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Abstract—In-vehicle context sensing can detect many aspects of
driver behavior and the environment, such as drivers changing
lanes, potholes, road grade and stop signs, and these features
can be used to improve driver safety and comfort, and engine
efficiency. In general, detecting these features can use either on-
board sensors on the vehicle (car sensors), or sensors built into
mobile devices (phone sensors) carried by one or more occupants,
or both. Furthermore, traces of sensor readings from different
cars, when crowd-sourced, can provide increased spatial coverage
as well as disambiguation.

In this paper, we explore, by designing novel detection al-
gorithms for the four different features discussed above, three
related questions: How is the accuracy of detection related to the
choice of phone vs. car sensors? To what extent, and in what ways,
does crowd-sourcing contribute to detection accuracy? How is
accuracy affected by phone position? We have collected hundreds
of miles of vehicle traces with annotated groundtruth, and
demonstrated through evaluation that our detection algorithms
can achieve high accuracy for each task (e.g. > 90% for
lane change determinations) and that crowd-sensing plays an
indispensable role in improving the detection performance (e.g.
improving recall by 35% for lane change determinations on
curves). Our results can give car manufacturers insight into how
to augment their internal sensing capabilities with phone sensors,
or give mobile app developers insight into what car sensors to
use in order to complement mobile device sensing capabilities.

I. INTRODUCTION

Industry is moving towards making automobiles pro-
grammable and customizable through apps. Automakers have
created app developer portals, versions of mobile operating
systems such as iOS and Android exist for cars, and cars
increasingly provide rich network connectivity options (LTE
cellular Internet connectivity, Bluetooth and WiFi).
The problem space: Vehicular context sensing. This conver-
gence between mobile computing and automobiles motivates
the problem space we consider: vehicular context sensing. We
use the term vehicular context to include both the environment
surrounding a vehicle at any point in time, and also whatever
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actions or operations the vehicle is performing at any point in
time. Examples of vehicular context include traffic regulators
(stop signs, traffic lights, speed limit signs), road surface
anomalies (potholes, bumps), road topography (grade, banking),
as well as vehicular actions (decelerations, lane departures,
speeding).

Vehicular context information can be used in several
ways. Maps augmented with traffic regulators can be used
by navigation devices and apps to warn inattentive drivers.
Crowd-sourced road-anomaly detection can help transportation
agencies identify and prioritize road surface maintenance. Road
topography information can enhance the efficiency of vehicular
transmission subsystems, since, for example, a road-grade
or banking-aware transmission system can efficiently deliver
power. Finally, a record of vehicular actions can be used by
insurance companies to offer good driver discounts.
The design space of vehicular context sensing. There are
two general approaches to detecting (or sensing) vehicular
context.1 One approach is to use the smartphone2 [27, 10].
The high degree of penetration of mobile devices ensures
that almost every vehicle is likely (at least in developed
countries) to have an occupant (driver or passenger) with
a smartphone. These devices come both with positioning
hardware and software (GPS, WiFi based positioning, etc.)
and many sensors (accelerometer, magnetometer, barometer,
and so on).

A second, less well-known, approach is to use the sensors
embedded in a car [16, 21]. Some modern cars have several
hundred physical and virtual (i.e., derived from physical)
sensors onboard, which describe, in near-real time, the operation
of several of the internal subsystems of the car. Examples of
sensor readings available over the CAN bus include: vehicle
speed, throttle position, transmission lever position, automatic
gear, cruise control status, radiator fan speed, fuel capacity, and
transmission oil temperature. These sensor readings are used
to control subsystems of the vehicle, but can also be exported
to an external device using the standard On-Board Diagnostics
(OBD-II) port available on all vehicles. Due to business, privacy,
and security considerations, many of these sensors were not
previously exported to external devices but recently, Ford and
General Motors have made about 20 sensor types available

1A third approach that has been investigated for some forms of vehicular
context, such as stop signs, is to use computer vision techniques. Despite
limited success (some vehicles now ship with vision based lane departure
systems), the efficacy of these approaches can be low under poor lighting or
adverse weather conditions. We leave it to future work to explore this approach
in greater detail.

2Vehicular context sensing requires continuous sensor acquisition. While
prior work [22, 29] has pointed out that continuous sensing in mobile devices
can impede battery life, the car is one environment continuous sensing is
feasible because of the availability of power.
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through their OpenXC platform and GM Developer Network,
respectively.

It is tempting to believe that car sensors will always be
superior and that in the long run vehicles will incorporate all
useful sensors. This is not true. First, smartphone platforms
evolve more rapidly (in 1-2 years), while the average lifetime
of cars is more than a decade [6]; thus, smartphones will
always have more modern sensors, which can include new
types of sensors or more accurate sensors. Second, car sensors
are specialized for vehicular control, not for context sensing, so
it is likely that the general purpose sensors on phones may be
more appropriate for some sensing tasks. Finally, it is unclear
that cars will co-opt phone sensors: especially for mass market
vehicles, adding new sensors can be expensive since these need
to be engineered for long lifetimes and may require careful
design and engineering.

A degree of freedom available to both approaches is crowd-
sourcing. Crowd-sourcing vehicle context is quite practical
for both car-sensing and phone-sensing. For many years now,
some car manufacturers have had continuous telemetry systems
for trouble shooting (e.g., GM’s OnStar [17] system. These
systems relay car sensor data to a cloud service. More generally,
users can share traces of their car sensor readings or phone
sensor readings via a cloud service, since both cars and phones
are equipped with cellular connectivity. For example, crowd-
sourced navigation systems like Waze collect GPS traces
from users.} While crowd-sourcing raises privacy concerns,
we consider this design dimension in this paper in order to
understand how much crowd-sourcing would benefit vehicular
context sensing if and when privacy concerns are addressed.
Crowd-sourcing provides spatial coverage (e.g., data from
multiple cars can detect a road anomaly across a larger area),
can increase detection confidence, and can help disambiguate
contexts (e.g., traffic light vs. stop sign).

Finally, an important constraint in this design space is phone
position: users can place phones in positions which can reduce
sensing accuracy for specific tasks, so understanding how
position impacts the accuracy of context sensing is essential
to an exploration of the design space.

Contributions and Findings. In this paper, we make three
contributions.

Design space exploration. We provide a preliminary under-
standing of the design space of vehicular context sensing by
exploring four qualitatively different case studies of vehicular
context: lane change detection, pothole detection, road-grade
estimation and stop sign determination. These contexts are
qualitatively different in the sense that one of them measures
driver behavior, another assesses the state of road infrastructure,
a third measures a feature of the topography and a fourth
measures a traffic regulation device. Moreover, stop sign and
road grade represents persistent road features that do not change
over years, while a pothole is a road feature that could be
updated in weeks and lane change detection reflects the highly
dynamic nature of driver behaviors on roads.

