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Abstract—Cameras are ubiquitous and increasingly being used
not just for capturing images but also for communicating
information. For example, the pervasive QR codes can be
viewed as communicating a short code to camera-equipped
sensors and recent research has explored using screen-to-camera
communications for larger data transfers. Such communications
could be particularly attractive in pervasive camera based ap-
plications, where such camera communications can reuse the
existing camera hardware and also leverage from the large
pixel array structure for high data-rate communication. While
several prototypes have been constructed, the fundamental ca-
pacity limits of this novel communication channel in all but
the simplest scenarios remains unknown. The visual medium
differs from RF in that the information capacity of this channel
largely depends on the perspective distortions while multipath
becomes negligible. In this paper, we create a model of this
communication system to allow predicting the capacity based
on receiver perspective (distance and angle to the transmitter).
We calibrate and validate this model through lab experiments
wherein information is transmitted from a screen and received
with a tablet camera. Our capacity estimates indicate that tens of
Mbps is possible using a smartphone camera even when the short
code on the screen images onto only 15% of the camera frame.
Our estimates also indicate that there is room for a minimum
of 2.5x improvement in throughput of existing screen - camera
communication prototypes.

I. INTRODUCTION

The pervasive use of cameras has led to not only a diverse
set of camera-based sensing applications but also to novel
opportunities to use cameras to communicate information [10].
Recent efforts to standardize camera communications [3]
attests the importance of using camera for communications.
Camera based communication is characterized by highly di-
rectional transmission and reception along with low-multipath
interference rendering it virtually interference-free. Thus, it
is particularly attractive for dense congested environments
where RF communication data rates are largely limited due
to interference, for security applications where the directional
transmissions lead to lower probability of interception or
observability of signals, or for situations where the high di-
rectionality leads to improved localization of the transmitters.
Camera based communication can leverage existing cameras
for communicating with the ubiquitous light emitting devices.
Information could be transmitted from TVs, monitors, bill-
boards, and even projector screens. We believe, therefore, that
camera-based communications can be an attractive alternative
or supplement to RF wireless based communication.

Today, cameras are frequently used to read QR-codes,

however, which can be considered as a form of visual
communication wherein the camera acts as a receiver. The
ubiquitous use of QR codes motivates to build novel camera
communication applications, where pervasive display screens
could be modulated to send time-varying QR codes to be
decoded by video cameras. The large pixel array elements
of the screen and camera can be leveraged to send high
volume of data through short time-varying 2D barcodes. For
example, a user could point a camera to a desktop PC or
even a smartphone screen displaying the time-varying code
to download a file or perhaps a video. Recent research has
further explored this direction by designing prototypes wherein
time-varying 2D barcodes can be transmitted from desktop
monitors [17], [20] and smartphone screens [14] to a camera
receiver. While these works have designed and measured the
performance of specific point solution in this space, how much
room for improvement exists in these solutions or if there is
any bound on performance still remains unclear.

QR-code recognition is typically limited to short distances
of cm and the camera usually has to be well-aligned so that
the code covers most of the camera image. The throughput is
largely affected by any change in perspective (position or ori-
entation) of the camera with the transmitter, due to perspective
distortions caused by the nature of camera imaging. When the
camera is far from the screen (or at a highly oblique angle)
light rays from multiple transmitter elements (pixels of the
screen) start to interfere on one or more camera pixels, causing
inter-pixel interference (IPI), and thus reducing received signal
quality and throughput.

To our knowledge, only few projects have begun to inves-
tigate information capacity limits of camera communication
using time-varying 2D barcodes. Hranilovic et.al. [17] analyze
the capacity and prototype a screen - camera system where a
CCD camera was placed at a fixed distance from a laptop
screen, but does not account for the interference between
pixels and the dependence on perspective. The model in [10]
can be considered as a simplified case of screen - camera
channel where the transmitter and receiver always remain
aligned, while ignoring the quantization effects of real camera
receivers.

In this paper, we develop a model for the information
capacity of screen-camera communication that accounts for
perspective dependent (position and orientation) distortions
that dominate this channel. The model incorporates projection
theory from the computer vision domain into a Shannon



capacity formulation. Specifically, our contributions in this
paper are:

• A screen-channel model that accounts for perspective
distortions and realities of camera receivers such as quan-
tization limitations. We model the camera perspective
distortion in detail using camera imaging theory.

• Experimental calibration and validation of the model
through extensive lab measurements using a screen trans-
mitter and a tablet camera receiver. The study parameters
include distance, angle, granularity or blocksize of the
code (number of pixels per transmit bit).

• Estimation of capacity for screen-camera communica-
tion. We compute capacity experimentally by measuring
channel and signal quality metrics, such as bandwidth
and signal-to-interference-noise ratio, and validate by
substituting the same into the derived analytical capacity
expression.

• Compare capacity estimate with throughput of existing
screen-camera communication prototypes and show that
there is a large room for improvement.

