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ABSTRACT
Tracking subjects in videos is one of the most widely used func-
tions in camera-based IoT applications such as security surveillance,
smart city traffic safety enhancement, vehicle to pedestrian com-
munication and so on. In computer vision domain, tracking is usu-
ally achieved by first detecting subjects, then associating detected
bounding boxes across video frames. Typically, frames are trans-
mitted to a remote site for processing, incurring high latency and
network costs. To address this, we propose ViFiT, a transformer-
based model that reconstructs vision bounding box trajectories
from phone data (IMU and Fine Time Measurements). It leverages
a transformer’s ability of better modeling long-term time series
data. ViFiT is evaluated on Vi-Fi Dataset, a large-scale multimodal
dataset in 5 diverse real world scenes, including indoor and out-
door environments. Results demonstrate that ViFiT outperforms
the state-of-the-art approach for cross-modal reconstruction in
LSTM Encoder-Decoder architecture X-Translator and achieves a
high frame reduction rate as 97.76% with IMU and Wi-Fi data.

CCS CONCEPTS
• Computer systems organization→ Sensor networks; • Com-
puting methodologies→ Tracking; Object detection; Recon-
struction.
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1 INTRODUCTION
Tracking of human subjects in camera videos plays a key role in
many real world applications, such as security surveillance, acci-
dent prevention, and traffic safety. State-of-the-art visual trackers
rely on visual information from cameras but fail in scenarios with
limited visibility, caused by poor light conditions, occlusion of the
objects being tracked, or in out-of-view regions. Moreover, cameras
installed for surveillance or other applications typically send all
the frames from the footage to a remote location for processing -
imposing constraints on network bandwidth. While it is possible to
downsample the number of frames sent over the network, it is not
desirable for applications such as tracking, that may require fine-
grained information and can be negatively impacted by missing
frames. This creates an inherent tradeoff between the requirement
to preserve network bandwidth and the fidelity of the camera video.
Limiting the number of frames can preserve network bandwidth,
however, it will lead to missed image frames and thus tracking er-
rors. To address this issue and the limitations of tracking based on
vision only, prior works have leveraged complementary modalities,
such as raw sensory or meta data from phone and wireless sig-
nals, primarily throughmultimodal association [1, 12, 13]. However,
these approaches fail in tracking in the absence of image frames.

To address this gap, we propose ViFiT, a system that can re-
construct a human subject’s motion trajectory in camera video
footage by leveraging motion sensor data from the subject’s phone.
Specifically, we capture inertial measurement unit (IMU) and Wi-Fi
Fine Time Measurements (FTM) readings from the subjects’ phones
to reconstruct their vision trajectories. By leveraging lightweight
modalities from the phone, we can ensure continuity in tracking in-
formation even when the camera frames are missing or the subjects
are occluded or out of the camera view. Our proposed approach
also identifies the minimum number of camera frames required for
vision trajectory reconstruction. In the future, ViFiT can also serve
as an adaptive downsampling technique to reduce the amount of
camera data transmitted over the network.
Contributions. In summary, our contributions are:
• We design and develop ViFiT, a novel multimodal transformer-
based model to reconstruct vision tracklets from phone domain
data, including IMU and FTM data.

• We develop a novel Intersection over Union (IoU) based metric
calledMinimum Required Frames (MRF) that jointly captures both
the quality of reconstructed bounding boxes and the lower bound
of frames required for reconstruction.

• ViFiT achieves anMRF of 37.75 in all 4 outdoor scenes on average,
outperforming the best baseline method with an MRF of 53 (Δ =
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15.25). ViFiT uses only 2.24% of frames from the videos, demon-
strating its effectiveness to reconstruct accurate bounding boxes
(IoU>0.5) without requiring all the frames in a video stream.
We conducted a study on the amount of data in network trans-

mission in different modalities. Our empirical results show that by
using ViFiT and multiple modalities, we can significantly reduce the
amount of information (more than 99%) in network transmission.
Challenges and Approach.As illustrated in Fig. 1, ViFiT proposes
an approach to reconstructing the tracklets (series of tracking coor-
dinates) for each subject from their phone’s IMU and Wi-Fi data.
We encounter several challenges: (1) Coordinate frame transfor-
mation: the phone and camera have different reference coordinate
frames and therefore translating from one to the other requires a
coordinate frame alignment. A naive extension of IONet [3] that
converts trajectories in a map representation to image coordinates
will fail due to new challenges in generalizing to various cameras
especially when their camera parameters are unknown; (2) Multi-
modal fusion: the phone data includes raw IMU sensor readings
and WiFi FTM values (distance from the access point), which have
to be associated with camera image frames through a unified deep
learning tracking model; (3) IMU cumulative drift: trajectories
computed using IMU data are known to drift over time, potentially
increasing errors in the reconstructed vision trajectories.