Novel context sensing algorithms. For each of these context
sensing tasks, we design efficient car-sensing and phone-sensing
algorithms. In all cases, we design novel car-sensing algorithms:

Car / Phone
Phone

Posi!on*
Crowdsourcing

Lane Change Car >> Phone C > P > W
Improves performance in curvature 

(+40% recall +6% precision)

Pothole Car >> Phone W ≈ C >> P
Reduces False Posi"ves (+27% precision) 

Increases coverage (+20% recall)

Road Grade Car ≈ Phone P > C > W
Corrects inaccurate measurements due to

accelera"on and decelera"on (-10% error)

Stop Sign Car ≈ Phone W ≈ C ≈ P
Differen"ates traffic lights vs. stop signs

(+15% precision)

*C: cup-holder, P: pocket, W: windshield

Fig. 1—Summary of Findings

to our knowledge, no one else has explored the design of stop-
sign detection, lane change detection and pothole detection
by using previously proprietary car sensors accessible via the
vehicle CAN bus. Moreover, our design of crowd-sensing for
each of these tasks is also novel, as is our exploration of the
impact of phone position. For lane-change detection and road-
grade estimation, our phone-sensing algorithms are also novel.
Moreover, for each task, at least one of these algorithms has
high accuracy (85% and above).
Results. Using empirical traces collected from multiple drivers
in different locations, we evaluate the accuracy of these
algorithms in order to understand whether one approach (car-
sensing or phone-sensing) strictly dominates the other.

Our findings (Figure 1) suggest that neither approach is
strictly better than the other, but that crowd-sourcing is essential
for both. For example, car-sensing is superior for lane change
determination primarily because the wheel angle sensor can
unambiguously determine shift maneuvers. However, just
because the car has a specialized sensor, that does not mean
phones cannot achieve comparable accuracy: for lane change
determination, although there exists a specialized yaw rate
sensor that can be used to compute lateral displacement of
the vehicle, phone sensors perform well in determining this
quantity also. For each of these algorithms, crowd-sourcing
plays a crucial, but qualitatively different role: in some cases,
it increases the confidence of the detection, in other cases it
provides spatial coverage, helps compute an unknown quantity,
or disambiguates between two contexts that have similar
manifested behaviors. Finally, we find that different phone-
sensing algorithms are sensitive to the position of phone in
different ways. Drivers may mount phones on the windshield,
keep it in a cup-holder, or inside their pocket. We find, for
example, that a windshield mount is pathologically bad for lane
change detection because the phone’s gyroscope is adversely
affected by the car vibrations.

Collectively, our results suggest that, going forward, devel-
opers of algorithms for vehicular context should actively seek
to fuse phone and car sensor information, use crowd-sourcing
in designing vehicular context sensing, and carefully explore
the impact of phone position on accuracy.

II. METHODOLOGY

We consider four vehicular context sensing tasks: deter-
mining when a driver has executed a lane change maneuver;
determining the locations of potholes and other anomalies
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on a road surface; estimating road grade; and determining
whether (and in which direction) an intersection is governed
by a stop sign. All of them can plausibly be detected either
using only phone sensors or only car sensors. All of them also
depend on tracking motions or micro-movements of the vehicle:
longitudinal speed changes for stop signs, lateral movements
for lane changes, vertical movements (bumps) for potholes and
tilt for road grade.

However, they are also qualitatively different among some
dimensions. They sense different types of vehicular contexts
(anomalies, topography, vehicle dynamics etc.). Some make
binary decisions (lane changes), others estimate continuous
values (road grade). Prior work has explored some tasks
extensively (potholes), but others to a lesser extent. However,
none have explored the broader question comparing car-sensing
and phone-sensing approaches, in part because prior work has
not had access to car sensors.

Our methodology is empirical. For each task (e.g., lane
change determination), we design one sensing algorithm using
car sensors alone. We then design a similar algorithm (to
the extent possible) using phone-sensors alone. This approach
enables a head-to-head comparison between the two approaches
for each task, which we evaluate using traces from several
hundred miles of driving. By examining situations where one
approach succeeds and the other does not, we are able to
get specific qualitative understanding of the strengths and
weaknesses of each of these approaches.

Of course, such an approach can never be complete because
the space of possible vehicular contexts is large. Our results
are thus not intended to be definitive, but rather to take a first
step towards understanding this design space.

Both car and phone sensor algorithms can benefit from
crowd-sensing: using traces of sensor readings obtained from
other vehicles. But, because the availability of these sensors
and their accuracy can differ between cars and phones, the
precise methods by which crowd-sourced information is used
can differ between car-sensing and phone-sensing, and the
benefits of crowdsourcing can also be different between these
two approaches. For each algorithm, we devise a crowd-sensing
component designed to increase its accuracy.

Putting it all together (Figure 2), we have designed a crowd-
sensing platform that collects vehicle and phone sensors. Using
this, we have collected hundreds of miles of traces, to evaluate
the design space of various individual vehicle context detection
tasks.

Finally, the relative accuracy of car-sensing and phone-
sensing depends on two other key factors discussed below.

A. Sensor Availability and Accuracy

The same context can often be derived from different sensors,
but the achieved accuracy usually varies. For example, when
and whether a car is turning can be estimated from inertial
sensors, but a steering wheel angle sensor usually can give more
accurate information about slight turns. The relative accuracy
of car and phone sensing therefore depends on the extent to
which different types of sensors are available to applications
on the car and phone platform. Even when the same type of

sensor (e.g., an accelerometer) is available on both platforms,
however, the accuracy of each sensor reading and the update
rate can vary between the phone and the car.

In this paper, we have obtained access to several car sensors
on late-model GM vehicles and compared them with a standard
set of Android smart-phone sensors to derive vehicle movement.
Figure 3 lists the sensors that we considered for the context
detection tasks that are described in this paper. Each of
the vehicle sensors can be accessed, in near real-time, on
a smartphone using a Bluetooth enabled dongle in the OBD-II
port of the vehicle. While a few of the sensors listed (e.g.,
vehicle speed or outside air temperature) have been available
as part of the OBD-II standard on most vehicles, the majority
of these sensors report their readings in a proprietary format
on the CAN bus. Access to such sensors is only becoming
gradually available to external applications through special
vehicle manufacturer developer programs. We have used an
extended version of the CarMA software [16, 21] to collect
traces of these sensor readings for our evaluations, from several
different vehicles.

The car provides a fairly complete set of sensors that
describe different driver actions such as activating turn signals,
turning the steering wheel, or opening the throttle, which are
unavailable on the phone. Both platforms carry GPS and inertial
sensors for measuring vehicle motion. However, the phone
platform tends to provide higher update rates and contain a
more complete set of inertial sensors.

