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Abstract—In this paper, we present ViTag to associate user
identities across multimodal data, particularly those obtained
from cameras and smartphones. ViTag associates a sequence
of vision tracker generated bounding boxes with Inertial Mea-
surement Unit (IMU) data and Wi-Fi Fine Time Measure-
ments (FTM) from smartphones. We formulate the problem
as association by sequence to sequence (seq2seq) translation.
In this two-step process, our system first performs cross-modal
translation using a multimodal LSTM encoder-decoder network
(X-Translator) that translates one modality to another, e.g. recon-
structing IMU and FTM readings purely from camera bounding
boxes. Second, an association module finds identity matches
between camera and phone domains, where the translated
modality is then matched with the observed data from the same
modality. In contrast to existing works, our proposed approach
can associate identities in multi-person scenarios where all users
may be performing the same activity. Extensive experiments in
real-world indoor and outdoor environments demonstrate that
online association on camera and phone data (IMU and FTM)
achieves an average Identity Precision Accuracy (IDP) of 88.39%
on a 1 to 3 seconds window, outperforming the state-of-the-art
Vi-Fi (82.93%). Further study on modalities within the phone
domain shows the FTM can improve association performance
by 12.56% on average. Finally, results from our sensitivity
experiments demonstrate the robustness of ViTag under different
noise and environment variations.

Index Terms—Cross Modal, Fine Time Measurements, Inertial
Tracking, Object Tracking, Association

I. INTRODUCTION

With the plethora of sensors surrounding us, associating user
identity across multiple sensing modalities can be significant in
supporting multi-view learning across heterogeneous sensors.
Multimodal association has the potential to lend itself to a wide
range of applications that need cross-modal identification, such
as localization, re-identification, and continuous tracking. With
the pervasive use of cameras and smartphones, a key appli-
cation scenario is the association between persons detected in
camera video and sensor data captured from their smartphones,
as depicted in Figure. 1. An example application includes
sending alert messages to specific users’ devices who have
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Fig. 1. Motivation: Associating visually detected subjects with corresponding
phone identifiers using multimodal data.

been detected on camera (even when their face may not be
visible); a particular use case for this is in facilitating exposure
notifications during the current COVID-19 pandemic.

In another scenario, to improve traffic safety, distracted
pedestrians at risk can be detected through an infrastructure
mounted camera and alerted by voice or vibration on their
smartphones. Further, in emergencies, evacuation instructions
can be sent to a person’s device depending on their precise
location. All these scenarios require associating the camera
image with a device identifier.

To associate data across modalities, existing approaches
require predefined visual features (e.g. clothes color [34]
or gestures [7]), multiple IMU devices placements [28]
(such as back at hip height), calibrated IMU and camera
coordinates [11], limited depth changes [2], visible finger
movements from the camera’s field of view [18]. Few past
works have focused on correlating visual and inertial data [2],
[9]. However, these systems do not provide real-time associa-
tion are therefore not usable in real-world scenarios. Moreover,
techniques relying on hand-crafted features [2] often fail
in more complex scenarios, where lighting condition varies,
multiple people exit and re-enter the camera view, etc. Kwon
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et al. [16] and Rey et al. [26] presented an automated pipeline
that converts videos of human activities to inertial data for
training common Human Activity Recognition (HAR) models.
However, these methods focus on capturing salient features for
activity recognition rather than on more stringent features for
disambiguation of multiple people that may all perform the
same activity (e.g., walking). In addition, prior works [23]–
[25], [36] with encoder-decoder architecture that learns a joint
representation among vision, inertial and especially WiFI FTM
data simultaneously is under investigated. Our proposed work
takes this line of research further by associating identities for
subjects walking in a scene captured in multimodal data.

Approach. In this paper, we present ViTag, which associates
data across camera and phone domains. Specifically, a vision
tracker is used to generate tracklets from the camera frames.
These tracklets are then matched with IMU and FTM data
obtained from the smartphones. Our framework consists of
a cross-modal encoder-decoder network X-Translator, which
employs bidirectional LSTM and a joint representation be-
tween visual data from camera, and motion and WiFi data from
smartphones. X-Translator leverages the joint representation to
reconstruct or translate one modality into the other. The recon-
structed data (e.g. reconstructed phone data) is then matched in
real-time with the observed data from that modality (captured
IMU measurements or FTM). Given the privacy questions that
this approach raises, we focus on scenarios where users have
opted-in to share sensor data from their phones with a camera
and access point setup for such applications.