Keeping in linewith the state-of-the-art trackers using transformer-
basedmodels, in this paper we investigate, experiment, and evaluate
a transformer model with careful designs for vision trajectories
reconstruction tasks in the images by using minimal image frames
and multiple modalities of phone IMU and FTM data.

To speed up computation, researchers have tried image compres-
sion, resolution reduction, or dropping frames. These approaches,
however, reduce image quality or remove necessary information
completely. As a result, tracking performance is degraded. Our
approach differs by reducing the video sampling rate while keep-
ing the integrity of an entire frame. However, as the video stream
is downsampled, we lose the subject’s fine-grained movements
across consecutive frames. Thus, the detected trajectories from a
downsampled stream will likely be error-prone.

Tc
t

Video
Stream . . .

Tp T'c

Missing MissingAvailable

T'cReconstructt t+1 t+2

ViFiT

Figure 1: Task formulation: ViFiT reconstructs bounding
boxes in missing frames by using complementary phone
data – accelerations, gyroscope, magnetometer readings and
wireless FTM data.

2 RELATEDWORK
Vision-based Detection & Tracking Recently transformer-based
models have been deployed for a wide variety of visual tasks, such
as image classification [5], object detection [2] and tracking [4].
Common vision benchmarks include COCO [10] for object detec-
tion, MOT [14] for tracking. However, these are for vision-only
evaluation when all the frames in a complete video are available.
Visual trajectory reconstruction datasets include BIWI [15] and [8]
but lack phone modality. We hereby use the Vi-Fi dataset [11] [12]
that includes vision, IMU and FTM data.
Multimodal Learning and Fusion. The closest works to our re-
search frommultimodal learning aspect include Vi-Fi [12], ViTag [1]
and ViFiCon [13], which focus on multimodal association. Our task
differs by reconstructing vision trajectories using phone sensor
data. In addition, compared to these recurrent or convolutional
models, we take a step forward to explore transformer’s capacity to
learn long-term time series data from IMU and multimodal fusion.

3 SYSTEM OVERVIEW
3.1 Data Preprocessing
We utilize the large-scale multimodal dataset from Vi-Fi [12]. Vi-Fi
dataset consists of RGB-D (depth) visual data captured by a ZED-2
stereo camera, wireless data by communication between Google
Pixel 3a phones and a Google Nest Wi-Fi access point next to the
camera, as well as IMU accelerometer, gyroscope, magnetometer
sensor readings from the phone. It covers a wide range of scenes
both indoors and outdoors, totaling 142K frames in 89 sequences,
each of which lasts around 3 minutes. At most 5 subjects are hold-
ing phones communicating with the access point and 11 detections
in one scene. All participants walk in an unconstrained fashion.
Camera Data.We follow the procedure in ViTag [1] to generate
trajectories (referred to as tracklets in the rest of the paper) using
the StereoLabs ZED tracker on the RGB-Depth camera data. Track-
lets are typically short because subjects move out of the field of
view of the camera frequently. Tracklets from camera data (𝑇𝑐 ) are
represented as a time series sequence of bounding boxes (BBX ).
Each bounding box is represented as:

𝐵𝐵𝑋 = [𝑥,𝑦, 𝑑,𝑤, ℎ], 𝑇𝑐 ∈ R𝑊𝐿×5 (1)
where 𝑥 and 𝑦 are the coordinates of the centroid of the bounding
box, 𝑑 is the centroid’s depth measurement, and 𝑤 and ℎ are the
bounding box width and height, respectively.𝑊𝐿 is the window’s
length which is also the number of frames in a window.
Phone Data. To preprocess the smartphone data, we use 3 types of
measurements from the time series IMU data. We extract the 3-axis
accelerometer data 𝑎𝑐𝑐 , 3-axis gyroscope 𝑔𝑦𝑟𝑜 , and magnetometer
data𝑚𝑎𝑔. These measurements from the time series IMU data are
concatenated as a vector:

𝑇 𝑡𝑖 = [𝑎𝑐𝑐;𝑔𝑦𝑟𝑜 ;𝑚𝑎𝑔], 𝑇𝑖 ∈ R𝑊𝐿×9 (2)
Additionally, we use phones’ FTM measurements at time 𝑡 which
is defined as:

𝑇 𝑡
𝑓
= [𝑟, 𝑠𝑡𝑑], 𝑇𝑓 ∈ R𝑊𝐿×2 (3)

where 𝑟 represents the estimated range, or distance from phone
to WiFi access point, while 𝑠𝑡𝑑 represents the standard deviation
calculated in a single RTT burst.