B. Sensor Placement and Movement

The accuracy of sensor readings can further depend upon
the exact location and orientation of the sensor in the vehicle.
Examples include readings from inertial sensors but also GPS
receivers, where the location and orientation of the antenna
has a significant effect on the received signal strength. Further,
while car sensors are generally mounted at a fixed position,
the phone position is often unknown and dependent on driver
behavior. The phone position might even change while driving,
if the phone slides or is moved by its user.

To understand how the accuracy of phone sensing depends
on phone position and movement, we consider three possible
positions: in a windshield mount, in the cup-holder, and in the
driver’s pocket (right side). These choices represent commonly
used positions that exhibit different movement characteristics.
In the windshield mount, the phone is mounted to the vehicle
body. In the cup holder the phone can slide occasionally when
larger acceleration forces act on the vehicle. In the pocket
position, the phone can be frequently affected by leg and body
movements of the driver. (We have chosen the right pocket,
because we expect more frequent movements corresponding
to gas and brake pedal use).

In all of these positions, the orientation of the phone in the
world coordinate frame and the vehicle coordinate frame is
not precisely known. When this information is needed, we
estimates the orientation as follows.
World Coordinate Frame Transformation. The Android
SensorManager API provides a getRotationMatrix()
function that estimates the orientation of the device in the world
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Fig. 2—Crowd-sourcing both car-sensors and phone-sensors to perform various vehicle context detection tasks.

Frequency Resolution Frequency Resolution

Brakes Active 100 Hz - - -

Shifter Position 40 Hz - - -

Vehicle Lateral Acceleration 50 Hz 5.0E-06 ~50 Hz 1.0E-11

Vehicle Longitudinal Acceleration - - ~50 Hz 1.0E-11

Vehicle Vertical Acceleration 20 Hz 1.0E+00 ~50 Hz 1.0E-11

Vehicle Yaw Rate 50 Hz 5.0E-04 ~50 Hz 1.0E-11

Vehicle Orientation Z / Azimuth - - ~50 Hz 1.0E-11

Vehicle Orientation X / Pitch - - ~50 Hz 1.0E-11

Vehicle Orientation Y / Roll - - ~50 Hz 1.0E-11

Vehicle Speed 10 Hz 1.0E-04 ~10 Hz -

Left Turn Signal Event - - -

Right Turn Signal Event - - -

GPS Latitude 1 Hz 3.0E-07 ~10 Hz 1.0E-12

GPS Longitude 1 Hz 3.0E-07 ~10 Hz 1.0E-12

Outside Air Temperature 2 Hz 1.0E-01 - -

Throttle Position 10 Hz 1.0E-05 - -

Steering Wheel Angle 100 Hz 5.0E-03 - -

Barometer 2 Hz 500 Pa ~30 Hz 0.01 Pa

Car-sensor Phone-sensor

4444444444444

Fig. 3—List of vehicle CAN sensors and derived phone sensors

coordinate frame based on accelerometer and magnetometer
readings. It essentially uses gravity and the earth’s magnetic
field to estimate the device rotation. In this world coordinate
frame, the y-axis points to the magnetic north pole and the
z-axis points to the sky.
Vehicle Coordinate Frame Transformation. In the vehicle
coordinate frame, the x, y, and z-axis are mapped to the
lateral, longitudinal, and vertical axis of the vehicle itself,
and can be different from the world coordinate frame. We use
the coordinate transformation algorithm presented in [37] to
estimate the phone pose in the vehicle coordinate frame. The
algorithm first filters the acceleration readings to identify the
gravity force, which generates the first unit vector. The second
unit vector is obtained by monitoring the axis along which
acceleration and deceleration occur when driving on a straight
road. By the right hand rule, the third unit vector is orthogonal
to the first two. This algorithm provides us with the rotation
matrix R, which can be used to rotate the phone’s alignment
to match the vehicle coordinate frame.

III. VEHICULAR CONTEXT DETECTION

In this section, we discuss car-sensing and phone-sensing
algorithms for the four context detection tasks discussed in
Section I. For space reasons, we present only enough detail

in our algorithms to help the reader understand the results
presented in the evaluation in the following sections.

A. Lane Change Detection

Detecting a lane change is difficult, since lane changes can
be conflated with road curvature and with weaving within a
lane. Our algorithms address these by (a) finding a segment
of the trace (called the shift segment) that contains a shift
maneuver, and (b) measuring the lateral displacement of the
vehicle within the shift segment. The first step accounts for
curvature and the second deals with weaving behavior within
a lane. Both algorithms use crowd-sourced information.
Isolating Shift Maneuvers. We use two algorithms to identify
shift maneuvers, one each for car-sensing and phone-sensing.
To our knowledge, these algorithms, and their use of crowd-
sourcing, is novel.
Car-sensing: Our algorithm for lane shift determination for
car-sensing is motivated by Figure 4 which shows the raw
vehicle sensor values of the yaw rate (the angular velocity
of the car about the vertical axis) and steering wheel angle,
as well as other inertial sensors from the phone. During a
lane change, the angular velocity first increases (or decreases
depending on the direction of the lane change), then decreases
until it crosses zero in the other direction. Intuitively, at this
point, the car is at the point of crossing the lane. Beyond this,
the yaw rate decreases some more and returns back to zero.
This corresponds to the car straightening up in the target lane,
and is the key to distinguishing between lane changes and
turns at an intersection. The steering wheel angle is positively
correlated with the yaw rate and exhibits a similar behavior.

Our detection algorithm declares any segment that contains
this sinusoidal pattern to be a potential shift segment (i.e.,
one in which a shift maneuver occurs). It uses the steering
wheel angle sensor for this purpose since that sensor shows a
more pronounced pattern. An ideal algorithm for identifying
the shift interval (t1, t2) on a straight lane is: (a) when the
wheel angle at t1 and t2 are zero (i.e., the car is heading
in the same direction at the beginning and at the end), The
shift segment interval can be long or short depending on the
driver’s propensity, so we need a technique to verify that a
shift maneuver corresponds to a lane change; we use the lateral
displacement calculation below for this.
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Fig. 4—Relevant car-sensor and phone-sensor pattern during a lane change on a straight road segment. Generally, rotation descriptors, such as yaw rate, wheel
angle and gyro-meter display a sinusoid pattern, while absolute orientation sensor performs only a half of the sinusoid.

To identify a shift segment when the car is on a curved
road, we exploit the insight that crowd-sourcing can be used
to determine what the wheel angle for other cars was at the
locations corresponding to t1 and t2 (call these locations l1
and l2). The key challenge here is to establish a baseline for
the sensor pattern corresponding to the curvature without lane
changes. Specifically, we take the median wheel angle from
other traces, traces without lighting turn signals, in S at l1 and
l2 (call them w1 and w2 respectively). With the baseline, we can
revise our ideal algorithm for identifying the interval (t1, t2) as
an interval containing a shift maneuver as: (a) when the wheel
angle at t1 is w1 and at t2 is w2 and (b) the difference between
wheel angle sensor readings and the crowd value exhibits a
sinusoidal pattern. To deal with sensor noise, if two wheel
angles are within a small fudge δw of each other, we declare
them to be the same.

