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a b s t r a c t

Cameras are ubiquitous and increasingly being used not just for capturing images but also
for communicating information. For example, the pervasive QR codes can be viewed as
communicating a short code to camera-equipped sensors. Such communications could
be particularly attractive in pervasive camera based applications, where such camera
communications can reuse the existing camera hardware and also leverage from the large
pixel array structure for high data-rate communication. While several prototypes have
been constructed, the fundamental capacity limits of the screen–camera communication
channel in all but the simplest scenarios remains unknown. The visual medium differs
from RF in that the information capacity of this channel largely depends on the perspective
distortions while multipath becomes negligible. In this paper, we create a model of this
communication system to allow predicting the capacity based on receiver perspective
(distance and angle to the transmitter). We calibrate and validate this model through lab
experiments wherein information is transmitted from a screen and received with a tablet
camera. Our capacity estimates indicate that tens of Mbps is possible using a smartphone
camera evenwhen the short code on the screen images onto only 15% of the camera frame.
Our estimates also indicate that there is room for at least 2.5× improvement in throughput
of existing screen–camera communication prototypes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The pervasive use of cameras has led to not only a diverse set of camera-based sensing applications but also to novel
opportunities to use cameras to communicate information [1]. Recent efforts to standardize camera communications [2]
attests to the importance of using camera for communications. Camera based communication is characterized by highly
directional transmission and reception along with low-multipath interference rendering it virtually interference-free. Thus,
it is particularly attractive for dense congested environments where RF communication data rates are largely limited due
to interference, for security applications where the directional transmissions lead to lower probability of interception or
observability of signals, or for situations where the high directionality leads to improved localization of the transmitters.
Camera based communication can leverage existing cameras for communicating with the ubiquitous light emitting devices.
Information could be transmitted from TVs, monitors, billboards, and even projector screens. We believe, therefore, that
camera-based communications can be an attractive alternative or supplement to RF wireless based communication.
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Today, cameras are frequently used to read QR-codes, which can be considered as a form of visual communication
wherein the camera acts as a receiver. The ubiquitous use of QR codes motivates building novel camera communication
applications, where pervasive display screens could be modulated to send time-varying QR codes to be decoded by video
cameras. The large pixel array elements of the screen and camera can be leveraged to send high volume of data through short
time-varying 2D barcodes. For example, a user could point a camera to a desktop PC or a smartphone screen displaying the
time-varying code to download a file. Recent research has further explored this direction by designing prototypes wherein
time-varying 2D barcodes can be transmitted from desktopmonitors [3,4] and smartphone screens [5] to a camera receiver.
While these works have designed and measured the information capacity for a specific point solution in this space, how
much room for improvement exists in these solutions or if there is any bound on performance still remains unclear.

To the best of our knowledge, only few projects have begun to investigate information capacity limits of camera commu-
nication using time-varying 2D barcodes. Hranilovic et al. [4] analyzed the capacity and prototyped a screen–camera system
where a CCD camera was placed at a fixed distance from a laptop screen. The model does not account for the interference
between pixels and the dependence on perspective. Themodel in [1] can be considered as a simplified case of screen–camera
channel where the transmitter and receiver always remain aligned, while ignoring the quantization effects of real camera
receivers.

In this paper, we develop a model for the information capacity of screen–camera communication that accounts for
perspective dependent (position and orientation) distortions that dominate this channel. Themodel incorporates projection
theory from the computer vision domain into a Shannon capacity formulation. Specifically, our contributions in this paper
are:

• A screen–camera channel model that accounts for perspective distortions and realities of camera receivers such as
quantization limitations, and blur.

• Experimental calibration and validation of the model through extensive lab measurements using a screen transmitter
and a tablet camera receiver. The studied parameters include distance, angle, the granularity or block-size of the code
(number of pixels per transmit bit), and motion blur.

• Estimation and validation of capacity for screen–camera communication by measuring channel and signal quality
metrics, such as bandwidth and signal-to-interference-noise ratio, and substituting into the derived analytical capacity
expression.

• A comparison of capacity estimate with throughput of existing screen–camera communication prototypes.

2. Related work

Camera based communication is an example of visual MIMO communication [1] where camera is used as a receiver for
information transmitted from arrays of light emitting elements. In our earlier work in [1] capacity of a camera channel was
estimated by treating the transmitter light emitting array and the camera perfectly aligned. The channel is considered as an
analog communications channel where the signal at the receiver is the sampled photocurrents from each image pixel, and
do not take into account the quantization limitations in the camera.