In the context of our work, we use modality to refer to one type
of data such as bounding boxes, IMU readings, or FTM data, while
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we use domain to refer to the source, such as camera or smartphone.
Thus, vision tracklets (𝑇𝑐 ) belong to the camera domain, and IMU
and FTM data belong to the phone domain (𝑇𝑝 ):

𝑇𝑝 = [𝑇𝑖 ;𝑇𝑓 ] . (4)
Multimodal Synchronization. All the modalities are synchro-
nized before feeding them to the model. We use Network Time
Protocol (NTP) on the devices to synchronize the camera and phone
data. The sampling rate for camera frames is 30 FPS, for IMU read-
ings is 100 Hz, and 3-5 Hz for FTM. Each phone datapoint finds the
closest timestamp of a camera frame.
Normalization. By default, we apply normalization on IMU data
following the same way as LIMU-BERT [17].

3.2 ViFiT Design
In this section, we describe the details of ViFiT. The workflow is
illustrated in Fig. 2 (b). We employ the main transformer backbone
inspired by LIMU-BERT [17] with a few key modifications: (1) we
implement three separate independent encoders to learn modality-
specific features; (2) intermediate representations are concatenated
to fuse multiple modality information; and (3) residual connections
between encoder and decoder are removed such that decoder purely
depends on the fused multimodal representations.

ViFiT 1 consists of three encoders for multiple modalities and one
vision decoder. The objective of the encoders is to learn multimodal
representations from vision, IMU and wireless data FTM, e.g. IMU
Encoder is responsible for capturing motion information from accel-
erations, rotations and orientations while FTM Encoder focuses on
wireless data. We keep encoders identical for all modalities for the
simplicity to extend new modalities such as RF in the future work.
In the next step, representations are fused by concatenation, based
on which the Vision Decoder reconstructs the bounding boxes.
Encoder. Each encoder comprises 𝐵 = 4 stacks of Multi-head Self-
attention (MSA), Projection and Feed Forward layers, with residual
connections and Layer Normalization in between. It takes in a
tracklet 𝑇𝑚 as input and projects it to a higher dimensional space:

𝑋 = 𝑃𝑟𝑜 𝑗 (𝑇𝑚) = 𝐴 ×𝑇𝑚 (5)
where 𝐴 is a matrix with dimension 𝐻𝑑𝑖𝑚 × 𝐷𝑚 and 𝐻𝑑𝑖𝑚 is the
hidden space dimension larger than modality𝑚’s feature dimension
𝐷𝑚 (e.g.𝐷𝑐 = 5,𝐷𝑖 = 9 and𝐷 𝑓 = 2). We set𝐻𝑑𝑖𝑚 = 72 by default as
it yields the best overall performance shown in later experimental
sections. We implement the Projection layer Proj(·) by a linear layer.
The objective is to expand the low dimensional input feature space
𝐷𝑚 to a larger one to learn richer implicit features 𝑋𝑚 for modality
𝑚. Since data in different scenes have different distributions, it can
lead to unstable training. Therefore, Layer Normalization is applied
to stabilize features of instance 𝑖 from previous Projection Layer:

𝑋 𝑖
𝑚 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑋 𝑖

𝑚) =
𝑋 𝑖
𝑚,𝑗

− 𝜇 𝑗√︃
𝜎2
𝑗
+ 𝜖

𝛾 + 𝛽 (6)

where 𝛾 and 𝛽 are the learnable hyperparameters, and 𝜖 is a small
number to avoid numerical instability. The mean and standard devi-
ation across modality𝑚’s feature 𝑗 ( 𝑗𝑡ℎ column of𝐴) are denoted by
𝜇 𝑗 and 𝜎 𝑗 , respectively. After that, different from recurrent layers of
LSTM in the Vi-Fi [12] or ViTag [1] models, we employ positional
1Code is available at https://github.com/bryanbocao/vifit. Dataset can be downloaded
at https://sites.google.com/winlab.rutgers.edu/vi-fidataset/home.

encoding to learn the order information of modality𝑚 and add it
into 𝑋𝑚 , followed by a second Layer Normalization.