Phone-sensing: Our phone sensing algorithm detects shift
segments using changes to the car’s orientation, as computed
from the phone’s inertial sensors (gyroscope, magnetometer,
and the accelerometer [5]). During a shift maneuver, one
expects orientation to increase first, then decrease until it
reaches the original heading. We use this intuition to identify
the shift segment (t1, t2) in a manner similar to that for car-
sensing.

For phone-sensing as well, curved roads pose a problem, but
crowd-sourcing helps. In this case, we could take the orientation
readings at any location l between l1 and l2 from the crowd-
sourced traces S, and use these in a manner similar to that
discussed above. However, this requires that all phones are
mounted consistently with the same frame of reference, which
may not be the case since the phones can have random poses
when sensing in a car. Rather than transforming the absolute
orientation to the same vehicle frame, which can introduce
error, we compute only the relative deviation from the curve by
comparing the change in the phone’s orientation and the change
in the curve’s, the latter of which is obtained using the radius
of curvature computed from crowd-sourced traces (described
later in Equation (1)). Our final algorithm for identifying a shift
interval (t1, t2) is: (a) the maximum deviation in orientation
of the car between t1 and t2 is comparable to δo, and (b) the

Fig. 5—Curvature Data from Digital Maps: Sequences of coordinates (green
circles) define the paths of roads (in red). Digital maps provide curvature as
the radius of the circle (in blue) which the closest three points form.

orientation difference increases and then decreases between t1
and t2.

Computing Displacement. For both car and phone sensors,
we compute the displacement within a shift interval the same
way: using the yaw rate (for the phone, this is computed from
the gyroscope sensor after performing appropriate coordinate
transformations to account for differently oriented phones). On
a straight road, we can integrate the yaw rate sensor ω to calcu-
late the total angular displacement (the total change in heading)
θ(t) at any time t within the shift interval. Then, integrating
vehicle speed (either from the car sensor or from phone GPS)
with respect to different angle (

∑t2
t=t1

v(t)sin(θ(t))∆(t)), we
can compute the total lateral displacement. If this displacement
approximately equals the standard lane-width, we declare a
lane change has occurred.

Detection on Curve: To account for road curvature, one straight-
forward approach is to use existing digital maps that provide
road curvature data. Digital maps, however, use sequences of
coordinates to define the paths of roads. Specifically, the way
these map services provide curvature is to use the radius of the
circle which the closest three points form. Figure 5 shows the
connected dots (in red) that define a curve and one example
curve radius (in green). This approach has two drawbacks: it
cannot provide accurate curvature if all of the coordinates are
not at the center of the lane; the granularity of the curvature
data is dependent on the density of the defining points. For
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example, a slightly curved highway on the digital maps can
have only a few sparse defining points which are hundreds of
meters away from each other. Besides interpolation, which is
often unreliable, there are no definitive way for digital maps
to provide curvature data between two neighbouring defining
points.

Instead, to get a fine-grained detailed curvature description,
we compute, from crowd-sourced traces, the angular velocity
component ω̄ that can be attributed to the curve. To do this, we
assume that, during a short time interval at a given location, the
radius of curvature of the lane is uniform. Then, we estimate
the average radius of curvature for each trace at that location
and use the average radius estimation to compute the angular
velocity induced by the curvature at that location. Given the
radius R̄ and a vehicle instantaneous speed v, the angular
velocity component ω̄ can be estimated by the speed divided
by the radius of curvature (Equation (1)),

ω̄ = v

R̄
= v

1
NS

∑
i∈S

vi

ωi

(1)

where NS is the number of crowd traces in S, vi and ωi is
the linear and angular velocity of trace i at the same location.
To estimate lateral displacement x(l) at location l, we subtract
from the car’s angular velocity at a given location, the angular
velocity ω̄ induced by the curvature at that location, then use
the procedure discussed above (Equation (2)).

x(I) =
I∑

i=0
v∆t(i) sin (

i∑
j=0

(ω − ω̄)∆t(j)) (2)

B. Pothole Detection

Car repair costs from potholes are estimated to be $6.4
billion annually [2], and potholes can cause accidents [28].
Detecting potholes is difficult: other road surface anomalies like
expansion joints, railroad, potholes, speed bumps, curbs can
induce similar vibration patterns as potholes; and different cars
(or even the same car during different drives) may experience
different vibration patterns from the same pothole differently,
depending on the exact angle of impact.

The goal of pothole detection is to identify, in each trace,
each location l that marks a pothole on the road. We detect
potholes from sensors that measure vertical acceleration, and
disambiguate them from other road surface anomalies by
observing that potholes can have asymmetric impact on a
vehicle. Finally, we use crowd-sourcing to increase detection
confidence.

Phone-sensing for pothole detection has been extensively
studied [14, 11, 27, 15] and has resulted in a commercially
available app (Street Bump) for pothole detection, which we
use in this paper. In the rest of this section, we describe our
car-sensing algorithm for pothole detection, which, to our
knowledge, has not been described in the literature before.
Detecting Vertical Acceleration. Cars contain a Rough Road
Magnitude (RRM) car sensor, which continuously measures (at
2Hz, Figure 6) the deviation of the car’s vertical acceleration
(caused by, say, hitting a pothole) from its at-rest baseline
value. To minimize the impacts caused by minor road surface
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Fig. 6—RRM and lateral acceleration signal when car hits a pothole. The
vertical dashed-line marks the pothole.

irregularities and inherent sensor noise, our algorithm only
considers RRM sensor measurements above a threshold value
(τv , determined from extensive training data) as the triggering
condition for vertical detection.
Detecting Asymmetric Impulse. Road anomalies like small
cracks or expansion joints can also generate substantial vertical
acceleration. We observe, however, that most potholes have
irregular shapes and are of limited size, so they usually impact
only one side of the car wheels at a time, slightly tilting the
car to the other side. This tilting can be measured by the car’s
lateral acceleration sensors (Figure 6). To accurately detect the
lateral tilting effect caused by potholes, we calculate the peak-
to-peak value of the lateral acceleration within the window
where the RRM sensor is above τv, then compare it against
a lateral acceleration determination threshold whose value we
determine from training data.
Crowd-Sourcing. To increase detection confidence, we flag a
pothole at a location l only if a majority of traces that pass l
detect a pothole at that location l.