II. BACKGROUND ON CAMERA COMMUNICATION

Camera based communication is a class of visible light
communications (VLC) [8], where information is modulated
through light transmitted from optical emitters such as LEDs
and LCDs, and received by photo-receptor elements at the
receiver (in a camera the image sensor pixels are the photo-
receptors). The inherent 2D spatial array structure of the image
sensor pixels can be leveraged to create a multi-input-multi-
output (MIMO) channel by using arrays of optical emitter
elements to transmit information through a concept called
visual MIMO [10]. In this regard, the array of LEDs in
lighting arrays and commercial display devices, LCD pixels in
display screen, projector screens, or printed material1 qualify
as potential transmitters in camera based communications.

A camera channel is analogous to a RF MIMO channel
where each pixel element of the camera acts as a receiving
antenna and the light emitting elements as the transmit anten-
nas. In RF MIMO, the signal quality at each receive antenna
element is a function of the the path-loss in the channel,
multipath fading, and the interference from other transmit
antennas — also called co-channel interference [7]. A camera
channel has negligible multipath fading but experiences visual
distortions in the image due to path-loss in light energy,
and interference from other light emitting elements. Unlike
RF channels, the camera channel is only partially random
(where randomness is mainly due to background noise) and
can potentially be modeled using classical camera imaging
theory.

Noise in camera channels typically have additive-white-
Gaussian-noise (AWGN) characteristic [23]. Noise in camera
pixels manifests as noise current generated due to the photons
from the ambient lighting and those generated from the imag-
ing circuit [19]. The noise current in a pixel can be considered

1Barcodes such as QR codes printed on papers qualify as time-invarying
message

signal independent when the ambient lighting is sufficiently
high compared to the transmit signal, such as in office rooms
or outdoors [21]. At the output of a camera, the noise current
in each camera pixel is a quantized quantity and manifests as
fluctuations in the intensity (digital value of the sensor output)
of that pixel; the noise energy accumulated in each pixel can
be quantified using the mean variance in the pixel intensity.
Noise from background lighting is typically considered to be
uniform over the image sensor (photoreceptor), and quantified
through the AWGN noise-variance �

2
n [21], [23].

Considering the deterministic nature of perspective distor-
tions and the AWGN channel, capacity (measured in bits/sec)
of camera based communication can be expressed using Shan-
non Capacity formula as,

C = Wfps(Wslog2(1 + SINR)) (1)

where SINR represents the signal-to-interference-noise
ratio per pixel, Wfps is the camera-frame rate or the re-
ceiver sampling rate in frames-per-second. Ws is the spatial-
bandwidth, which denotes the number of information carrying
pixels per camera image frame. The spatial bandwidth is
equivalent to the number of orthogonal channels in an RF
MIMO system. In the rest of the paper, we will use the terms
screen transmitter and screen interchangeably to refer to the
variety of light emitting array equipped display devices that
can be used as transmitters in camera communication, and the
term image to refer to the camera sampled image.

III. SCREEN - CAMERA CHANNEL

In screen - camera communication, information is modu-
lated in the light intensity of the pixel elements of a screen
transmitter that are received and decoded from the camera
image pixel intensity at the receiver. The pixel intensity in a
camera image is a digital quantity2 that is proportional to the
amount of photon current generated on the pixel from the light
energy accumulated over its area (smaller the pixel area lesser
the light intensity it accumulates). When the light emitting
screen pixel is at the focus of the camera lens (and hence
the camera pixel) all the light rays from the screen pixel are
focused onto the camera pixel and thus incurring no loss of
energy on the pixel. But when the screen pixel is perturbed
(in position or orientation) from the focus of the camera, due
to the finite aperture size of the camera lens, not all light rays
converge on the camera pixel resulting in reduced accumulated
energy and hence a smaller pixel intensity value. The loss in
the received light intensity on a camera pixel results in the
visual deformation in size or shape of the imaged screen pixel;
an effect that is termed as perspective distortion.

A. Perspective Distortions

Perspective distortions are caused due to the nature of the
camera imaging mechanism and manifest as deformation in
size and shape of the captured object (the light emitting
screen pixel) on the image, resulting in visual compression or

2cameras pixels typically have 8 bit monochromatic depth where the values
span 0 (dark)-to-255 (bright)



Fig. 1. Illustration of perspective distortion in screen-camera channel. Imaged
screen pixels are blurry, and reduced in size in full-frontal view and also in
shape in angular view.

magnification of the object’s projection on the image. When
the screen is at an out-of-focus distance from the camera lens
(or at an oblique angle), these distortions become prominent
and lead to interference between adjacent screen pixels on the
camera image, what we term as inter-pixel interference or IPI.
The combined effect of background noise and IPI degrades the
received signal quality and hence reduces information capacity
in camera channels.