The LCD screen–camera channel capacity estimates [4] were based on a water-filling algorithm assuming the camera
channel can be equalized to encounter the effects of spatial distortions. But the model and the prototype were designed for
a fixed distance of 2m between the screen and camera and did not study the effects of perspective on the estimated capacity
and throughputs achieved. Perspective distortion has been studied by the imaging community previously [6,7], but the fact
that the camera is a part of a wireless communication channel (captured object is the light source itself) presents a new
domain of challenge for applying imaging models in analyzing communication channels.

The advent of high-resolution cameras in mobile devices has spurred interest in using cameras for communication to
retrieve information from screens [5,8,9,3]. These applications use specific receiver processing schemes to combat visual
distortions. PixNet [3] proposes to use OFDMmodulation to combat the effect of perspective distortion on images by inverse
filtering on the estimated channel, and using forward error correction. COBRA [5] proposes to leverage from encoding on
the color channels to achieve throughput gains for smartphone screen–camera communication, but at very short distances
(22 cm). The fact that several prototypes have been constructed reveals that screen–camera communication is gaining large
momentum.

3. Background on camera communication

A camera channel is analogous to a RFMIMO channel where each pixel element of the camera acts as a receiving antenna
and the light emitting elements as the transmit antennas. In RF MIMO, the signal quality at each receive antenna element is
a function of the path-loss in the channel, multipath fading, and the interference from other transmit antennas—also called
co-channel interference [10]. A camera channel has negligible multipath fading, but experiences path-loss in light energy,
and interference (of light energy) from other light emitting elements, which manifest as visual distortions on the output of
a camera; that is, the image. These distortions are primarily a derivative of the camera imaging process and can be modeled
(deterministically) using classical camera imaging theory.
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The signal quality at the camera receiver is also influenced by noise in the channel. Noise in camera systems manifests
as spurious electric signal in the form of current on each camera pixel. Noise current is generated due to the photons from,
environment lighting (includes ambient lighting) and from the transmitter and receiver imaging circuitry [11]. Noise current
in a pixel is usually considered signal independent when the ambient lighting is sufficiently high compared to the transmit
signal; for example, in office rooms or outdoors [12]. At the output of a camera, the noise current in each camera pixel is
a quantized quantity and manifests as fluctuations in the intensity (digital value of the sensor output) of that pixel; the
noise energy accumulated in each pixel can be quantified using the mean value of variance in the pixel intensity. As in prior
works that modeled optical channels [12,13], in this paper, we consider that the noise in a camera pixel is primarily from
the background, and follows a AWGN characteristic (quantified through the AWGN noise-variance σ 2

n ), and is uniform over
the image sensor (photoreceptor).

Considering the deterministic nature of perspective distortions and the AWGN characteristic of the camera channel,
capacity (measured in bits/sec) of camera based communication can be expressed using Shannon Capacity formula as,

C = Wfps(Ws log2(1 + SINR)) (1)

where SINR represents the signal-to-interference-noise ratio per pixel,Wfps is the camera-frame rate or the receiver sampling
rate in frames-per-second.Ws is the spatial-bandwidth,which denotes the number of information carrying pixels per camera
image frame. The spatial bandwidth is equivalent to the number of orthogonal or parallel channels in a MIMO system.

Throughout this paper, we use the terms screen transmitter and screen interchangeably, and the term image to refer to
the camera sampled image.

4. Screen–camera channel

In screen–camera communication, information is modulated in the light intensity of the pixel elements of a screen
transmitter that are received and decoded from the camera image pixel intensity at the receiver. The pixel intensity in a
camera image is a digital quantity1 that is proportional to the amount of photon current generated on the pixel from the
light energy accumulated over its area (the smaller the pixel area the lesser light intensity it accumulates). When the light
emitting screen pixel is at the focus of the camera lens all the light rays from the screen pixel are focused onto a camera
pixel and thus incurring no loss of energy on the pixel. When the screen pixel is perturbed (in position and/or orientation)
from the focus of the camera or incurs path-loss in energy due to the finite aperture size of the camera lens, not all light rays
converge on the camera pixel resulting in reduced accumulated energy and hence a lower pixel intensity value. The loss in
the received light intensity on a camera pixel results in the visual deformation in size or shape of the imaged screen pixel;
an effect that is termed as perspective distortion.

Loss in signal energy on a pixel is also attributed to the noise in that pixel. As discussed earlier, noise in a camera
pixel is primarily due to spurious photons (that do not belong to the transmitter) from the environment, which can be
modeled as signal independent and AWGN. Noise from the transmitter and the camera imaging circuit are dependent on
the generated signal (and that is transmitted), and thus depend on the transmitter and receiver specifications. However,
unlike environment noise, this signal dependent noise can be estimated using one-time calibration mechanisms; camera
noise modeling has been well studied in computer vision and solid-state electronics (CMOS) design literature. We reserve
the discussions on effect of signal dependent noise on throughput of camera communications for future work.

