work would be to
support multi-core scheduling (e.g., schedule GPM applica-
tions in multiple GPM processors) and integrate OYSTER with
GE Aviation’s existing development pipeline. Another research
direction is to extend OYSTER to support more aspects of
IMA and seek certification for OYSTER solutions.
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