Challenges. Multimodal learning presents unique challenges
due to the heterogeneity of the data. In particular, correlating
camera and phone sensing data poses two significant chal-
lenges. First, each sensing modality captures data in a different
coordinate space. This requires a system to be capable of
transforming data from camera coordinates to a local reference
frame, such as that of the IMU. Second, each modality offers
varying levels of data fidelity. For example, visual sensors
are less useful in low lighting conditions even when inertial
data quality is not affected. Meanwhile, inertial sensor data
exhibits drifting and accumulating biases over longer duration.
Similarly, distance and error estimation in FTM data can be

affected by multipath.
Contributions. In addressing the above-mentioned challenges,
we make the following contributions:
• We design and develop ViTag to associate identities for

subjects detected across camera (vision) and smartphone
(motion and FTM) data, achieving an online association IDP
of 88.39% on average.

• We propose a cross-modal encoder-decoder architecture,
X-Translator, that learns the joint representation between
camera and phone domains, and translates vision trajectories
to phone (IMU+FTM) readings and vice versa.

• ViTag is robust to sensor noise and scene changes from
indoor to outdoor multi-person environments, achieving
association accuracy (IDP) of 90.21%, 87.85%, and 87.11%
in Indoor, Outdoor, and Crowded dataset, respectively.

II. SYSTEM OVERVIEW

ViTag associates identities across two domains: camera and
smartphone. In the context of a camera observing humans in
the scene, such as in Figure 1, the goal is to identify which
device is being carried by which subject in the scene. Figure 2
shows an overview of the system. We install an RGB-D camera
with a WiFi access point overlooking a large space. Users in
the scene walk around with their smartphones, where each
device captures accelerometer, gyroscope, and magnetometer
data, while exchanging FTM messages with the access point.

Subjects are detected and tracked in the camera data using
state-of-the-art trackers to generate tracklets. Each tracklet
is a sequence of bounding boxes in the camera coordinate
system. ViTag deploys a two-step process to associate mul-
tiple modalities. First, cross-modal translation, wherein our
proposed X-Translator takes these vision tracklets as input
and reconstructs the corresponding phone data, including time-
series IMU readings and FTM data. To the best of our
knowledge, X-Translator is the first network to jointly learn
inertial motion, visual data, and wireless modality. Second,
we use maximum bipartite matching (Hungarian Algorithm)
to match the reconstructed phone data with the data received
from the phone domain in real-time.



III. CROSS-MODAL TRANSLATION

A. Preprocessing Workflow

Camera data. We employ the StereoLabs ZED tracker for
generating trajectories (referred to as tracklets in the rest
of the paper) from an RGB-Depth camera data. Tracklets
are generally short in length since subjects move out of
the camera view frequently. Tracklets from camera data (Tc)
are represented as a time-series sequence of bounding boxes
(BBX). Each bounding box is represented as:

BBX = [x, y, d, w, h]; Tc ∈ RK×5 (1)

where x and y are the coordinates of the bounding box
centroid, d is the centroid’s depth measurement, and w and
h are the bounding box width and height.
Phone data. To preprocess the smartphone data, we concate-
nate 6 types of measurements from the time-series IMU data:

T t
i = [acc; grav; lin;mag; gyro; q]; Ti ∈ RK×19 (2)

where acc represents the 3-axis accelerometer data and grav
and lin are the gravitational and linear components of the
accelerometer data. gyro and mag represent the 3-axis gyro-
scope and magnetometer data. q represents the 4-axis quater-
nion data. An FTM measurement at time t is defined as:

T t
f = [r, std]; Tf ∈ RK×2 (3)

where r indicates the estimated range, or distance from phone
to WiFi access point, while std represents the standard devi-
ation calculated in a single RTT burst.