In the next step,𝑋𝑚 enters 𝐵 core transformer blocks with Multi-
head Self-attention (MSA) layers. Scaled Dot-product Attention
is used with 𝑑𝑘 dimensional queries and keys while values are of
dimension 𝑑𝑣 , implemented by:
𝑀𝑆𝐴(𝑋𝑚) = 𝑀𝑆𝐴(�̂�𝑚, �̂�𝑚,𝑉𝑚) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝐴𝑂𝑚

(7)
where 𝐴𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 and a ℎ𝑒𝑎𝑑 is an attention layer:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑚) = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(�̂�𝑚, �̂�𝑚,𝑉𝑚) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( �̂�𝑚�̂�
𝑇
𝑚√︁

𝑑𝑘

)𝑉𝑚

(8)
where �̂�𝑚 = �̂�𝑚 = 𝑉𝑚 = 𝑋𝑚 for a modality’s self-attention. More
numbers of heads (ℎ) allow for learning different representations.
In this implementation we set ℎ = 4, 𝑑𝑘 = 𝑑𝑣 = 𝐻𝑑𝑖𝑚 = 72 and
𝑑𝑚𝑜𝑑𝑒𝑙 = 𝐻𝑑𝑖𝑚 × ℎ = 72 × 4 = 288.

The Position-wise Feed Forward layer (denoted as FFN(·) and
Feed Forward in Fig. 2) is implemented by two linear transfor-
mations of dimension 𝐻𝑑𝑖𝑚 = 72 and 𝐹𝑑𝑖𝑚 = 144, respectively.
Following [17], Gaussian Error Linear Unit (GELU) [7] is utilized
as the activation function between two layers.

The following functions constitute a transformer block:
𝑀𝑏 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑀𝑆𝐴(𝑋𝑏−1

𝑚 ) + 𝑋𝑏−1
𝑚 ) (9)

𝑃𝑏 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑃𝑟𝑜 𝑗 (𝑀𝑏 ) +𝑀𝑏 ) (10)
𝑋𝑏
𝑚 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐹𝐹𝑁 (𝑃𝑏 ) + 𝑃𝑏 ) (11)

where 𝑏 − 1 denotes a previous block. The final representation of
modality𝑚 from encoder is denoted as 𝑋 ′

𝑚 shown in Fig. 2.
Decoder. The decoder is implemented for the vision modality only.
Concatenated multimodal representations are fed into the decoder,
which is comprised of a projection Proj(·), GELU activation GELU(·)
and Layer Normalization LayerNorm(·), followed by a linear predic-
tion head Pred(·) of dimension 𝐻𝑑𝑖𝑚 :

𝑋 ′
𝑓 𝑢𝑠𝑒𝑑

= 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑋 ′
𝑐 , 𝑋

′
𝑖 , 𝑋

′
𝑓
) (12)

𝑋𝑓 𝑢𝑠𝑒𝑑 = 𝑃𝑟𝑜 𝑗 (𝑋 ′
𝑓 𝑢𝑠𝑒𝑑

) (13)
𝑇 ′
𝑐 = 𝑃𝑟𝑒𝑑 (𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐺𝐸𝐿𝑈 (𝑋𝑓 𝑢𝑠𝑒𝑑 ))) (14)

3.3 Training
Loss Functions. The task is formulated as a regression problem,
which maps camera domain information 𝑇 0

𝑐 with first frame only
and phone domain data 𝑇𝑖 and 𝑇𝑓 to a continuous space in 𝑇 ′

𝑐 .
Therefore, we employ Mean Squared Error (MSE) as the default
loss function by:

𝐿𝑀𝑆𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑇 𝑖𝑐 ,𝑇 ′
𝑐
𝑖 )2 (15)

where 𝑇𝑐 is ground truth (GT) and 𝑇 ′
𝑐 is the reconstructed tracklet

in a window, 𝑖 is 𝐵𝐵𝑋 index in a tracklet and 𝑁 is the number of
training samples.