4.1. Perspective distortions

Distortions that depend on the perspective of the camera are caused due to the nature of the camera imagingmechanism
andmanifest as deformation in size and shape of the captured object (the light emitting screen pixel) on the image, resulting
in visual compression ormagnification of the object’s projection on the image.When the screen is at an out-of-focus distance
from the camera lens (or at an oblique angle), these distortions becomeprominent and lead to interference between adjacent
screen pixels on the camera image, what we term as inter-pixel interference or IPI. The combined effect of background noise
and IPI degrades the received signal quality and hence reduces information capacity in camera channels.

For example, let us consider that blocks of pixels on a screen are illuminated by a chessboard pattern and imaged by
a camera as shown in Fig. 1. We can observe that perspective distortions cause the screen pixels to deform in size when
the screen is not at the focus of the camera, and in shape when it is not frontally aligned (viewed at an angle) with the
camera.
Perspective scaling. If the screen pixel was at the focus, and assuming the screen and camera have the same resolution, its
image on the camera should occupy the same area as one pixel. But in reality, the light rays from the screen pixel may not
end exactly on camera pixel boundaries and there is some area surrounding it that accumulates interference. This area of
misalignment and the geometry of the imaged screen pixel will be perspective dependent and accounts for distortion due
to perspective scaling of the pixel area.

1 Most cameras have 8 bit monochromatic depth (on each color channel) where the values span 0 (dark)-to-255 (bright).
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Fig. 1. Illustration of perspective distortion in screen–camera channel. Imaged screen pixels are blurry, and reduced in size in full-frontal view and also
in shape in angular view.

Fig. 2. Screen–camera channel model.

Lens-blur. We can also observe from Fig. 1 that the imaged screen pixels are blurry, especially at the transition regions
between white and black blocks. This blur effect is attributed to the camera lens and more formally termed as lens-blur.
This blur effect is typically modeled in camera imaging theory using the point-spread function (PSF) [14], which represents
the response of an imaging system to a point source. In the screen–camera channel this translates to distorting the pixels
at the transition regions between brighter (high intensity) and darker (low intensity) pixels, and leads to interference (IPI)
between neighboring pixels, as seen in Fig. 1. Since the area and the maximum energy that can be sampled in each camera
pixel is finite, IPI leads to an effective reduction in signal energy per pixel.

5. Modeling perspective distortion factor

In this paper, we model the perspective distortions in the screen–camera channel as a composite effect of signal energy
reduction due to perspective scaling of pixel area owing to camera projection, signal energy reduction due to lens-blur, and
background photon noise, as shown in Fig. 2. In this regard, we consider that the signal energy on each pixel is weighted by
an average perspective distortion factor α, that represents the effective area scaling (down) due to perspective and lens-blur
in the camera imaging process, while the rest of the light-energy on the pixel is from ambient photon noise. We define this
factor such that it takes values in 0 ≤ α ≤ 1, where α = 1 indicates that the screen pixel is at the focus of the camera and
also incurs no signal reduction due to lens-blur, and α = 0 indicates that no part of the screen-pixel gets imaged on the
camera pixel.
Perspective scaling. Letαp represent theperspective scaling of the area of an imaged screenpixelwhenperturbed fromcamera
focus. We modeled this perspective scaling factor and derived a general expression for αp in [15] using camera projection
theory [16], that uses the camera projection matrix which maps the location of the screen pixels from the world coordinate
frame to the camera coordinate system. In the simplest case, where the screen and camera are perfectly aligned at distance
d, this factor can be expressed as,

αp =


fcamst
scamd

2

(2)

where fcam, st are the focal length of the camera and side-length of the screen pixel, respectively, and scam is the side length
of the camera pixel. We can observe from Eq. (2) that, αp = 1 when the camera is at the focus (d = fcam) and if scam = st .
However, in reality, the physical size of a screen and camera pixel may not be the same. In our system, we assume that the
focal point is at a distance df =

fcamst
scam

to the screen; which we term as focal-distance.

Lens-blur. As discussed earlier, lens-blur causes the signal energy to leak outside the area of a single pixel. Camera lens-blur,
characterized by the PSF, can be approximately modeled as a 2D Gaussian function [14,17], where the amount of spread
in area is quantified using its variance σ 2

blur (a large variance indicates more blur2). In our model we account for lens-blur

2 For an ideal pin-hole camera energy spread over a pixel would be uniform and hence σ 2
blur is infinitesimally small.
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(a) Handheld. (b) Motion.