In the context of our work, one modality refers to one
type of data such as bounding boxes, IMU readings, or FTM
data, while domain refers to the source, such as camera or
smartphone. Therefore, vision tracklets (Tc) are considered in
the camera domain and the phone domain (Tp) consists of
IMU and FTM data:

Tp = [Ti;Tf ]; (4)

To enable accurate real-time association, we process and match
the data within limited time windows. While longer time-series
windows may contain more discriminative features that can be
useful for association, they add latency to the association task.
To address this trade-off, we empirically choose a window
size, K, to be 10 samples for all modalities in both domains.
Due to slightly different sampling rates in indoor and outdoor
dataset, 10 samples equals to 3 seconds in indoor environment
and 1 second in outdoor environment. Therefore, association
is always performed in less than 3 seconds. At each time step,
the most recent K samples are used as inputs into the network.
Synchronization. Due to different sampling rates and times-
tamps, we need to synchronize all the modalities before feed-
ing them to the model. We synchronize the camera and phone
data using Network Time Protocol (NTP) on the devices. The
sampling rate for camera frames is 30 fps, for IMU readings
is 100 Hz, and 3-5 Hz for FTM. Moreover, camera (BBX) and
phone (IMU, FTM) data have 16 and 13 precision timestamps.
We use data from the camera domain (downsampled to 10

fps) as anchor to resample other modalities. Specifically, for
each camera frame, we find the IMU and FTM readings with
timestamps that are closest.

B. Network Architecture Design

The design of X-Translator is inspired by the self-supervised
ability of autoencoders. Unlike unimodal autoencoders, X-
Translator requires labeled correspondences between camera
and phone data. The novelty of the proposed architecture lies
in the application of the autoencoder approach for multiple
modalities. X-Translator consists of three main modules: (1)
an Encoder that learns the unimodal representations for each
input modality, (2) a joint representation layer that learns the
cross-modal latent features, and (3) a Decoder to reconstruct
each modality. The architecture is depicted in Figure 3.

X-Translator consists of several instances of encoder, each
learning the representation for one modality. An encoder
includes a 1D convolutional layer with 32 filters, kernel size
of 16 and stride of 1, followed by a ReLU activation function.
Then a bidirectional LSTM layer extracts temporal features
from the IMU and vision modalities, in both directions be-
tween earlier to later frames. A joint representation integrates
features extracted from the unimodal data streams into a single
multimodal representation by summation. Lastly, each decoder
consists of two stacked bidirectional LSTM layers to extract
the fused features in a hierarchical way. We use the term codec
to refer to a pair of encoder and decoder for the same modality.
Model Loss Functions. To learn multimodal translation, we
design our loss functions as follows:

• Self-reconstruction Loss:
Lself =

∑
m∈M

L(Dm(Em(Xm)), Xm) (5)

• Cross-modal Reconstruction Loss:
Lcm =

∑
m∈M

L(Dm(Em(Xm)), Xm) (6)

• Cross-domain Reconstruction Loss:
Lcd = L(Dp(Ec(Xc)), Xp) + L(Dc(Ep(Xp)), Xc) (7)

• One-to-all Reconstruction Loss:
L1-to-all =

∑
m∈M

L(DM (Em(Xm))), XM ) (8)

• Fused-reconstruction Loss:
Lfused =

∑
m∈M

L(Dm(EM (XM )), Xm) (9)

• Multi-reconstruction Loss:
Lmulti = L(DM (EM (XM )), XM ) (10)

Our final loss function for reconstruction is the weighted
sum of these losses:

L =λselfLself + λcmLcm + λcdLcd+

λ1-to-allL1-to-all + λfusedLfused + λmultiLmulti
(11)

where Em and Dm are modality m’s encoder and decoder,
respectively. M is the set of all modalities: m ∈ M,M =
{c, i, f}; p represents both i and f in the phone domain. m
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Fig. 3. X-Translator architecture: A bidirectional LSTM based encoder-decoder model. Encoders are used to learn unimodal representations from vision
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denotes a different modality other than m in the Lcm, L1-to-all,
Lfused and Lmulti loss functions. For simplicity of notation,
we use Ep, Dp to refer to the encoder-decoder in the phone
domain, while in real implementation there are two separate
IMU and FTM encoders and decoders. Similarly, EM or DM

denotes separate encoders or decoders for all three modalities.
The general intuition behind these loss functions is to train

the network to learn a joint representation across camera
and phone domains for cross-modal reconstruction while each
serves its specific purpose. Lself optimizes the weights for
reconstruction from the same modality; Lcm helps the network
to reconstruct modality from one to another; Lcd forces the
model to learn cross-domain reconstruction; the network is
forced to reconstruct all modalities given only one modality by
L1-to-all; Lfused is used to learn constructing one modality when
feeding all modalities, and Lmulti loss enforces the network to
reconstruct all modalities when all inputs are available. The
One-to-all Reconstruction Loss forces the network to learn to
reconstruct all the other modalities when only one of them is
available as input. Absent data is represented with zero. We
set equal weights for all losses.