C. Road Grade Estimation

Road-grade measurements can be used to optimize cruise
control fuel efficiency settings [3] or as input to a stability
control system in estimating sideslip [32]. Road grade can
be estimated from elevation changes, using either barometric
sensors or inertial sensors. There are web services that, given a
GPS location, output an elevation. In our experience these
are not fine-grained enough, for example, to form inputs
to stability control systems. We are unaware of any public
available accurate and fine-grain road grade data. We obtained
survey maps from the LA Department of Transportation, but
found that these maps have only coarse-grained elevation
measurements. Moreover, as of this writing, no car sensors can
estimate road grade accurately. Some cars have a barometer,
but these have poor resolution. For example, in a 2008 Cadillac
CTS, the resolution of barometric pressure is 0.5kPa which
is approximately equivalent to 40 meters elevation change
at sea level. The inertial sensors are insufficient for road-
grade estimation. For example, our test vehicle has a lateral
acceleration sensor, no longitudinal acceleration sensor, and a
processed vertical acceleration sensor designed for a specific
task (rough road measurement). Therefore, in the rest of this
section, we discuss phone-sensing algorithms that can provide
fine-grained and robust road-grade measurement for vehicles.
Phone-sensing. Our phone-sensing algorithm makes novel use
of a combination of inertial and barometric sensors. Inertial
road-grade measurements are most precise when there are
no external accelerations acting on the vehicle (when it is
moving at a constant speed or is stationary). The barometer
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can estimate road grade in an accelerating vehicle, but can
be affected by local air currents. We propose to combine
these two sensing approaches to obtain accurate road grade
measurements, using measurements either from the same car
or using crowd-sourcing. The accelerometer can correct for any
discrepancies in the barometer under no acceleration conditions,
and the barometer can continue to estimate road grade under
regular acceleration and deceleration conditions. The phone
can determine whether the car is accelerating or decelerating
by transforming the accelerometer readings to the vehicle’s
frame.

The atmospheric air pressure obtained from a barometer on a
phone can be converted to elevation using a standard pressure-
height equation [26]: h = 44330 ∗ (1 − ( p

p0
) 1

5.255 ). Here, p0
is the air pressure at the sea level and p is the measured air
pressure at current location. Once elevation changes are known,
road grade can be determined using differences in height of
successive readings, and the distance traveled.

For an inertial sensor mounted with its axis aligned to the
direction of vehicle movement and gravity, measuring road
inclination translates to computing the pitch angle of the sensor.
Pitch is defined as the forward tilt of the device and can be
obtained from the accelerometer readings on a smartphone.
These readings are first transformed into the vehicle frame of
reference discussed earlier.

Then, as the car moves up an incline, gravity now has
components on both the y and z axis (with respect to the
car frame). The pitch angle, α, is calculated around the x-
axis as, α = arctan(Ay/Az). Here Ay and Az are the raw
accelerometer readings along the y and z axis respectively,
while α represents the road grade.

D. Stop Sign Detection

A stop sign detection algorithm must address several
challenges: drivers rarely come to a full stop; stopping can be
conflated with congestion or traffic lights; and any detection
algorithm must distinguish 2-way and 4-way stop signs. Our
algorithms are based on detecting a prevalent characteristic
of stopping at a stop sign: a deceleration followed by an
acceleration. They address other challenges either using map
information, or crowd-sourced traces.
Determining Stops. To determine a stop pattern, our car-
sensing and phone-sensing algorithms identify a stop segment
within a trace where a stop is most likely to have occurred.
Car-sensing: Figure 7 shows the timeseries of several car
sensors at a stop sign. This figure motivates the following
algorithm to identify a stop segment: (a) the segment begins
at the point where the brake sensor transits from being active
to being inactive, (b) it ends at the rising edge of the throttle
position, and (c) the car speed reaches zero during some point
in the interval.

This is an idealized description. Some drivers may not come
to a complete stop, so we use a small speed threshold: if the
speed is below this threshold, a stop is said to have occurred.
Moreover, a car may stop several times if it is queued up
behind other cars at the stop sign. In this case, we use the last

Fig. 7—Typical Relevant Sensor Pattern Passing a Stop Sign

speed reading before the rising edge of the throttle position in
order to make a stop determination.
Phone-sensing. Phones do not, of course, have access to sensors
that directly measure human activity (braking etc.). Motivated
by Figure 7, we use the vehicle speed to determine stop
segments. We use the haversine formula [19] to derive estimated
speed from two successive GPS coordinates. Then the estimated
speed is obtained by dividing the distance by the difference of
the timestamps associated with each coordinate. Other elements
of the algorithm are similar to car-sensing.
Disambiguation. To distinguish stopping at a stop sign from
other stopping activity, we use map information: to qualify as
a stop segment, the car’s location must be within a distance
threshold of an intersection (as determined from an online
map). To distinguish from congestion-related stops, a significant
fraction of stop segments must exist at intersection I before
that intersection is marked as having a stop sign. Finally, to
distinguish between 4-way and 2-way stop signs and between
stop signs and street lights, we use crowd-sourcing. If there
exists a stop segment S at intersection I , but k other traces
with the same heading as S (where k is a small integer) that
do not contain a stop segment at I we say there is no stop
sign at I in that direction.

IV. EVALUATION

We use the four previously described context sensing
applications to evaluate the relative accuracy of car-sensing and
phone-sensing, both with and without crowd-sourcing for the
best phone position for the given sensing task. We then evaluate
how accuracy for these tasks varies with phone position. To
conduct these experiments, we have built infrastructure that
continuously captures car and phone sensor readings, uploads
them to a cloud database, and computes spatial indexes to
improve query speeds. Describing this infrastructure is beyond
the scope of this paper.

A. Car-sensing vs. Phone-sensing

1) Lane Change: The Dataset. To evaluate lane change
algorithm, we collected traces from six different drivers both
on a flat and straight urban road (dataset Straight) and a
hilly area with straight and curved road segments (dataset
Curve). In each experiment, a passenger collected ground
truth measurements by explicitly recording lane changes made
by the driver using a custom-built mobile app. In total, our
traces cover around 200 miles, containing over 300 instances
of lane changes for which we have ground truth, so we use
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Fig. 8—Car-sensing vs Phone-sensing: Lane Change Detection

these to compare car-sensing and phone-sensing. To extract
crowd-sourced road curvature, we use 20% of the traces.

For phone-sensing, for reasons discussed below, we rigidly
mounted the phone on the center console. Then, we transformed
the inertial sensors to the world frame of reference. We also
report results for phone-vehicle, an alternative in which inertial
sensor readings are transformed to the vehicle frame discussed
earlier.
Results. Since our lane-change algorithm is essentially a binary
classifier (did a lane-change happen or not?), we use standard
measures of accuracy for binary classifiers, precision and
recall [25]. Figure 8 discusses the results of our evaluation.
It is interesting that our novel car-sensing algorithm has high
precision both on Straight (94.51%) and Curve (93.38%)
roads. Crowd-sourcing further significantly improves recall
in curvy road (from 47.58% to 83.70%) where curvature is
unknown in previous work [12]. In contrast, phone-sensing has
significantly lower performance, especially recall (58.33%).
When transforming sensor readings from global to vehicle
coordinate frame (the phone-vehicle case), straight road has
similar phone-sensing precision (68.78%) and recall (64.21%).
However, motion sensor errors introduced by curvy roads
affect the accuracy in determining the second unit vector,
which could potentially reduce algorithm precision. Thus, car-
sensing performs significantly better than phone-sensing for
lane-change determination.