For example, let us consider that blocks of screen pixels
are illuminated by a chessboard pattern and imaged by a
camera as shown in Figure 1. We can observe that perspective
distortions cause the screen pixels to deform in size when
the screen is not at the focus of the camera, and in shape
when it is not frontally aligned (viewed at an angle) with the
camera. If the screen pixel was at the focus, and assuming the
screen and camera have the same resolution, it’s image on the
camera should be the same size as one pixel. But in reality,
the light rays from the screen pixel may not end exactly on
camera pixel boundaries and there is some area surrounding
it that accumulates interference. This area of misalignment
and the size (or shape) of the imaged screen pixel will be
perspective (position and orientation) dependent and accounts
for distortion due to perspective scaling of the pixel area.

We can also observe from Fig. 1 that the imaged screen
pixels are blurry, especially at the transition regions between
white and black blocks. This blur effect is attributed to the
camera lens and more formally termed as lens-blur or point-
spread function (PSF) in computer vision theory [16]. The
PSF represents the response of an imaging system to a point
source. PSF causes the received light energy to spread to areas
outside the pixel, where the amount of spread depends on the
type of lens being used. Lens-blur can be understood as a
low-pass filtering phenomenon that distorts the high-frequency
components in the image, such as edges and high contrast
regions [13]. In the screen - camera channel this translates to
distorting the pixels at the transition regions between brighter
(high intensity) and darker (low intensity) pixels, and leads to
interference (IPI) between neighboring pixels as seen in Fig. 1.
Since the area and the maximum energy that can be sampled
in each camera pixel is finite (a camera pixel output is a digital
quantity), IPI leads to an effective reduction in signal energy
per pixel.

Unlike fading in RF wireless channels, perspective distor-
tions are deterministic, and can be modeled using camera
imaging theory as exercised in this paper. As shown in

Fig. 2. Screen - Camera Channel Model

Fig. 2, we will treat the screen-camera channel distortions as a
composite effect of signal energy reduction due to perspective
scaling of pixel area owing to camera projection, signal energy
reduction due to lens-blur, and background photon noise.
Perspective Distortion Factor:

Let us consider that the signal energy on each pixel is
weighted by perspective distortion factor ↵ that represents
the effective area scaling (down) due to perspective scaling
and lens-blur in the camera imaging process. Based on its
definition this factor takes values such that 0  ↵  1, where
↵ = 1 indicates that the screen pixel is at the focus of the
camera and also incurs no signal reduction due to lens-blur,
and ↵ = 0 indicates that no part of the screen-pixel gets
imaged on the camera pixel.

As discussed earlier, lens-blur (PSF) causes the signal
energy to leak outside the area of a single pixel (on both X
and Y dimensions of the pixel). Camera lens-blur (PSF) can be
approximately modeled as a 2D gaussian function [6], [16],
where the amount of spread is quantified using its variance
�

2
blur (a large variance indicates more blur3. In our model we

account for lens-blur distortion using the factor ↵b = 4�2
blur –

to account for the spread on the four sides of square pixel. If
the area of a pixel is s

2
cam (where scam is the side length of

the camera pixel), then the effective signal energy on that pixel
will be proportional to s

2
cam

1
1+↵b

. We treat this signal energy
reduction is equivalent to the effective reduction in pixel area
over which the signal accumulates.

Let ↵p represent the perspective scaling of the area of an
imaged screen pixel when perturbed from camera focus. We
model this perspective scaling factor and derive a general
expression for ↵p in Appendix A using camera projection
theory [15], that uses the camera projection matrix which maps
the location of the screen pixels from the world coordinate
frame to the camera coordinate system. As can be seen from
equation (17) ↵p is a function of the distance and angle
between the screen and camera. In the simplest case, where
the screen and camera are perfectly aligned at distance d, this
factor can be expressed as,

↵p = (
fcamst

scamd

)2 (2)

where fcam, st are the focal length of the camera and side-
length of the screen pixel, respectively.

We can observe from equation (2) that, ↵p = 1 when the
camera is at the focus (d = fcam) and if scam = st. But in

3For an ideal pin-hole camera energy spread over a pixel would be uniform
and hence �2

blur

is infinitesimally small



Fig. 3. Illustration of interference between pixel-blocks due to perspective
distortion for SINR computation

reality, the physical size of a screen and camera pixel may
not be the same. In our model we treat the camera focal point
as the distance df = fcamst

scam
, what we call focal-distance. In

reality, we envision that communication distances in screen-
camera communication applications are much larger than df

(for example, df = 39cm for the test LCD screen-tablet
camera system we evaluate in section V).

If ↵ denotes the average distortion in each pixel of the
camera image, we express ↵ as the effective pixel area
reduction due to perspective scaling factor ↵p on the reduced
pixel area due to lens-distortion ↵b = 4�2

blur,

↵ = ↵p ⇥
1

(1 + ↵b)
(3)

B. Signal-to-Interference Noise Ratio

We quantify the quality of the signal at the camera receiver
in the screen-camera channel using the average SINR per
pixel,

SINR↵ =
↵P

2
avg

(1� ↵)P 2
avg + �

2
n

(4)

where, Pavg denotes the average transmit pixel intensity (for
example, a screen-camera system using black (0) and white
(255) intensities for transmission will have Pavg = 127.5).
By using the digital value of the average signal Pavg , instead
of its analog equivalent which is the pixel photon-current, our
model accounts for the quantization limitations in cameras.
The 1 � ↵ term in equation (4) quantifies the fraction of the
pixel area affected by interference. �2

n denotes average AWGN
noise energy in each pixel, and since noise uniformly affects
the entire area the pixel it does not depend on the scaling
factor ↵.