Fig. 3. Illustration of motion blur on images of a screen displaying a chessboard pattern, taken by a hand-held camera (a) and when camera is in
motion (b).

distortion using the factor αb = (2σblur)
2, to account for the spread in area over two dimensions of the square pixel. If scam

is the side length of a camera pixel, then the effective signal energy on that pixel will be proportional to s2cam
1

1+αb
. We treat

this signal energy reduction is proportional to this reduced pixel area over which the signal accumulates.
In this regard, we consider α, an average distortion in each pixel of the camera image to quantify perspective distortion.

We express α as the effective pixel area reduction due to perspective scaling factor αp on the reduced pixel area due to
lens-distortion αb = 4σ 2

blur , as

α = αp ×
1

(1 + αb)
. (3)

In reality, the physical size of the screen pixel may not exactly be matched with that of the camera image sensor. The
screen and camera image sensor pixels may not be of the exact same size and even if so they may not be exactly similar
rectangles and somemicro-deviations can still persistwhich can causemisalignments in the imaged pixels. This can cause an
imaged screen pixel not to align with a camera pixel, even if the screen pixel were at the camera focus. Such misalignments
will cause a deviation in the distortion factor for each pixel as the perspective changes. However, such deviations can be
assumed to be negligible when compared to the distortions due to perspective scaling. By considering an average distortion
factor over the camera image such micro-deviations will be almost negligible.

5.1. Discussion on motion blur

Before we step into modeling the signal quality metrics of a screen–camera channel we discuss the effect of motion
on screen–camera communication. Screen–camera communication applications would typically involve some degree of
motion, for example, when the camera is hand-held, or when the camera or screen is on a moving object such as a vehicle.
Motion due to hand-shakes or lateral movements can cause dynamic change in perspective between the screen and the
camera. In such cases, one can assume some vibrations on the pixels, especially when the camera is not stable, where the
pixels seem to interfere with each other, eventually causing a blurry visual effect on the image; formally known as motion-
blur in computer vision [14].

Motion-blur primarily arises due tomovementwithin or between camera frames. Smartphone cameras are usually hand-
held and vibrations caused due to handmotion can cause motion blur but are usually much less than those when the screen
or camera is inmotion. Cameras equipped in vehiclesmay suffer frommore blur compared to hand-held scenarios as camera
sampling may be too slow when compared the speed of motion. Fig. 3 shows an example of camera snapshots of a screen
imagedwhen camera is (a) hand-held, and (b) inmotion.We can observe from these snapshots the distortions due tomotion
blur leading to inter-pixel interference.

Cameras today are equipped with very effectivemotion compensation capability which compensate motion blur through
a filtering mechanism called de-blurring. De-blurring [18,19] is a technique that is commonly used to mitigate the effect
of blur on the image by applying a filter that inverts the effect of blur on the image. The quality of the de-blurred im-
age will largely depend on the effectiveness of the de-blurring filter as well as the amount of induced motion/vibration
on the pixels. Imperfections in the de-blurring process can also lead to signal quality reduction compared to an ideal
(static screen and camera) scenario. If the motion is fast then the camera may not be able to expose to the entire screen
pixel and hence causing the signal energy to spread over many pixels and result in a more blurry image as shown in
Fig. 3(b).

This section essentially provides, to the reader, a discussion on motion-blur, how it is related to the inter-pixel
interference in screen–camera communication, and how it can possibly be mitigated, through de-blurring. The effects of
de-blurring will depend on what algorithm is chosen. In the interest of this paper, we reserved such considerations for
future work. Since we study the bounds on capacity we considered the fixed case scenario as the benchmark scenario for
our model, which essentially would be best-case scenario in reality. When modeled motion blur would factor into the αb
parameter.
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Fig. 4. Illustration of interference between pixel-blocks due to perspective distortion for SINR computation.

6. Signal-to-interference noise ratio in screen–camera channel

We quantify the quality of the signal at the camera receiver in the screen–camera channel using the average SINR per
pixel,

SINRα =
αP2

avg

(1 − α)P2
avg + σ 2

n
(4)

where, Pavg denotes the average transmit pixel intensity. For example, a screen–camera system using black (digital value
0) and white (digital value 255) intensities for transmission will have Pavg = 127.5. By using the digital value of the av-
erage signal Pavg , instead of its analog equivalent (pixel photon-current squared), our model accounts for the quantization
limitations in cameras. The 1 − α term in Eq. (4) quantifies the fraction of the pixel area affected by interference.