The insight for this performance difference is as follows.
Both car-sensing and phone-sensing are able to robustly
compute lateral displacement. Even though the car-sensor has
a dedicated yaw rate sensor that is designed to provide angular
velocity about the vertical axis, the phone’s inertial sensors
are also able to achieve comparable accuracy with careful
re-orientation and compensation. The real difference in the
results comes from the shift maneuver determination step. The
wheel angle sensor, which measures shift maneuvers directly,
can be used to accurately estimate these maneuvers even on
curved roads, but this step is much less accurate when using
the orientation sensors on the phone.

We have also evaluated the efficacy of crowd-sourcing for
this task. It turns out that crowd-sourcing is crucial, especially in
the dataset Curve, where most lane changes happen on curved
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Fig. 9—Car-sensing vs Phone-sensing: Pothole Detection
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Fig. 10—Crowd-sourcing Contribution for Pothole Detection.

segments. In this case, detection precision is improved from
87.50% to 93.38%, recall from 47.58% to 83.70%. Crowd-
sourcing provides an accurate description of road curvature
(either through curve radius or road orientation) which other
traces can use as a baseline to estimate lane displacements;
without this, as other work has shown [12], it is hard to estimate
lane changes. By contrast, the benefits of crowd-sourcing
for phone-sensing is less-evident (precision is improved by
28.61% (9.89%) in dataset Curve (Straight), with 10.09%
(11.43%) recall trade-off; estimating curvature from crowd-
sourcing is less accurate in this case, since the coordinate frame
transformation introduces significant error. Today’s maps do not
have road curvature information at sufficiently fine granularity
for our purposes (and it’s not clear they ever will), so crowd-
sourcing will likely play an important part in lane change
determination.

2) Pothole: The dataset. Our dataset was collected on a
stretch of 4-mile road segment with various types of potholes.
Simultaneously, we also firmly mounted the smart phone on the
windshield to collect detection results from the Android street
bump application [11]. This application records the pothole
traces, including timestamps, GPS locations and the smartphone
accelerometer measurements. For ground truth identification,
we used another windshield-mounted smartphone to record the
video during the entire data collection. We manually identified,
by inspecting the collected videos, a total of 23 potholes on
this four-mile road; the overhead of manual identification limits
the scale of experiments we can do in this case. For evaluating
our crowd-sourcing steps, we collected multiple traces (8) on
this road segment, among which 15 (10%) random selected
pothole encounter are used for both training and testing data.
Results. For a similar reason as lane-change determination,
we use precision and recall to evaluate our pothole detection
algorithms. Figure 9 shows the average precision and recall of
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Fig. 11—Flat Road Experiment
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Fig. 13—Crowd-sourcing

pothole detection. Without taking crowd-sourcing into account,
both car-sensing and phone-sensing have similar average
precision (73.05% and 71.33%). The phone-sensing based
approach has much less recall because it fails to detect many
small potholes. However, with crowd-sourcing, our car-sensing
based pothole detection has 100% precision and 91.28% recall.
Thus, crowd-sourcing improves the precision and recall by
about 30%. In contrast, for phone-sensing approach, while it
has very high precision (about 100%) with crowd-sourcing, but
its recall performance is fairly dismal (27%) at higher levels
of crowd-sourcing. This is because the crowd-sourcing does
not drastically improve the already inferior recall performance
of phone-sensing. Figure 10 shows the detection results of
both car-sensing and phone-sensing after crowd-sourcing. In
this figure, the x-axis represents x randomly chosen traces,
and we report the precision and recall averaged over these x
random choices. This illustrates the benefit of increasing levels
of crowd-sourcing.

The drastic difference between car- and phone-sensing
approach is primarily because the phone sensors are much
less sensitive to the road vibrations and can only detect very
significant potholes (even though the phone is mounted on the
windshield). In other words, car-sensing has higher accuracy
because cars have specially engineered sensors calibrated
and positioned to detect rough road conditions and lateral
accelerations (since these sensors are important for stability
control). The improvement from crowd-sourcing in accuracy
comes from the fact that not all vehicles traversing a lane
will encounter the pothole depending on where the pothole is;
crowdsourcing improves spatial coverage.

3) Road Grade: The Dataset. To evaluate the efficacy of
the road grade sensing techniques, we conducted experiments
along two selected roadways of different grades. One was
a nearly flat road, while the other had an 18◦ incline. We
collected two datasets, with ten traces each, on these streets.
We marked 30 locations on each road segment, separated by
a meter. One dataset was collected by coming to a standstill
at each marker. At this point we recorded the ground truth by
placing an inclinometer on the car floor, obtained accelerometer
data from the fixed sensor and from the smartphone and then
moved to the next spot and repeated the process. Recall that,
in the real world this data can be collected when the car is
moving at a constant speed or is stationary. Our second dataset
was obtained by simply driving on this road segment with no
stopping. At each iteration, we collected the ground truth from
the car, the barometer readings, the accelerometer in the sensor

Fig. 14—Google Map Augmented with Stop Sign.

and the smartphone.
Results. We assess the accuracy of road-grade algorithms by
measuring the error with respect to ground truth. The calculated
road grade is shown in Figures 11 and 12 for flat and inclined
road experiments, respectively. In Figure 11, the fixed sensor
and accelerometer data from the phone (windshield mounted
position) was collected using the first dataset (with stops), and
the barometer dataset (driver’s pocket position) was collected
using the second dataset (no stops). It is evident from this
experiment that road grade estimations from the emulated car
sensor (fixed) and smartphone inertial sensors are very close to
the ground truth. The barometer, however, does not work well
for small variations in road grade, and exhibits large errors.
This may have been caused by frequent, sudden accelerating
and braking. For the 18◦ incline, with the accelerometer in
windshield position and barometer in the pocket position, it
is evident that both the barometer and the inertial sensor
measurements are inline with the ground truth.

To examine if crowd-sourcing can provide us with better
accuracy, we compute road grade using the barometer and
inertial sensors for our second dataset (no stops). We calculated
these values using a different number of traces each time and
computed the error. As evident from Figure 13, the average
error for the barometer approach improves slightly with crowd-
sourcing, but is not significantly affected. It must be noted that
in the continuous driving dataset, the inertial sensor readings
at the beginning and end of a trace are not accurate due to
acceleration and deceleration of the vehicle. This causes a
small error in accelerometer measurements, that corrects itself
as the number of traces increases.