Pixel blocks: A small value of ↵ means more screen pixels
interfere on one camera pixel. In reality, screen pixels are very
closely spaced (fraction of a mm), and so, IPI will be inevitable
even at short distances (since ↵p is very small as st is very
small) resulting in very low SINR. A potential solution is to
leverage the MIMO structure of the screen-camera channel,
by grouping multiple screen pixels in a block to transmit
with same intensity and combine those imaged pixels from
the camera image to improve SINR. This process is similar to
the diversity combining used in RF MIMO. Though, using the
entire screen to transmit just one intensity value is wasteful;
a better technique is to divide the screen into a set of blocks

where intensities (bits) are multiplexed over each set and each
subset block has a group of pixels transmitting with the same
intensity.

The perspective scaling factor ↵p derivation (in Ap-
pendix A) accounts for the misalignment between screen and
camera pixels as it uses camera projection theory that maps the
screen pixels to camera coordinates. Error due to misalignment
will project as deviation in the distortion factors for each pixel.
By taking an average value over the camera image this error
becomes negligible. Though, one can assume some vibrations
on the pixels, especially when the camera is not stable4, which
means that the area of misalignment can keep changing with
perspective.

The impact of misalignments, and also lens-blur, will be-
come smaller as one block covers more pixels on the camera
and only affect pixels near the boundary as shown in Fig.3.
This is because, all the neighboring pixels for non-boundary
block is a pixel from the same parent block transmitting
the same intensity. This implies that ‘interference’for a non-
boundary pixel is negligible, even for a non-zero blur or
pixel misalignment, as the same signal adds-up on the pixel
enhancing signal energy of that pixel, in which case the SINR
of that pixel converges to the average signal-to-noise ratio. As
a convention in our model, we treat a pixel block as a boundary
block if it is not all surrounded by blocks with same intensity.

In general, the expression for the average SINR per imaged
block in a screen-camera channel, using B pixel square blocks
of a screen can be given as,

SINRblk(↵, B) = [�1SINR↵ + �2SNR↵] , 8↵B > 4

= SINR↵ 8↵B  4
(5)

where SINR↵ is from equation 4, SNR↵ = ↵Pavg

�2
n

, and
the coefficients �1 = 4(

p
↵B � 1) and �2 = (

p
↵B � 2)2

represent the number of boundary-blocks and non-boundary
blocks, respectively. We consider that minB = 4 (i.e. 2 ⇥ 2
pixels), and ↵B  4 indicates that each B screen-pixel block
projects onto a maximum of 1 camera pixel area and ↵B > 4
indicates that the block projects onto multiple camera pixels.

IV. CAPACITY UNDER PERSPECTIVE DISTORTIONS

Recalling the capacity expression from equation. (1), we
can express the capacity of screen-camera communication in
bits/sec as,

Ccam(↵) =
Wfps

2
↵||Rcam||log2(1 + SINR↵) (6)

where SINR↵ is the signal-to-interference noise ratio from
equation (4), ||Rcam|| denotes resolution of the camera and
Wfps denotes the frame-rate of the camera in frames-per-
second. The factor of half in the frame-rate is attributed to the
synchronization mismatch between screen-pixel modulation
rate and camera sampling rate or frame-rate. To avoid aliasing

4definitely true for handheld cameras, but also applies for many more
stationary scenarios



between two successive sampled samples of the screen-pixel
by the camera, the maximum sampling rate is halved -
according to Nyquist sampling theory.

The term ↵||Rcam|| represents the total number of camera
pixels that contain the image of the screen pixels, and is
essentially the spatial-bandwidth term Ws in equation 1. This
is very different from RF MIMO, where, all the receiver
antennas can potentially receive the signal, independent of
distance between the transmitter and receiver. In a camera
receiver, due to its LOS nature, the signal from each transmit
element is always limited to a finite number of, but never all,
receive elements.

Throughput when using pixel-blocks: As discussed ear-
lier, using multiple screen pixels to transmit the same bit (same
pixel intensity) and diversity combining them at the camera
image will improve SINR. But using multiple screen pixels
for a single bit will effectively reduce the total number of
parallel channels (number of unique bits) available between the
screen and camera pixels, and hence reducing the throughput
gains achievable by multiplexing bits on the parallel channels.
This nature of tradeoff between the multiplexing gains on
throughput and diversity gains on SINR is analogous to the
classical multiplexing-diversity tradeoff in RF MIMO [11],
since the screen-camera channel MIMO structure is similar
to a RF MIMO channel with a finite number of transmit and
receive antennas.