To train themodel for better bounding box estimation, we further
leverage Distance-IoU (DIoU) loss inspired by Zheng et al. [18]:

𝐿𝐷𝐼𝑜𝑈 =
1
𝑁

𝑁∑︁
𝑖=1

(
1 − 𝐼𝑜𝑈 (𝑇 𝑖𝑐 ,𝑇 ′𝑖

𝑐 ) + 𝜌2 (𝑇 𝑖𝑐 ,𝑇 ′𝑖
𝑐 )

(𝑠𝑖 )2

)
(16)

where 𝜌(·) is the Euclidean Distance between the centroids of 𝑖𝑡ℎ
𝐵𝐵𝑋 in𝑇 𝑖𝑐 and𝑇 ′𝑖

𝑐 and 𝑠𝑖 denotes the diagonal length of the smallest
enclosing box that covers those two bounding boxes.
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Figure 2: (a) ViFiT System Overview. ViFiT consists of multimodal Encoders for (𝑇 0
𝑐 , 𝑇𝑖 and 𝑇𝑓 ) to extract features and a Vision

Decoder to reconstruct the complete visual trajectory of𝑇 ′
𝑐 for the missing frames in a window with length𝑊𝐿. Note𝑇 0

𝑐 denotes
a vision tracklet with first frame only and 𝐻 denotes representation dimension. (b) Vi-Fi Transformer (ViFiT ) Architecture.
ViFiT is comprised of multimodal Vision, IMU and FTM Encoders depicted on the left side in parallel displayed with various
opacity, as well as a Vision Decoder on the right. Information flow starts from the bottom left corner, where each tracklet
for one modality (𝑇 0

𝑐 , 𝑇𝑖 or 𝑇𝑓 ) is fed into its own Encoder independently, including 𝐵 blocks of transformer modules with
Multi-head Self-attention (MSA). In the next step, Encoders generate multimodal representations, fused by concatenation (𝑋 ′

𝑐 ,
𝑋 ′
𝑖
, 𝑋 ′

𝑓
) and are fed into the Vision Decoder to output bounding boxes (𝑇 ′

𝑐 ) in missing frames.

4 EVALUATION
4.1 Baseline Methods
We evaluate our approach by comparison against alternative meth-
ods. Baseline methods are categorized into two categories: (1) tradi-
tional handcrafted methods, including Broadcasting (BC), Pedes-
trian Dead Reckoning (PDR) [16], and Kalman Filter [9], as well as
(2) deep learning methods that includes X-Translator [1]. The
details of the baselines are described as follows:
Broadcasting (BC). The first frame detections are broadcasted
through the rest of missing frames.
Pedestrian Dead Reckoning (PDR) [16]. PDR is the process of
estimating the current position using previous estimates by IMU
sensors in the North-East-Down (NED) coordinates. For fair bench-
marking, we follow the procedure in Vi-Fi [12] and ViTag [1] to
construct a trajectory with 2D points of (𝑥𝑡 , 𝑦𝑡 ) at time 𝑡 in a 2D
map from IMU readings, and convert them into feet center points
in an image. To generate other bounding box parameters (𝑤 , ℎ and
𝑑) in the image coordinate system, we learn two linear functions
𝑓1, 𝑓2 to regress bounding box widths and heights, and a quadratic
function for depths from the camera horizontal position 𝑦.
Kalman Filter (KF) [9].Kalman filter is widely used in localization
and state estimation. Accurate tracking can be attributed to the
weight adjustment between measurements and state prediction
errors by the importance variable Kalman Gain. We adopt a kalman
filter to estimate a person’s bounding box position in an image.
X-Translator (X-T) [1]. A multimodal LSTM network in encoder-
decoder architecture from ViTag. We follow the training procedure
from the publicly released code. Different from the reconstruction
path from vision to phone tracklets (𝑇𝑐 → 𝑇 ′

𝑝 ) in ViTag, we utilize
the other reconstruction path from phone data to vision tracklets
(𝑇𝑝 → 𝑇 ′

𝑐 ) to perform the same task in this paper. We also feed 𝑇 0
𝑐

with only the first frame into the model.