During evaluation, only one modality is used as input and
data in the other domain is reconstructed. The reconstructed
modality is then used for association, as discussed in the
following section.

C. Reconstruction Paths
Given the input modalities from two domains, there are

two possible choices for reconstruction: (a) reconstructing
phone data from vision tracklets, and (b) reconstructing vision
tracklets (bounding box sequences) from phone sensors data.
We explore both choices.

Reconstructed data is denoted with a prime (′) sign. For ex-
ample, Tp denotes data captured from the smartpthone device;
T ′
p denotes phone data reconstructed using X-Translator.

• Tp −→ T ′
c: Bounding box sequences are reconstructed from

phone data.
• Tc −→ T ′

p: Sequences of phone data are reconstructed from
vision tracklets.

Unless otherwise specified, phone domain data includes both
IMU readings and FTM.

IV. ASSOCIATION

X-Translator is a cross-modal translator that translates camera
data into smartphone (inertial and FTM) data and vice versa.
After translating one modality into another, we perform associ-
ation on observed data and that reconstructed by X-Translator.
Association by Bipartite Matching. The association problem
is formulated as finding the global minimum-weight matchings
in a bipartite graph, which is also referred to as linear assign-
ment problem. For matching T ′

p and Tp, the first step is to
define a distance, or dissimilarity function, and formulate the
association problem in a graph setting where nodes represent
modalities and edges’ weights denote the distances between a
possible assignment between two modalities.

We define a graph G = (V,E) where V represents its
nodes and E is the set of edges between the nodes. Nodes are
divided into two parts. We denote Vp as the set of nodes that
represents phone tracklets, and V ′

p as the nodes that represent
reconstructed phone tracklets. |Vp| and |V ′

p | vary in different
scenes. In the Indoor dataset when |Vp| ≥ |V ′

p |, i.e. the
number of detected track IDs is greater than the number of
reconstructed track IDs. This is because not all users are in



the camera view at most times, but all phone IDs are ”visible”
to the system at all times. On the other hand, |Vp| ≤ |V ′

p |
in the Outdoor dataset because many passers-by (participants
without phone data exchange) are detected in the camera
view. We assign edge weights by computing the dissimilarity
between every pair of nodes across Vp′ and Vp. The Hungarian
algorithm [15] is used to find an optimal matching from Vp

to V ′
p that minimizes the total weights of the edges, which

essentially maximizes the similarity of candidates between
two sets of nodes. From the optimal matching we find the
association between vision tracklet IDs and smartphone IDs.
Distance Function. A common dissimilarity, or distance
function for association is Euclidean Distance (ED). When
different modalities are translated into one common modality,
ED is appropriate to measure the distance of multidimensional
data, e.g. a 19 dimensional vector for IMU data, and can be
applied to different reconstructed modalities without modi-
fication. With ED, the association performance can achieve
around 70% to 80% in the phone reconstruction path. We use
ED: Euclidean Distance ||Tm − T ′

m||2 as the default distance
function for each modality m, where T ′ is the reconstructed
data that shares the same modality with observed data T .

We further investigate our data, especially FTM, which
consists of a two dimensional vector (rf , σf ) where rf is the
range estimate and σf is the standard deviation. Since a mean
and a standard deviation can define a Gaussian distribution,
each FTM data point essentially can be treated as a different
Gaussian distribution. To exploit FTM data points’ statistical
characteristics, we propose to explore Bhattarcharya Distance
(BD) [5], [6], [8] over ED for the FTM modality. The intuition
of Bhattarcharya Distance is to measure the separability of
two distributions considering the overlap. By definition, the
Bhattarcharya Distance of two distributions is

BD(f, f ′) = 1
4 ln

(
1
4

(
σ2
f

σ2
f′

+
σ2
f′

σ2
f
+ 2

))
+ 1

4

(
(rf−rf′ )2

σ2
f+σ2

f′

)
(12)

where f is an FTM vector at one frame. Note that Tf is time-
series FTM data consisting of K samples of f .

V. EXPERIMENTS AND EVALUATION SETUP

There exist several multi-modal datasets in the literature.
However, these datasets are used for different tasks such as hu-
man activity recognition (HAR) based on IMU data [21], [30].
To the best of our knowledge, comprehensive datasets that in-
clude camera data, IMU sensors, and WiFi FTM measurements
do not exist. Therefore we conducted an IRB approved study
to collect a large-scale dataset including the aforementioned
modalities, both in indoor and outdoor environments.