The capacity in equation (6) represents the upper bound on
the throughput achievable in screen-camera communication.
By grouping pixels into blocks the SINR improves and num-
ber of bit errors are reduced, but at the cost of a reduced
throughput. If Tblk(↵, B) represents the maximum throughput
of screen-camera communication for distortion ↵, and block-
size B, then

Tblk(↵, B) =
Wfps

k

(
↵||Rcam||

B

)log2(1 + SINRblk(↵, B)),

(7)
where ↵||Rcam||

B represents the number of parallel channels
for multiplexing, and SINRblk(↵, B) is from equation (5).

The factor k on the frame-rate of the camera is attributed to
the practical synchronization limitations in camera (k � 2 de-
pending on the camera). The factor k implies that a minimum
of k samples of the camera pixel are required for reliable
decoding. In practice, to minimize detection and decoding
errors, the camera frame-rate has to be synchronized with the
modulation rate of pixel intensities on the screen as well as the
refresh rate of the screen (typically 120Hz). Synchronization
of cameras for communication is challenging due to the jittery
nature (owing to software limitations and hardware design
errors) of the frame-sampling using CMOS sensors that are
widely used in mobile devices today.

V. EXPERIMENTAL CALIBRATION AND VALIDATION

In this section we describe the experiments we conducted
to validate our screen-camera channel model and estimate the
capacity of screen-camera communication. In particular, we

Fig. 4. Experiment setup showing LCD screen displaying black and white
blocks of B = 60⇥ 60 pixels each

show the effect of perspective (position and orientation) and
design parameters such as screen pixel block-size on data-rates
of camera communication. We compare our estimates of the
maximum throughput with those of existing prototypes.

A. Objectives

The experiments discussed in this section aim at four key
objectives;

1) To estimate capacity using signal-to-interference noise
ratio and ↵ measurements and compare with analytical
channel capacity from equation (6).

2) To measure the perspective distortion factor ↵ and
validate it with the analytical model from equation (15).

3) To measure the SINR and validate it with the analytical
model from equation (4).

4) To determine the noise variance �

2
n through measure-

ments.

B. General Experiment Methodology

The experiment setup consisted of a 21.5inch Samsung LCD
screen monitor of resolution Rs = 1920 ⇥ 1080 pixels that
served as the screen-transmitter and a 8MP camera of a ASUS
Transformer Prime tablet (that ran Android OS version 4.1)
that served as the camera receiver. The camera was operated
at a resolution of Rcam = 1920 ⇥ 1080 and with no image
compression. Exposure setting and white-balancing on the
camera were set to auto (default setting in android devices),
though the lighting conditions were retained same for all our
experiments. All our measurements were taken indoors in a
lab-conference room setting equipped with fluorescent ceiling
lighting5. We fixed the screen and tablet onto stands so as to
ensure the least amount of error in the measurement of distance
and angle6 between the tablet and camera image planes. Our
raw dataset for analysis consisted of image snapshots of the
screen captured by the tablet’s camera at resolution of Rcam

pixels using a standard image capture android application.
Measurements were taken by capturing snapshots of the

screen displaying a chessboard pattern (blocks of B pixels
each) on the LCD screen as shown in Fig. 4). The pixel-
intensity of a white block was set to 255 and the black at 25

5typical office room lighting is 350-500 lux which is considered as ‘bright’
6we cross-checked the angles using the rotation matrix determined from

accelerometer and gyroscope readings



on the screen (the average intensity Pavg = 140). The image
datasets consisted of 100 snapshots of the screen displaying
the chessboard pattern, with the ceiling lights ON (an another
dataset with lights OFF), at a set of distances, angles, and
block-sizes. We changed the angle by only rotating the screen
with respect to the X axis, since individual distortions on either
X or Y axis can be considered symmetrical.

Camera Calibration: We obtained the the camera parame-
ters, such as the focal length, pixel-side length, etc., through
camera calibration procedure using the Caltech calibration
toolbox [4]. Using the calibration parameters we determined
that focal-distance to be df = 39cm. We also measured the
blur variance �

2
blur by experimentally measuring the PSF of

the tablet camera. The experiment involved emulating a point
light source by illuminating one pixel on the LCD screen, and
capturing its image from a distance of df (so as to minimize
any perspective scaling). Our results indicated that a Gaussian
curve with a variance �

2
blur = 0.25 was the best fit to our

measurements on each dimension. Table II summarizes the list
of channel measurements from our experiments, along with
measured screen and camera parameters.

C. Channel Capacity

We evaluate the measured capacity of screen-camera chan-
nel by substituting the measured values of SINR↵, perspec-
tive distortion factor ↵ (and ↵p, �blur), and noise variance �

2
n

in equation.( 6). We evaluate capacity in bits per camera pixel
as Ccampixel(↵) =

Ccam(↵)
0.5Ws||Rcam|| .