In summary, road-grade estimation is a context sensing task
that can be accurately implemented using phone sensors, but
cannot be realized using currently available car sensors.

4) Stop Sign: The Dataset. We collected traces from 6
different drivers, during different times of day and different
days of a week over a period of around 9 months. The traces
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Fig. 15—Car-sensing vs. Phone-sensing: Stop Sign Detection
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Fig. 16—Crowd-sourcing Contribution for Stop Sign Detection

cover over 500 miles, with 11 traffic light, 74 stop signs at
55 intersections, among which 14 of them are two way stop
signs, 16 are one way stop signs, and the rest 4-way stop signs.
We collected ground-truth by recording stop signs as they
encountered them, using a custom-built mobile app. Figure 14
shows the groundtruth stop signs detected.
Results. In our evaluation, even though car-sensing (precision
93.24%, recall 83.78%) uses more dedicated sensors such as
the brake and throttle, phone-sensing has comparable precision
(90.32%) and recall (85.71%) (Figure 15). Phone-sensing has
slightly lower precision when a vehicle passes through a green
light at speeds lower than the speed threshold, yielding false
positives. Car-sensing does not suffer from this problem because
it uses additional signals: the brake and the throttle. Thus, for
this task, it appears that phone sensing and crowd sensing are
qualitatively similar.

Furthermore, crowd-sensing appears to play an important part
in increasing the accuracy of stop sign detection (Figure 16).
For car-sensing, crowd-sourcing increases precision by nearly
15% but commensurately reduces recall, due to potential
inappropriate stop sign behaviors, such as not decreasing the
speed low enough. For phone-sensing, crowd-sourcing increases
precision by 6% and reduces recall less significantly. Moreover,
we also find that car-sensing needs fewer crowd-sourced traces
to converge to its highest accuracy than phone-sensing: this
is because the car-sensors can generally detect stops more
accurately by directly measuring breaking and throttling activity,
requiring less disambiguation.

B. Sensitivity to Phone Positions

Phone-sensing performance has assumed a favorable fixed
position. To understand how the phone-sensing results change

Fig. 17—Phone Position: Windshield, Cup-holder, Pocket
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Fig. 18—Phone Position Sensitivity: Lane Change Detection

when the phone is carried in a less favorable position, we now
revisit each of the applications and compare the phone sensing
results across the windshield mount, cup-holder, and driver
pocket positions (see Figure 17).

Lane Change. Figure 18 shows that the precision and recall
for the phone-sensing lane change detection varies significantly
with phone positions. The cup-holder performance (75.14%)
is close to the original fixed position (76.57%), while the
pocket and windshield positions show degraded performance,
particularly on curved roads.

One might expect the highest performance with a rigid
mounting to the vehicle body and performance to diminish
when the phone is in the drivers pocket and subject to driver
movements. We were surprised, however, by the relatively poor
performance of the windshield mount. We now suspect that the
mount amplifies vibrations that affect the gyroscope readings,
a cornerstone of the algorithm that is used to calculate the
lateral displacement.

Pothole. Figure 19 shows the phone-sensing pothole detection
performance for different phone placements. While the perfor-
mance of the windshield and cup-holder positions is quite close,
the pocket position is an outlier: the phone barely detects any
potholes at all in this position. We believe that this is because
the bump is largely absorbed by the seat and human body.

If the crowd-sourcing mechanism is not engaged, we also
observe that the position of windshield mounted phone has
similar precision to the position of cup-holder, while recall
at the windshield is much worse than in the cup-holder. We
attribute this to the cup-holder being close to the center of the
vehicle and therefore feeling bumps on any of four wheels. In
contrast, the windshield mounted phone is biased towards the
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Fig. 19—Phone Position Sensitivity: Pothole detection
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Fig. 20—Phone Position Sensitivity: Road Grade Estimation.

front wheels and may not detect the bump if only a rear wheel
hits the pothole.

It is also worth noting that crowd-sourcing reduces both
precision and recall for phone-sensing approach, in both the
cup-holder position and windshield position. Our hypothesis
is that phone-sensing in these positions is likely to produce
inconsistent detection results across different traces, but our
current crowd-sourcing mechanism (based on majority voting)
requires consistent observations to produce a consensus. We
have left a detailed understanding of this to future work.

Road Grade. Figure 20 shows the pitch errors encountered
with the inertial phone-based road grade estimation across
different phone placements. We concentrate here on the inertial
approach since phone placement is unlikely to affect barometer
sensors. We observe that the windshield mounted position
provides us with results that are comparable to the fixed
inertial sensor unit (which emulates an embedded car sensor).
The pitch error with respect to the ground truth is about
0.25◦ in both cases and could likely be further reduced
through improved calibration. However, the error in road grade
estimation increases when the phone is placed in the cup holder
or in the driver’s pocket. This can be caused by small changes
in the phone orientation due to leg movement or sliding in the
cup holder. Note, however, that even in the pocket position the
mean error is only about 0.5◦.

Stop Sign. Figure 21 shows the performance of phone-sensing
based stop sign detection across the different phone positions.
The results are not very sensitive to phone placement. Since our
algorithm only uses GPS and not inertial sensors, it appears that
the phone was able to receive a sufficiently strong GPS signal
in all positions during our experiments. One might expect that
the results do become more sensitive to phone placement in
situations when the GPS signal quality is diminished.

The implications of these results are summarized in the next
section.
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Fig. 21—Phone Position Sensitivity: Stop Sign Detection

V. LESSONS LEARNED

Our primary finding is that neither car-sensing nor phone-
sensing alone is likely to satisfy all applications, and that a
hybrid-sensing approach, in which car sensors are paired with
phone sensors will be necessary to compute vehicular context.
An equally important result is that crowd-sensing of these
hybrid traces can significantly improve accuracy.

This finding is important because the choice between phone
and car sensors will not go away in the future. Smartphone
platforms evolve more rapidly (in 1-2 years), while the average
lifetime of cars is more than a decade (11.4 years in 2012 [6]);
thus, smartphones will always have better sensors than cars.
Second, car sensors are specialized for vehicular control, not
for context sensing (this is discussed in more detail below),
so it is likely that the general purpose sensors on phones may
be more appropriate for some sensing tasks. Finally, cars are
unlikely to co-opt phone sensors: especially for mass market
vehicles, adding new sensors can be expensive since these need
to be engineered for long lifetimes.