In this section, we describe our experimental setup, data
preparation and training, and the metrics for evaluation.

A. Experiment Setup

We set up one ZED-2 stereo camera, capable of capturing
RGB frames and Depth (RGB-D), and one Google Nest WiFi
access point (AP) mounted next to each other on the lab room’s
ceiling (for indoor test environment), or mounted on a car-roof-
mounted bike handle for the outdoor environment (to simulate

Fig. 4. Experiment Setup. A StereoLabs ZED2 camera and a Google Nest
WiFi AP mounted on the ceiling in the Indoor setup while the camera is
mounted on the handle of a roof-mounted bike for outdoor setup. This setup
simulates increasingly common WiFi-enabled cameras.

a common pole mounting scenario for outdoor cameras) as
shown in Figure 4. The camera and AP are mounted next
to each other to simulate WiFi-enabled cameras that are
becoming increasingly common. During the experiments, the
devices collect multi-modal data from the WiFi AP, camera,
and each user’s smartphone. The proposed X-Translator model
is implemented on a linux PC(Ubuntu 18.04) equipped with
one NVIDIA GeForce RTX 2080 SUPER graphics card in
Keras 2.4.3, Tensorflow 2.3.0 and Python 3.7.

B. Dataset

We present three datasets: Indoor, Outdoor, and Crowded.
We captured 31 video sequences of 3 minutes duration each.
On an average, we obtained 575 and 1800 frames per video
sequence for Indoor and Outdoor datasets. The indoor exper-
iments involved 5 subjects, each carrying a Google Pixel 3a
smartphone, and walking at freewill and in random fashion (no
path constraint was set) across the room. The crowded dataset
was collected only in outdoor settings due to COVID 6-feet
social distancing restrictions in indoor environments. Figure 5
shows an example of sampled frames from the labeled Indoor,
Outdoor, and Crowded datasets. The data collection process
includes, (i) FTM messages exchanged between AP and each
phone at 3-5 Hz, (ii) 9-axis IMU data (acc, gyro, mag) on
each user’s phone at 100Hz rate, (iii) activity logs on the AP,
and (iv) RGB-D camera footage captured at 30FPS at 720p
resolution (1280 x 720). The experiments were conducted over
multiple days following COVID protocols and restrictions.
Participants (5 for indoor and 2 for outdoor) were not restricted
in how they carried the phones. Passer-by pedestrians’ phones
did not communicate with the access point. IMU data were
collected from Google Pixel 3a smartphone devices. In addi-
tion, magnetometer and linear acceleration data were recorded,
and the quaternion data were computed for the dataset. The
maximum number of detected pedestrians (phone holders and
passerby) at a time is 11. A participant with a phone, however,
might exit and re-enter the camera’s field of view due to
unconstrained walking pattern and limited field of view of
the camera. As a result, the number of pedestrians detected in
vision modality (denoted as |V |) could be less than, equal to,
or greater than the number of participants’ phones (denoted
as |P |) detected over the wireless channel. This change of



(a) Indoor (b) Outdoor (c) Crowded

Fig. 5. Sample frames from the Indoor, Outdoor, and Crowded dataset with bounding box information. Tracklets shown were computed using most recent
20 frames. Best viewed when zoomed. All subjects walk in unconstrained patterns. Pedestrians whose phones are communicating with the access point are
annotated with the WiFi symbol.

cardinality in both modalities poses a challenge to the cross
modal association.

C. Data Preparation and Training

Data preparation. Mounting cameras in the same position
but in different sessions unavoidably leads to various camera
perspectives. We ensured that the video frames over multiple
days were aligned in space (area where the users were walk-
ing) by applying the homography matrix to adjust the camera
frames’ perspective in the Indoor dataset, based on SIFT [19]
features in a common space between views. As discussed in
Section III, a vision tracklet (Tc) is represented as a sequence
of bounding boxes, where each bounding box is represented
in 5 dimensions (T t

c ), as shown in Equation 1. IMU data is
represented as Ti, a sequence of concatenated sensor data, as
shown in Equation 2. At each time t, the concatenated vector
T t
i contains 19 dimensional data. In addition to IMU, phone

data includes FTM vectors.
Training. We train X-Translator using paired camera-phone
data. For ground truth visual data, we manually annotate each
frame in the dataset with bounding boxes to construct tracklets.
We also use the ZED tracker for obtaining trajectories from
vision data, as a secondary approach to obtain tracklets for our
analysis. In both cases, the trajectories are labeled with the
phone ID (unique pseudo IDs provided by our data collection
application on the phone)—providing us the ground truth
for association. Passers-by (without phone data connection
to our network) are labeled as Others. Adam optimizer and
Mean squared error (MSE) are used to train X-Translator with
learning rate 0.001 and batch size 32. 1 Mean squared error
(MSE) is applied to each loss function in Equation 11.