The measurement procedure for ↵, SINR↵, �

2
n are ex-

plained in detail in sections V-D, V-E , and V-F respectively.
Capacity v/s Perspective distortion factor ↵:
We plot the measured capacity in bits/camera-pixels for

different perspective distortion factor values in Fig. 6 (a). The
distortion factor ↵ on the x-axis is comprehensive of the ↵s
obtained for each distance and angle combination. Fig. 6 (a)
shows the our estimate from measurements fit well with the
model (maximum error margin of 3%).

We can observe that, about 1bit/camera pixel is achievable
even when the screen is perspectively scaled onto only 15%
on each dimension (↵ = 2%) of the camera image. For the
LCD-tablet system we used, this translates to a distance of
2.6m ( df

0.15 ). At a sampling rate of 30fps7 and at a resolution
of 1920⇥ 1080, a data-rate of 31Mbps is achievable from an
average-sized LCD monitor and a tablet camera. Assuming
all parameters are the same, except the size of the screen is
doubled, the same data-rate can be achieved at twice the range.

Throughput with Block-size: We plot the screen-camera
communication throughput in bits-per-frame (Tblk(↵,B)

kWfps
) versus

↵ for different block sizes B in Fig. 5 (b), where Tblk(↵, B) is
from equation (7). The steep fall-off on capacity (see B = 152

and 302) at small value of ↵ is attributed to the low SINR
at those perspectives. The trend in Fig. 5 (b) indicates that,
while a small blocksize may yield considerable throughput at

7Typical frame-rate on smartphone/tablet cameras is 30fps. IPhone 5S has
a 120fps capability [5]

COBRA PixNet-C PixNet QR-P
4.5x 3x 2.5x 7x

TABLE I
RATIO OF CAPACITY OVER EXISTING PROTOTYPE’S THROUGHPUT (3X

INDICATES THE EXISTING PROTOTYPE IS 1/3RD OF CAPACITY)

small distance (or angles) it may be better to switch to a larger
blocksize at farther distance (or angle), and if such adaptations
are not possible then it is judicious to use an optimal blocksize.
For example, for the blocksizes in Fig. 5 (b) B = 302 looks
close to optimal.

Comparison with Prototypes: We compare our through-
put estimate (Tblk(↵, B)) with existing prototypes of screen-
camera communication. PixNet [20], modulates data using
OFDM and adds reed-solomon coding, and display using black
and white blocks of size 84⇥ 84. PixNet uses a 30inch LCD
screen as the transmitter and 6MP CCD camera at the receiver,
and tested up-to a maximum distance of 14m. The authors
also reported the throughput from their implementation of QR
codes, which we will call QR-P.

COBRA [14] uses color barcodes to communicate between
smartphone screen and camera, with maximum test distance of
22cm with a blocksize of 6⇥6. The authors also implemented
a smartphone version of PixNet which we will call PixNet-
C. In table I, we report the ratio of throughput T (B) from
equation 7 to the throughput of the these prototypes for the
same parameter settings of blocksize and ↵ in their system.
Our estimates indicate that there is room for atleast 2.5x
improvement in throughput when compared to capacity.

D. Perspective Distortion Factor

The objective of this experiment was to determine the per-
spective distortion factor ↵ from our measurements to compute
the measured capacity. Since ↵ quantifies the relative area
occupancy of the screen in the camera image, we measured
the average distortion factor as,

↵m =
||R||

||Rcam||
1

(1 + 4�2
blur)

(8)

where ||R|| represents to the total number of camera pixels
that correspond to the imaged screen pixels, and Rcam is the
resolution of the camera. In Fig. 6(b) and 6(c) we plot ↵m

with angles and distance, respectively. As can be seen from
these plots the measured spatial-bandwidth also fits well with
the model (maximum error margin of 1.5%). The ↵ reported
here is the perspective distortion factor for our LCD - tablet
channel. The distance and angle at which ↵ = 0 in these plots
can be construed as the communication range of a system only
with the same screen and camera parameters. For a screen
with 10x the size (for example, a billboard [2]) the range is
close to 10x that of our experimental system. Since ↵ is the
relative occupancy of the entire screen’s image on the camera
image, it does not depend on the block-size being used for
communication.
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Fig. 5. (a) Capacity in bits/camera pixel (C
campixel

(↵)) for different perspective scaling (↵) of screen image on camera (b) Throughput in bits/frame v/s
↵ for different blocksizes (1 frame = R

cam

pixels, B = 152 means 15⇥ 15 pixel block on screen) (c) SINR per block v/s ↵ for different blocksizes B

E. Signal-to-Interference Noise Ratio

We use the measured signal-to-interference noise ra-
tio SINR↵meas to compute the measured capacity. Let
WiON (x, y) and WiOFF (x, y) represent the intensity of a
pixel from a white block at location (x, y) on the camera
image where the lights were ON and OFF respectively, and i