6.1. Pixel blocks

A small value ofα indicates thatmore screen pixels interfere on one camera pixel. In reality, screen pixels are very closely
spaced (fraction of a mm), and so, IPI will be inevitable even at short distances resulting in low SINRs. A potential solution
is to leverage the MIMO structure of the screen–camera channel, by grouping multiple screen pixels in a block, such as a 2D
barcode, to transmit with same intensity, and combine such pixels from the camera image to improve SINR. This technique,
in principle, is similar to diversity combining used in RF MIMO. Pixel-blocks merely represent that a group of antennas
are used to transmit the same intensity, to improve the SINR at the receiver. By using pixel blocks, we draw analogies of
the screen–camera channel to an equivalent MIMO system. This is different from considering multiple-level modulation or
coding to improve communication throughput. In this paper we are primarily interested in determining the bounds on the
information capacity which by definition is independent of the type of modulation or coding used.

Pixel blocks are effective in reducing the impact of misalignments, and lens-blur, as these effects become smaller as one
block coversmore pixels on the camera and only affect pixels near the boundary as shown in Fig. 4. The SINR can be enhanced
by considering averaging the signal energy over such blocks of pixels.

As a convention in our model, we treat a pixel block as a boundary block if it is not all surrounded by blocks with same
intensity. Such a structure minimizes the ‘interference’ for a non-boundary pixel, and is negligible when the camera and
screen are static with respect to each other. In this case, even for non-zero blur or pixel misalignment, since the same signal
adds-up on the pixel, it enhances signal energy of that pixel; in which case the SINR of that pixel converges to the average-
SNR.

In general, the expression for the average SINR per imaged block in a screen–camera channel, using B pixel square blocks
of a screen can be given as,

SINRblk(α, B) = γ1SINRα + γ2SNRα ∀αB > 4
= SINRα ∀αB ≤ 4 (5)

where SINRα is from Eq. (4), SNRα =
αPavg
σ 2
n

, and the coefficients γ1 = 4(
√

αB − 1) and γ2 = (
√

αB − 2)2 represent the
number of boundary-blocks and non-boundary blocks, respectively. Here, min B = 4 (i.e. 2×2 pixels), and αB ≤ 4 indicates
that each B pixel block projects onto a maximum of 1 camera pixel area while αB > 4 indicates that the block projects onto
multiple camera pixels.

7. Capacity under perspective distortions

Recalling the capacity expression from Eq. (1), we can express the capacity of screen–camera communication in bits/s as,

Ccam(α) =
Wfps

2
α∥Rcam∥ log2(1 + SINRα) (6)
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Fig. 5. Experiment setup showing LCD screen displaying black and white blocks of B = 60 × 60 pixels each.

where SINRα is the signal-to-interference noise ratio from Eq. (4), ∥Rcam∥ denotes resolution of the camera andWfps denotes
the frame-rate of the camera in frames-per-second. The camera frame-rate, and hence bandwidth, is halved (following
Nyquist sampling theory) to avoid the mixed frames caused by aliasing resulting from the synchronization mismatch
between screen updates and the camera sampling. The term α∥Rcam∥ represents the total number of camera pixels that
contain the image of the screen pixels, and directly corresponds to the spatial-bandwidth term Ws in Eq. (1). This is very
different fromRFMIMO,where, all the receiver antennas can potentially receive the signal, independent of distance between
the transmitter and receiver. In a camera receiver, due to its LOS nature, the signal from each transmit element is always
limited to a finite number of, but never all, receive elements.
MIMO throughput. The capacity in Eq. (6) represents the upper bound on the total number of bits that can be communicated
with negligible error from one screen pixel to a camera pixel. Grouping pixels into blocks improves the SINR and reduces
bit errors, but the effective data throughput scales down as the number of parallel channels are reduced. This behavior
is similar to the classical multiplexing-diversity tradeoff in RF-MIMO [20]. If Tblk(α, B) represents the MIMO capacity or
maximum throughput of screen–camera communication for block-size B, at distortion factor α, then

Tblk(α, B) =
Wfps

k


α∥Rcam∥

B


log2(1 + SINRblk(α, B)), (7)

where α∥Rcam∥

B represents the number of parallel channels for multiplexing, and SINRblk(α, B) is from Eq. (5). In practice, to
minimize detection and decoding errors, the camera frame-rate has to be synchronized with the modulation rate of pixel
intensities on the screen as well as the refresh rate of the screen (typically 120 Hz). The factor k in Eq. (7) corresponds to
the oversampling factor to address the asynchronism between the screen (data) update rate and the camera sampling rate.
It implies that a minimum of k temporal samples of the camera pixel are required for reliable decoding. Synchronization
of cameras for communication is challenging due to the jittery nature (owing to software limitations and hardware design
errors) of the frame-sampling using CMOS sensors that are widely used in mobile devices today.