D. Evaluation Metrics

The primary metric for evaluating ViTag is IDentification
Precision [27] or IDP, defined as: IDP = IDTP

IDTP+IDFP where
IDTP and IDFP are IDentification True Positives and IDen-
tification False Positives, respectively. IDP is calculated for
each association window of 10 samples (K=10). The system
is evaluated in an online mode, wherein the K most recent
samples are processed to determine association. Our system

1Code is available at https://github.com/bryanbocao/vitag. Dataset can be
downloaded at https://sites.google.com/winlab.rutgers.edu/vi-fidataset/home.

is evaluated via Leave-One-Out Cross Validation (LOOCV)
for Indoor and Outdoor datasets. Each dataset consists of
15 sequences. To evaluate our system in a more challenging
crowded scenario, we specifically hold out one sequence with
maximum 11 subjects in one frame as the Crowded test set
to evaluate the models trained in the Outdoor dataset.

E. Baselines

We compare ViTag with two baselines. The first is a hand-
crafted association technique that relies on pedestrian dead
reckoning (PDR) [33] and procrustes analysis (PA) [10], [14].
As a second baseline, the state-of-the-art Vi-Fi [17] is used as
the deep learning baseline.
Handcrafted Baseline. We compute 3D trajectories from
camera and phone data and match them based on shape
similarity, measured using PA. Trajectories from the inertial
sensor data are computed using PDR, wherein the heading
ϕ, computed from the accelerometer and magnetometer, is
combined with average step length for adults (l = 0.8m)
to determine the next phone position. A 3D position in the
phone domain is defined as T̂ t

p = (xt
p, y

t
p, r

t
p) where rt is

FTM range. Vision trajectories are computed from bounding
box centroid coordinates and depth where a 3D point is defined
as T̂ t

c = (xt
c, y

t
c, d

t
c). We normalize (xt

p, y
t
p) such that it is in

the same scale of (xt
c, y

t
c).

Then PA is used in the next step for association. PA mea-
sures shape similarity between two matrices, where the optimal
matrix transformation (including scaling/dilation, rotations and
reflections) from one to the other is applied such that the
sum of squared differences between two is minimized. We
follow the bipartite matching method described in Section IV
to associate T̂p and T̂c, using the dissimilarity score between
their shapes (obtained from PA) as the edge weights to find the
association. We believe that this is an appropriate handcrafted
baseline since it employs commonly used techniques wherein
shape similarity can deal with the difference in coordinate
systems between phone (local frame of reference) and camera
(image plane). We use PDR+PA to refer to this method.
Deep Learning Baseline. Vi-Fi [17] employs a two-stream
LSTM based encoder for camera and phone modalities (IMU
and FTM) separately, followed by feature ensemble and di-
mension reduction layers. In the last step, an affinity matrix
layer is learned to predict an association decision between



two modalities. Different from Vi-Fi [17], the X-Translator
in ViTag uses a joint representation and separate modality
decoders without an affinity matrix layer.

VI. EVALUATION
A. Overall Performance
Evaluation of Association. ViTag’s performance as compared
with the baselines is summarized in Table I. Overall, our sys-
tem achieves the highest association performance. Specifically,
ViTag achieves an average IDP of 88.39% in all datasets,
higher than PA+PDR of 38.41% by 49.98% and Vi-Fi of
82.93% by 5.46%, respectively.

Method PDR+PA Vi-Fi ViTag
[10], [14], [33] [17] (Ours)

Avg. IDP 38.41% 82.93% 88.39%
TABLE I

SUMMARY OF ONLINE ASSOCIATION PERFORMANCE IN ALL DATASETS

Fig. 6. ViTag LOOCV online association performance in green compared
with handcrafted PDR+PA and SOTA deep learning (Vi-Fi) approaches in
blue and orange, respectively; ViTag outperforms both baselines.