(i = 1, 2 . . . 100) being the index of the image in the dataset
(similarly let BiON (x, y) and BiOFF (x, y) represent a pixel
intensity from a black block). Let SINRW denote the signal
to interference noise ratio for the white pixel and SINRB for
the black. We determine the measured SINR↵meas as,

SINR↵meas =
1

2
(
X

SINRW

||W || +
SINRB

||B|| ) (9)

SINRW = �1m
s(W )

k(B) + n(W )
+ �2m

s(W )

n(W )

SINRB = �1m
s(B)

k(W ) + n(B)
+ �2m

s(B)

n(B)

s(W ) =
1

100

100X

i=1

X

x,y

(↵mWiON (x, y))2

k(B) =
1

100

100X

i=1

X

x0,y0

(1� ↵m)(BiOFF (x
0
, y

0))2

n(W ) =
1

100

100X

i=1

X

x,y

(WiON (x, y)�WiOFF (x, y))
2

(10)

where (x0
, y

0) 6= (x, y), ||W || and ||B|| represent the total
number of white and black blocks respectively. �1m and �2m

represent the measured number of pixels on the boundary and
non-boundary blocks of the imaged block respectively.

We plot SINR↵meas (from equation. (10)) versus ↵ with
the analytical SINR↵ from equation (5) in Fig. 6 (a). We
can observe from Fig. 6 that our measurements are in close
agreement with our model (maximum error margin of 1.5dB).

We plot the per-block measured SINR (SINRblk(↵, B)
using SINR↵meas) versus ↵ for different block-sizes B in
Fig. 5 (c). We can infer that larger the block size higher

is the the per-block SINR. We can also observe that for a
blocksize B = 1, though it provides large number of parallel
channels for multiplexing, the signal energy on each channel
is much lower than the noise level, even for medium values of
↵. A low SINR indicates leads to large detection errors if no
additional receiver processing is performed. While forward-
error correction codes can help it adds additional overhead
reducing the net throughput. But the gains due to multiplexing
may be large enough so as to provide a net throughput gain.
The choice on the size of blocks becomes a primary design
parameter as it effects system performance.

F. Noise Measurement

The objective of this experiment was to measure noise
power, to aid capacity computation for our test channel.
The dataset for this experiment consisted of 200 continuous
camera snapshots of the screen at 2m (and perfect alignment),
displaying gray-level intensities from 0-255 in steps of 5 (total
52 sets). Based on our measurements we realized that the
intensity mapping between screen and camera can be linear
approximated (as shown in Fig. 7) and can be numerically
expressed as g(x) = 0.6481x+10.06 where x = 0, 1, . . . 255,
and the constant 10.06 accounts for the deterministic DC noise
in the pixel. The bias-factor of 25 in the measurements (shown
in Fig. 7) is from the screen backlighting (the screen has
a minimum brightness even when switched off). The factor
0.6481 can be treated as the path loss factor analogous to RF.
As mentioned earlier, the AWGN noise from the background
manifests as the temporal variance in the pixel intensity. We
compute the noise energy per pixel in our LCD screen- tablet
camera channel, using the mean-variance ( ˆvar(g(x): averaged
over 52 samples) of the intensity mapping between the screen’s
actual intensity and the measured intensity on the camera pixel
as, �2

n = 10.062 + ˆvar(g(x)) = 101.28.

VI. RELATED WORK

Camera based communication is an example of visual
MIMO communication [10] where camera is used as a receiver
for information transmitted from arrays of light emitting
elements. In [10] the authors estimate the capacity of a camera
channel treating the transmitter light emitting array and the
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Fig. 6. (a) SINR for different perspective scaling (↵) of screen image on camera (b) Perspective distortion ↵ v/s angle between screen and camera (c)
Perspective distortion factor ↵ v/s distance between screen and camera
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Fig. 7. Screen-Camera mapping

Parameter Value
Cam pixel side-length scam[µm] 65
Cam focal length fcam [⇥scam] 1573
Screen pixel side-length st[mm] 0.248
Principal point (ox, oy) (960.1,539.2)
Noise-variance �

2
n 101.28

Lens-blur variance �

2
blur [⇥s

2
cam] 0.25

||Rs|| (=||Rcam||) [pixels] 1920⇥1080
Focal-distance df [m] 0.39

TABLE II
TABLE OF SCREEN, CAMERA AND MEASURED PARAMETERS

camera are perfectly aligned. The channel is considered as
an analog communications channel where the signal at the
receiver is the sampled photocurrents from each image pixel,
and do not take into account the quantization limitations in the
camera. In practice, measuring photocurrents from a camera
image pixel from an integrated camera is non-trivial without
breaking open the device.