8. Experimental calibration and validation

In this section we describe the experiments we conducted to validate our screen–camera channel model. The keymotive
of these experiments was to determine the channel capacity in a real screen–camera channel.
Measured channel capacity. It is a fact that it not possible to measure capacity of any communication channel directly,
hence we aim to determine capacity indirectly by substituting the measured SINR, perspective distortion factor α and noise
power3 into the analytical capacity expression derived in (6). Our experiments were aimed at measuring these specific
parameters that aid in determining capacity values for an example test channel that we considered. However, we note that
these experiments as well as the findings can be applied to a generic camera communications channel—with appropriate
specifications of the transmitter and receiver considered. In this paper, we estimate capacity of screen–camera channel by
substituting themeasured values of SINRα , perspective distortion factorα, and noise varianceσ 2

n in Eq. (6). Themeasurement
procedure for α, SINRα are explained in detail in Sections 8.3 and 8.4 respectively.

8.1. General experiment methodology

The experiment setup, as shown in Fig. 5, consisted of a 21.5 inch Samsung LCD screenmonitor of resolution Rs = 1920×

1080 pixels, that served as the screen-transmitter, and a 8 MP camera of a ASUS Transformer Prime tablet (that ran Android

3 We encourage the reader to refer to [15] for details on the AWGN noise measurement procedure.
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a b c

Fig. 6. (a) Capacity in bits/camera pixel (Ccampixel(α)) for different perspective scaling (α) of screen image on camera (b) Throughput in bits/frame vs. α for
different blocksizes (1 frame = Rcam pixels, B = 152 means 15 × 15 pixel block on screen) (c) SINR per block vs. α for different blocksizes B.

OS version 4.1), that served as the camera receiver. The camerawas operated at a resolution of Rcam = 1920×1080 andwith
no image compression. Exposure setting and white-balancing on the camera were set to auto (default setting in Android
devices). All the experiments were conducted under the same environment lighting conditions with the measurements
taken indoors in a lab-conference room setting equipped with fluorescent ceiling lighting. We fixed the screen and tablet
onto stands so as to ensure the least amount of error in the measurement of distance and angle between the tablet and
camera image planes. The raw dataset for our analysis consisted of image snapshots of the screen, displaying a chessboard
pattern (blocks of B pixels each), captured by the tablet’s camera at resolution of Rcam pixels using a standard Android
image capture application. The camera parameters were obtained through a well known calibration toolbox [21]. The pixel-
intensity of a white block was set to 255 and the black at 254 on the screen (the average intensity Pavg = 140). The image
datasets consisted of 100 snapshots of the screen displaying the chessboard pattern, with the ceiling lights ON (an another
dataset with lights OFF), at a set of distances, angles, and block-sizes. We changed angle between screen and camera by
rotating the screen with respect to the X axis; distortions can be considered symmetrical on X and Y axis.

Table 2 summarizes the list of measured parameters from our experiments, along with the screen and camera
specifications.

8.2. Channel capacity

We evaluate capacity in bits per camera pixel as Ccampixel(α) =
Ccam(α)

Ws
2 ∥Rcam∥

.

8.2.1. Capacity vs. perspective distortion factor
We plot the measured capacity in bits/camera-pixels for different perspective distortion factor values in Fig. 6(a) along

with the analytical values, and observe a good fit (maximum errormargin of 3%) between the two. The distortion factor α on
the x-axis is comprehensive of composite distortion due to perspective scaling as well as blur. We can observe that, about
1 bit/camera pixel is achievable even when the screen is perspectively scaled onto only 15% on each dimension (α = 2%)
of the camera image. For the LCD screen-tablet camera system we used, this translates to a distance of 2.6 m. At a sampling
rate of 30 fps5 and at a resolution of 1920 × 1080, a data-rate of 31 Mbps is achievable from an average-sized LCD monitor
and a tablet camera. Assuming all parameters are the same, except the size of the screen is doubled, the same data-rate can
be achieved at twice the range. Such data-rates are even sufficient for streaming a video.