ViTag outperforms both baselines, achieving an average IDP
of 90.21%, 87.85%, and 87.11% in the Indoor, Outdoor and
Crowded test set, respectively, as shown in Figure 6. Note that
the association results are performed on a 10-sample sliding
window with 90% overlap, which corresponds to ∼3 seconds
in Indoor and 1 second in the Outdoor dataset.
Effect of Reconstruction. ViTag performs cross-modal recon-
struction followed by association. We aim to understand how
the reconstruction ability of X-Translator affects association.

(a) Indoor Seq 2 (b) Outdoor Seq 7 (c) Crowded Seq 7

Fig. 7. Effect of validation loss on IDP for models tested in Seq 2 in Indoor,
and Seq 7 in Outdoor and Crowded datasets by LOOCV. X-axis represents
validation loss. Observe better reconstruction quality (low validation loss)
improves association performance (high IDP at the top left corner).

To this end, we analyze a set of models with different
weights during training. A model is denoted by a test se-
quence (Seq) number by LOOCV, specifically Seq 2 and

7 shown in Figure 7. Weights are saved separately during
training. Validation loss of reconstruction measures cross-
modal reconstruction quality. Weights with large validation
loss represent models in the earlier stage of training. The
relationship between validation loss and IDP for models tested
in two sequences (Seq 2 in the Indoor, Seq 7 in the Outdoor
and Crowded datasets) is shown in Figure 7. Observe that
a higher cross-modal reconstruction quality (lower validation
loss) tends to result in higher IDP.

B. Micro-benchmarks
In this subsection, we analyze ViTag’s sensitivity to various

factors of system settings.
1) Effect of FTM distance function: We experiment how

different distance functions impact association. In addition to
Euclidean Distance (ED), we also explore Bhattacharyya Dis-
tance function (BD). T ′

iED denotes association performance
based on camera-IMU modalities only using ED, by ablating
the Wi-Fi modality.

(a) Indoor (b) Outdoor (c) Crowded

Fig. 8. Impact of different distance functions on association performance.

There are several key observations. First, combining FTM
with IMU data improves the association performance for all
datasets shown in Figure 8. Second, T ′

iED+T ′
fED works the

best (IDP 90.21%) in the Indoor dataset, but decreases when
we employ BD for FTM. However, we see the reverse trend in
the Outdoor and Crowded datasets that T ′

iED+T ′
fBD results

in the highest IDPs of (87.85% and 87.11%), respectively. One
reason behind this could be the different data distributions
in Indoor and Outdoor environments that consist of various
multipath profiles, leading to variations in FTM ranging per-
formances. Specifically, Indoor dataset features high-multipath
environment in the lab consisting of doors, walls and so forth,
while more open space exists in the Outdoor dataset, resulting
in diverse FTM variance [12]. Experiments demonstrate the
advantage of BD function over ED for FTM via performance
improvement from 79.18% to 87.85% (Outdoor) and 81.01%
to 87.11% (Crowded).

2) Effect of IMU Noise: We analyze the impact of noise in
IMU data on association performance. Zero-mean Gaussian
noise is injected into each dimension of IMU data. Then the
original IMU vectors are replaced with IMU vectors ˆIMU
with noise as both input and output of our model: T̂ t

mdi
=

T t
mdi

+ ϵ, ϵ ∼ N (0, σ2
di
), where T t

mdi
is the ith dimension

vector. µ = 0 and σi is the standard deviation of T t
mdi

. σdi is
specific to each dimension due to different range in each sensor
(for example, accelerometer vs gyroscope vs magnetometer).



Fig. 9. Effect of IMU
noise on association accu-
racy. We observe that even
for high IMU noise, ViTag
offers reasonable association
accuracy.

Noise is injected in different lev-
els from 0% to 50% of the mea-
surement range for each dimension
of each IMU sensor. For one test
sequence, ten experiments were re-
peated for each noise level in each
dataset. The results are shown in
Figure 9 on test sequences with rel-
atively high and low IDPs in Indoor
(Sequence #3 and #6) and Outdoor
(Sequence #4 and #9) datasets (0-
indexed), respectively. Each vertical
line in one dataset denotes a total of 20 experiments (2 sets
of 10 repeated experiments) on the aforementioned two test
sequences. Apart from noise injection, we follow the same
settings in VI-A. Overall, results show that our system is robust
to IMU noise.

Fig. 10. Impact of the num-
ber of pedestrians per frame
on association accuracy. We
see that IDP is not affected
even when multiple persons
are detected in one frame.