Camera based communication using LCD screens was stud-
ied in [17]. The capacity estimates in this work were based
on a water-filing algorithm assuming the camera channel can
be equalized to encounter the effects of spatial distortions.
But the model and the prototype were designed for a fixed
distance of 2m between the screen and camera and did not
study the effects of perspective on the estimated capacity and

throughputs achieved.
Perspective distortion has been looked at by the imaging

community previously [12], [22], but the fact that the camera
is a part of a wireless communication channel presents a new
domain of challenge for applying imaging models in analyzing
communication channels. In camera based communications,
the camera images the source of light (the transmitter), unlike
classical computer vision where the camera images an object
that reflects light.

The advent of high-resolution cameras in mobile devices has
spurred interest in using cameras for communication to retrieve
information from screens [1], [14], [18], [20]. These applica-
tions use specific receiver processing schemes to combat visual
distortions. PixNet [20] proposes to use OFDM modulation
to combat the effect of perspective distortion on images by
inverse filtering on the estimated channel, and using forward
error correction. COBRA [14] proposes to leverage from
encoding on the color channels to achieve throughput gains
for smartphone screen-camera communication, but at very
short distances (22cm). The fact that several prototypes have
been constructed reveals that screen-camera communication is
gaining large momentum. In this paper, we show that there
is still a large room for improvement in throughput of these
prototypes in comparison with the capacity of screen-camera
communication.

VII. CONCLUSION

In this paper, we discussed the applicability of cameras
for communication. We considered the example where cam-
eras could be used as receivers for data transmitted in the
form of time-varying 2D barcodes from display screens. We
modeled a screen-camera channel using camera projection
theory, which addressed visual channel perspective distortions
in more detail than prior works. We discussed and modeled
the effect of perspective distortion on the information capacity
of screen-camera communications. We conducted calibration
and validation experiments, and our measurements concurred
with the model. Our capacity estimates indicated that, even
with the frame-rate limitations in off-the-shelf mobile cameras,
data-rates of the order of hundreds of kbps -to- Mbps is



possible even when the 2D barcode from the screen im-
ages onto only a small portion of the camera image. While
these bounds are much less than the ideal (for example,
8bits/pixel⇥8Mpixel/frame⇥30fps for the tablet camera we
experimented with), the bound value of data-rates are still
promising for medium sized data-transfer or even streaming
applications; such as downloading a file from a smartphone
screen or streaming a movie from a large display wall. Our es-
timates indicate that current prototypes have only achieved less
than half their capacity, which means that designing efficient
techniques to address perspective distortions is still an open
problem for building high-data rate camera communications.
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APPENDIX

A. Derivation For Perspective Scaling Factor ↵p Using Cam-
era Projection Theory

Consider a point [X

w

, Y

w

, Z

w

]

T in world 3D space coordinates
with respect to the camera image axis.The 3D coordinates in space
map to the corresponding camera image 2D coordinates [x, y]

T

through camera projection equations as,
⇥
x y 1

⇤
T

= C
⇥
R T

⇤ ⇥
X

w

Y

w

Z

w

⇤
T (11)

where T denotes transpose operation, C, R, T are the camera
calibration matrix, rotation matrix and translation vector respectively.

Camera calibration matrix C accounts for the projection and
scaling of the coordinates in the image and is a function of the
camera focal- length f

cam

, the side length of each pixel s
cam

, and
the principal point (o

x

, o

y

) - the coordinates of the camera image
center. R is the rotation matrix that accounts for the 3-tuple rotation
angle (✓

x

, ✓

y

, ✓

z

) of the screen coordinate frame about the X, Y,
and Z camera axes, and T is the translation vector that accounts for
the translation between the world coordinate and the camera axis. If
c✓ = cos ✓, s✓ = sin ✓ then,
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Let us consider two adjacent pixels p1 and p2 of the screen
transmitter, as shown in Figure 8, whose centers are separated in
screen space by one pixel distance of s

t

units (side-length of the
square pixel). Let x

t

, y

t

denote the distance of pixel p1 from the
screen’s center in X and Y dimensions respectively. Let the screen
coordinate axis center be situated at a distance d from the camera
image axis center. Then using camera projection matrix equation
from equation (11), the distortion in each pixel, ↵(xt,yt)(x, y) can
be derived as,
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↵(xt,yt)(x, y) = |x
p2 � x

p1|⇥ |y
p2 � y

p1| 8(x, y) 2 R
= 0, otherwise

(15)
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where where |.| denotes the absolute value. Coordinates

x

p1, yp1, xp2, yp2 can take real values but are unit-less quantities.
R denotes the set of camera pixels corresponding to the screen’s
projected image. The following assumptions were made in our
derivation: (a) s

t

<< d, the distance between two centers of adjacent
screen pixels (order of microns) is negligible when compared to the
distance between the camera and screen (few cm to m in typical
applications). (b) Rotation about Z axis (see Figure. 8) does not effect
pixel distortion. Using equation16 the average distortion factor ↵

p

can
be determined as,

↵

p

=

1

||R
s

||
X

8(xt,yt)

1

||R
cam

||
X

8(x,y)

↵(xt,yt)(x, y) (17)

where ||R
s

||, ||R
cam

|| are the screen and camera resolutions
respectively.
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