8.2.2. Throughput with block-size
We plot the screen–camera communication throughput from Eq. (7) in bits-per-frame ( Tblk(α,B)

kWfps
) for different values of

perspective distortion factors, and block sizes B, in Fig. 6(b). We can observe from Fig. 6(b) that capacity falls of steeply as
α becomes smaller for smaller block-sizes; for example, at B = 152 and 302. The trend can be attributed to the low SINR at
those perspectives as IPI increases due to the dense arrangement of bits (pixels carrying unique information). A block-size
of 1 does not follow this trend as the gain from the capacity scaling due to more number of parallel channels compensates
for most of the loss in SINR, however, trading-off with receiver complexity to detect the very low SINR signal.

4 Due to the screen’s residual back-lighting, intensities in [0, 25] range did not cause any change in screen brightness.
5 Typical frame-rate on smartphone/tablet cameras is 30 fps. iPhone 5S has a 120 fps capability [22].
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Table 1
Ratio of capacity over existing prototype’s throughput (3× indicates the existing prototype
is 1/3rd of capacity).

COBRA PixNet-C PixNet QR-P

4.5× 3× 2.5× 7×

Table 2
Table of screen, camera and measured parameters.

Parameter Value

Cam pixel side-length scam (µm) 65
Cam focal length fcam (×scam) 1573
Screen pixel side-length st (mm) 0.248
Principal point (ox, oy) (960.1, 539.2)
Noise-variance σ 2

n 101.28
Lens-blur variance σ 2

blur (×s2cam) 0.25
∥Rs∥(=∥Rcam∥) (pixels) 1920 × 1080
Focal-distance df (m) 0.39

8.2.3. Throughput comparison with existing prototypes
We compare our MIMO capacity estimates (Tblk(α, B)) with the throughput of existing prototypes of screen–camera

communication. In PixNet [3], bits are modulated onto LCD screen pixels that are decoded by an off—the shelf point and
shoot camera. PixNet uses OFDM for modulation and adds (255, 243) Reed–Solomon coding for error correction. Consistent
with the definition of a block in our model, PixNet uses a block-size of 84 × 84. PixNet was evaluated using a 30 inch LCD
screen as the transmitter and 6 MP CCD camera at the receiver, and up-to a maximum distance of 14 m. The authors also
reported the throughput from their implementation of QR codes, whichwewill call QR-P. The QR-P uses a version 5 QR code
with a block size of 5×5 pixels, and that encodes 864 bits per QR code. On the other hand, COBRA [5] uses color barcodes to
communicate between smartphone screen and camera, and was evaluated up-to a maximum distance of 22 cm, and with
a block size of 6 × 6 pixels. The authors of [5] have also implemented a smartphone (receiver) version of PixNet, which we
will call PixNet-C, where the settings remained the same as original PixNet system.

In Table 1, we report the ratio of throughput from Eq. (7) to the throughput of the these prototypes, for the same
parameter settings, of block size and α as in their existing implementations. Our estimates indicate that there is room for
at least 2.5× improvement in throughput when compared to capacity. The discrepancy in throughput in these existing
prototypes can be attributed to different parameter choices. For example, PixNet uses OFDMmodulation and coding which
add communication overheads, which have to be incorporated in a limited spatial bandwidth available on the screen. COBRA
also incurs loss in throughput due to coding overheads, and additionally the small block size allows for more interference,
reducing SINR. COBRA minimizes blur by using repetitive color patterns and intelligent placement of those patterns on
the screen. While this strategy minimizes the effect of interference from neighboring pixels, the repetition causes under-
utilization of the spatial bandwidth. In general, our findings, supported by these exemplar comparisons, open up interesting
questions in the design space for improving information throughputs of screen–camera communication systems.

8.2.4. Motion-blur experiments
To understand the effect of blur alone on the capacity we first plot the measured capacity Ccampixel(α) at a fixed

perspectives (distance of 1 m where α = 0.5 and 5 m where α = 0.5 and at angle = 0) in Fig. 8. We observe that blur
can significantly affect capacity, for example we can observe that the capacity drops drastically when the blur levels are
high even when the perspective scaling is only 50%. We observe that the capacity drop is steeper at long distance. We note
that a blur kernel of size 1 pixel indicates no blur and at this perspective (α value of 1) the capacity is 6 bits/camera-pixel
for the distance and angle between the screen and camera in this experiment.