3) Effect of Number of Detected
Person: To see how the number of
detected pedestrians in camera view
affects association, statistics of per-
frame IDP is depicted in Figure 10.
Overall, IDP jitters between 80%
and 90%, demonstrating that ViTag’s
performance is robust to the number
of detected persons per frame. Note
that some people walk out of the
camera view in the Indoor dataset,
which makes the association more
challenging (for eg. when number of
phones ≥ 1), resulting in higher variance when the number of
detections is only 1 per frame.

VII. RELATED WORK

Vision-based Detection and Tracking. Deep neural networks
have been employed to detect persons in the camera view
and generate trajectories across frames, represented using
sequences of bounding box coordinates [4], [35]. These
trajectories are more accurate than those using hand-crafted
features [22]. We leverage vision trajectories (referred to as
tracklets), generated by state-of-the-art vision trackers [4], in
the proposed association algorithm.
Inertial Tracking. Inertial sensors have been used in handheld
devices. Silva et al. [29] developed and trained an LSTM-
based network to reconstruct moving trajectories. IMUs are
also capable of profiling user motion and can be used for
identification [38]. We exploit motion information obtained
from IMU sensors for cross-modal association.
Wireless Ranging. Wireless data has wide application usage,
including localization with visual sensors [3], bounding box
esimation [20], WiFi ranging measurements [12], etc. Fine
Timing Measurement (FTM) protocol (802.11REVmc), intro-
duced in IEEE 802.11-2016 Standard [1], aims to perform
wireless ranging with the round trip time (RTT) between an
access point (AP) and a WiFi station (STA).

Method No # IMU Matching # Det Avg.
Pose Devices Duration Acc
Used / Person (sec) / Frame (%)

PHADE [7] - ≥ 1 18 2-10 92.0
ZeroNet [18] - 1 - 1 82.4
IDIoT [28] - 13 20 1 92.2
Z-Shot [32] - 2-4 5.12 1 < 75.0
C. Loc. [13] ✓ 1 Cumulative 2-12 82.0
Vi-Fi [17] ✓ ≤ 1 1-3 2-11 82.93
ViTag (Ours) ✓ ≤ 1 1-3 2-11 88.39

TABLE II
SUMMARY OF COMPARISON WITH REPRESENTATIVE WORKS. NOTE:

DET AND ACC MEAN DETECTED PERSON AND ACCURACY,
RESPECTIVELY.

Multimodal Association. There has been a large body of
research on matching identity across different modalities [2],
[9]. The closest work to ViTag is Vi-Fi [17] — a deep learning
based method that applies affinity losses to learn identity
assignment on camera, IMU and FTM readings. Similar to
Sun et al. [31] using triplet loss, Masullo et al [23], [24]
associate silhouette images and accelerations by deep learning
features. A joint representation [25] can be learned to fuse
different modalities in an encoder-decoder architecture. In the
work by Akbari et al. [2], correlation is done in a handcrafted
manner by mapping the acceleration in RGB image plane
to physical acceleration, but it fails in limited-varying depth
changes, multiple persons, varying brightness or line-of-sight
motion direction. Research on vision and IMU association also
include PHADE [7], IDIoT [28] [11], [37] etc.

Due to the differences in dataset, methodology, and experi-
mental setup, it is unlikely to draw a direct and fair comparison
between the performance of previous work and ViTag. We
therefore clarify and summarize the distinctions in Table II
based on several parameters. Our system ViTag performs in
much more challenging real world scenarios requiring fewer
devices per person, while relying on shorter sequence of
measurements, compared to past work.

VIII. CONCLUSION

In this work, we explored the challenges and solutions
associated with cross-modal association. We designed ViTag to
associate visually detected persons from a camera stream with
corresponding smartphone IDs. We proposed X-Translator
which is a multimodal LSTM-based autoencoder that learns
a joint representation between the modalities during training,
and translating data from camera modality (vision tracklets)
into phone domain (IMU readings and FTM). This enabled us
to reconstruct phone data tracklets and match them with the
observed phone tracklets in real time to associate identities.
Our system achieves an average Identity Precision (IDP) of
88.39% (90.21%, 87.85%, and 87.11% in Indoor, Outdoor,
and Crowded datasets, respectively) in an online manner, out-
performing the state-of-the-art approach Vi-Fi (IDP = 82.93%)
in diverse real-world environments.

Future directions include generalizing ViTag to different
camera views, leveraging cross-modal attention mechanisms



to learn a better joint representation to improve association
performance.
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