Our four case studies highlight the importance of hybrid-
sensing and crowd-sourcing. In lane change determination, car-
sensing outperforms phone sensing but for a very subtle reason:
even though it has a dedicated yaw rate sensor, phone sensors
can equally well compute lane displacements. What really
makes a difference is the fact that the phone sensors cannot
reliably measure when a shift maneuver has actually happened,
while the car sensors have a direct measure of this quantity. In
pothole detection, the presence of well engineered sensors in
the car that directly measure frame vibrations resulting from
rough road, and also lateral acceleration, helps car sensing
be much more accurate. In road grade estimation, our study
shows the opposite result: in this case, phones have general-
purpose barometer and inertial sensors that are quite accurate
in estimating road grade, but at least the cars we had access to
do not have any sensors that we could have used for road-grade
determination. Finally, in stop sign detection, car-sensing and
phone-sensing performed comparably well. Even though there
are specialized sensors in the car to directly measure stopping
activity initiated by a driver, phone sensors perform quite well
in part because crowd-sourcing compensates for the fact that
phone sensors can only indirectly measure stopping activity.

A second interesting lesson that emerges is the design
philosophy of sensing between the car and the phone. Cars
have a large number of sensors, some of which are aggregated
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or processed virtual sensors from some underlying physical
sensors. A good example is the yaw rate sensor, which returns
the angular velocity about the vertical axis, computed from an
on-board gyroscope. This gyroscope, however, is not directly
accessible. Phones, on the other hand, have a few sensors
to which software has direct access (the gyroscope and the
accelerometer are examples). This is not surprising: cars have
not been designed for programmability, but phones have,
and phone sensors are intended to serve several different
applications, while car sensors are designed to serve specific
control needs, and were not originally intended to be exposed
to external software dynamically. This is another reason why
we believe that the hybrid-sensing model is the one that is
most likely to meet the needs of vehicular context sensing.

A challenge in incorporating phone-sensing, lies in its
sensitivity to phone position. The best phone position depends
on the exact measurements taken. A rigid windshield mount
generally works well but performs poorly in applications that
depend on precise inertial measurements while the car is
moving, since the windshield mount can act as a lever and
amplify vibrations. With the phone in the drivers’ pocket, the
accuracy is generally reduced compared to more rigid phone
positions. The performance in this position is particularly
poor for vertical acceleration measurements (e.g., pothole
detection) since the seat and body dampen the vertical forces.
In our experiments, the cup-holder position showed the most
consistent results across applications but it carries the risk that
the phone itself will move inside the cup-holder when stronger
acceleration forces act on the car.

We also learned that crowd-sourcing helps different algo-
rithms in different ways. For lane changes, crowd-sourcing
helps compute a various spatial quantity, namely curvature,
curve orientation, etc.. For pothole detection, crowd-sourcing
helps increase detection confidence, and for road-grade it can
enhance spatial coverage.

These observations are qualitatively reinforced by another
task, stop-sign detection, for which we designed car-sensing
algorithms, and used an existing phone-sensing algorithm. We
have omitted a detailed discussion of this task, for space reasons.
However, for this task, phone-sensing performs comparably
to car-sensing, and both algorithms are insensitive to phone
position. Crowd-sourcing can significantly affect precision and
recall for this task, since it can be used to distinguish between
stop signs and traffic lights (where a significant fraction of
vehicles do not stop at the intersection).

These observations also point to opportunities to support
developers of vehicular context through system services and
context sensing frameworks. Most important, such infrastruc-
ture should facilitate hybrid-sensing with phone and car sensors
but also allow for crowd-sensing. It should accommodate the
need for trace augmentation, the derivation of a type of sensor
information from other related sensors, when a specific sensor
is unavailable. In addition, such infrastructure should offer
mechanisms for detecting and adjusting to different phone
placements and orientations. Our experience suggests that de-
signers of vehicular contexts can leverage such capabilities for
a broad range of future vehicular context sensing applications.

VI. RELATED WORK

Lane Change Detection. The automotive industry has incor-
porated vision-based lane departure sensors [1] inspired, in part,
by lane marker detection algorithms from the computer vision
community [4, 18]. In general, these approaches are known to
suffer from occlusion and poor visibility.Other work has used
smartphone inertial sensors to detect vehicle dynamics [38, 12,
13], such as detecting turns and phone poses [38], or detecting
turns, curves, lane changes [12] and abnormalities such as
weaving, swerving, side-slipping, U-turn [13] on straight roads.
Dongyao et al. [12] proposed using lateral displacement to
detect lane changes. In contrast, our paper discusses the first
design for lane change detection both for straight and curved
roads, using inertial and other sensors from both vehicle
and mobile devices. Both our car-sensing and phone-sensing
approach can detect lane changes on curved roads with novel
crowd-sourcing techniques.
Road Surface Anomaly Detection. Road surface assessment
used a variety of sensing technologies. Vision-based pothole
detection [23, 24] is sensitive to ambient light, while laser
imaging (LiDAR) techniques [39] and sound pressure-based
techniques [15] are expensive. In an early accelerometer-based
approach [14], potholes were detected using a high resolution
accelerometer mounted to the vehicle. This line of work has
led to a mobile app [11], which we use for our comparisons.
Another piece of work [27] proposed a phone-sensing based
approach for pothole detection. We are aware of no other work
that has attempted to quantify the efficacy of car-sensing based
pothole detection.
Road Grade Estimation. Road grade is important information
widely used in various vehicle applications [32, 3]. Several
existing road grade estimation approaches rely on vehicle
kinematic information [36, 34] but require knowing vehicle
mass, which can vary with loading, or require other aspects of
vehicle geometry and assume limits to road grade [8]. High
accuracy GPS is has also been used to estimate grades with or
without inertial sensors [30, 7, 32, 33], but it is known that GPS
exhibits more than 10m inaccuracy in obstructed environments.
Elevation data from cloud services [35] can be used to
estimate roadgrade, but are often erroneous on multi-level road
infrastructures. Prior work has used specialized barometers to
estimate the road grade [9], sometimes to complement GPS
elevation estimation [31]. In contrast, our work explores the
efficacy of phone-based road-grade estimation, using barometric
sensing and inertial-sensing.
Stop Sign Detection. Previous work [10, 20] collected GPS
traces for a specific set of intersections, and differentiated stop
signs from traffic lights, using either heuristics or machine
learning. Our phone-sensing algorithm is inspired by theirs,
and our accuracy results are comparable to theirs, but their
work does not incorporate car-sensing.

VII. CONCLUSION

In the near future, detecting vehicular context, a monetizable
quantity, will become an important problem. Mobile operating
systems for vehicles will allow apps access to hitherto propri-
etary vehicle sensors and be able to link with mobile phones.
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We provide, to our knowledge, the first analysis of context
sensing based on internal vehicle sensors and its comparison
with phone-sensing algorithms for a variety of qualitatively
different vehicular context sensing tasks, all of which have
several applications. Overall, we find that one approach does
not dominate another and that phone sensing would benefit
from better techniques to compensate for phone position. Thus,
a hybrid model, where car manufacturers partner with mobile
device manufacturers to develop applications and methods for
determining context, and make heavy use of crowd-sourcing, is
likely to be most effective in the future for detecting vehicular
contexts.
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