To understand the effect of motion blur on the signal quality and the effectiveness of de-blurring, we conducted an
experiment where we captured a video stream of the screen displaying a chessboard pattern with white and black blocks
of size 15 × 15 pixels. During the course of this experiment the camera was hand-held for one case, and the other case, the
hand-held camera was intentionally moved (in a horizontal waving pattern) at a nominal speed approximately equivalent
to when the user is walking. The distance between the screen and camera was 1 m; at this distance only 50% of camera
image is occupied by the screen transmitter pixels. We then applied a Weiner filter based deblurring function available in
MATLAB [23] to each of the 100 consecutive images from the video-streams in both cases (see Fig. 9(a)–(d)). Similar to the
previous experiments, we then estimated the capacity of screen–camera communication for these two cases by estimating
the average perspective distortion factor and the average SINR from the deblurred images. Our estimates indicated a capacity
value of 5 bits/camera-pixel for the hand-held case and about 2 bits/camera pixel for the motion case. With reference to
Fig. 8 our findings from this experiment indicates that even when the camera is hand-held the capacity of screen–camera
communication can be reached as close to as it is when the camera is stationary—with the motion de-blurring features
available in off the shelf cameras. For the motion case, without de-blurring, the capacity is almost zero due to the large
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a b c

Fig. 7. (a) SINR for different perspective scaling (α) of screen image on camera (b) Perspective distortion α vs. angle between screen and camera (c)
Perspective distortion factor α vs. distance between screen and camera.

number of bit errors due high inter pixel interference. However, we observe that de-blurring can help achieve a reasonable
data capacity. From this experiment we infer that by using a simple filtering operation the capacity can be improved to a
reasonable amount. We also infer, based on Fig. 8, that the amount of blur is approximately 1 pixel for the hand-held case
and about 15 pixels for the motion case, in each dimension.

8.3. Perspective distortion factor

The objective of this experimentwas to determine the perspective distortion factorα fromourmeasurements to estimate
capacity. Since α quantifies the relative area occupancy of the screen in the camera image, we measured the average
distortion factor as,

αm =
∥R∥

∥Rcam∥

1
(1 + 4σ 2

blur)
(8)

where ∥R∥ represents to the total number of camera pixels that correspond to the imaged screen pixels, and Rcam is the
resolution of the camera. In Fig. 7(b) and (c) we plot αm as a function of angle and distance, respectively. As can be seen from
these plots themeasured spatial-bandwidth fits well with themodel (maximum errormargin of 1.5%). The αm reported here
is the perspective distortion factor for our LCD—tablet (camera) channel. The distance and angle at which αm = 0 in these
plots can be construed as the communication range of a systemwith the same screen and camera parameters. For example,
for a screen with 10× the size (a billboard [24]) the distance range is close to 10× (about 40 m) that of our experimental
system.

8.4. Signal-to-interference noise ratio

To facilitate capacity estimation, we measured the signal-to-interference noise ratio SINRαmeas in our experimental
system.6

We plot SINRαmeas vs. α, along with the analytical SINRα from Eq. (5), in Fig. 7(a). We can observe from that our SINR
measurements are in close agreement with our model (maximum error margin of 1.5 dB). We plot the per-block measured
SINR SINRblk(α, B) using SINRαmeas vs. α for different block-sizes B in Fig. 6(c).

We can infer from Fig. 6(c) that, larger the block higher is the per-block SINR. We can also observe that for a block-size
B = 1, though it provides large number of parallel channels for multiplexing, the signal energy on each channel is much
lower than the noise level, even for medium values of α. In this case, additional signal processing is necessary at the receiver
which can help decode the low SINR signal with minimal errors. In general, the size of blocks becomes a primary design
choice as it affects SINR performance.

9. Conclusion

In this paper, we discussed the applicability of cameras for communication where cameras could be used as receivers
for data transmitted in the form of time-varying 2D barcodes from display screens. We modeled a screen–camera channel
using camera projection theory, particularly addressing perspective distortions inmore detail than priorworks.Wemodeled

6 We encourage the reader to refer to our conference paper for the details on the measurement procedure.
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Fig. 8. Capacity vs. blur.

(a) Handheld. (b) Deblurred handheld. (c) Motion. (d) Deblurred motion.

Fig. 9. Illustration of motion blur and de-blurring on images taken by a hand-held camera ((a), (b)), and when camera is in motion ((c) and (d), phone was
hand-held and swayed from left–right at nominal speed).

and studied the effect of perspective distortion on the information capacity of screen–camera communications. Through
extensive in-lab calibration experiments we found that, even with the frame-rate limitations in off-the-shelf mobile
cameras, data-rates of the order of hundreds of kbps-to-Mbps is possible even when the 2D barcode from the screen images
onto only a small portion of the camera image. Our experimental capacity bound was also in good agreement with the
theoretical bound. Our findings indicate that camera communications is still promising for medium sized data-transfer
or even streaming applications; such as downloading a file from a smartphone screen or streaming a movie from a large
display wall. Our estimates indicate that current prototypes have only achieved less than half their capacity, which means
that designing efficient techniques to address perspective distortions is still an open problem for building high-data rate
camera communications.
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