4.2 Evaluation Metrics
Evaluation protocol is consistent across different methods. Specif-
ically, a reconstruct method (𝑅𝑀) is a function that takes in (1)
𝑇 0
𝑐 ∈ R1×5 with bounding box detections in the first frame only, (2)
𝑇𝑖 ∈ R𝑊𝐿×9 and (3) 𝑇𝑓 ∈ R𝑊𝐿×2 across all frames in a window as
input and outputs the reconstructed bounding boxes 𝑇 ′

𝑐 ∈ R𝑊𝐿×5:

𝑇 ′
𝑐 = 𝑅𝑀 (𝑇 0

𝑐 ,𝑇𝑖 ,𝑇𝑓 ) (17)

For each metrics described in later subsections, a reconstruct
method (𝑅𝑀)’s output 𝑇 ′

𝑐 is compared to the reference of ground
truth (GT) 𝑇𝑐 (𝐺𝑇 ) in a window.
Intersection Over Union (IoU). IoU is referred to as the Jaccard
similarity coefficient or the Jaccard index, computed by the area of
overlap between the reconstructed bounding box and the GT at 𝑖𝑡ℎ
frame divided by their union.
Average Precision (AP). AP is commonly used in object detection
calculated by the ratio of True Positives (TP) over all the positives,
where a threshold 𝜏 of IoU is given to determine a TP. IoU greater
than 0.5 is generally considered good.

Unless otherwise specified, each of the aforementioned scores is
computed per subject per frame.
Minimum Required Frames (MRF).We introduce MRF as the
main metric to measure the smallest number of frames needed
for an 𝑅𝑀 to reconstruct good bounding boxes in a video stream
system. Existing common metrics of IoU and AP only focus on
the quality of reconstructed bounding boxes in each frame inde-
pendently, but fails to capture frame-related characteristics. To
measure the upper bound of the number of frames a video can be
dropped without compromising the reconstruction performance
below a certain threshold, we propose a novel IoU-based metric
coined Minimum Required Frames (MRF). The main intuition of
MRF is to capture the minimum number of frames required in order
for a method to continuously reconstruct decent bounding boxes
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Figure 3: Samples of reconstructed vision tracklets 𝑇 ′
𝑐 and ground truths GT decorated in lighter (1st row) and darker colors

(2nd row). Indoor scene is shown in the 1st column while outdoor scenes are displayed from the 2nd to the 5th columns. By
visual comparison between 𝑇 ′

𝑐 and GT, ViFiT is capable of generating decent bounding boxes for missing frames.

in missing frames. MRF is computed in sliding window way while
only the first frame in a window is available. Smaller MRF indi-
cates better reconstructions. Given a video stream𝑉 consisting of 𝐹
frames, window length𝑊𝐿 that satisfies𝑊 > 2 and IoU threshold
𝜏 , the algorithm computes MRF for the reconstruct method 𝑅𝑀 .

Since the total number of frames in a video stream 𝐹 varies, MRF
will also be changed even if the distribution preserves for the same
𝑅𝑀 . We hereby introduce Minimum Required Frame Ratio (MRFR)
which is defined as MRF divided by the total number of windows:

𝑀𝑅𝐹𝑅 =
𝑀𝑅𝐹

𝑊
(18)

4.3 Overall Performance
Our main result is presented in Fig. 4. In summary, ViFiT-30F (ViFiT
trained on 30-frame windows) trained by DIoU loss yields the low-
est Minimum Required Frames (MRF) of 37.75 across all 4 outdoor
scenes, exceeding the second best method KF with 53 by 15.25,
demonstrating the effectiveness of our approach in reconstructing
bounding boxes for missing frames by fusing phone motion and
wireless data. Evaluation is done using window length𝑊𝐿 = 30
and stride𝑊𝑆 = 29. Longer window lengths cover more compli-
cated trajectories such as making turns. Therefore, we evaluate the
model ViFiT-30F with a longer window length than ViFiT-10F in
the following study.

ALL BC X-T PDR KF ViFiT
(Ours)

Reconstruct Method (RM) 
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40

50

60

M
R

F 
←

58 56.75 56.75 56.5
53

37.75

(a) Minimum Required Frames (MRF)

ALL BC X-T PDR KF ViFiT
(Ours)

Reconstruct Method (RM) 

0.6

0.8

1.0

M
R

FR
 ←

1.00 0.98 0.98 0.97
0.91

0.65

(b) Minimum Required Frames Ratio
(MRFR)

Figure 4: Main results: comparison of our system ViFiT-30F
(DIoU) against baselines evaluated by Minimum Required
Frames (MRF) in (a) and MRFR (Ratio) in (b) for all 4 outdoor
scenes with window length𝑊𝐿 = 30, stride𝑊𝑆 = 29. ALL:
average of total number of processed windows in one se-
quence, BC: broadcasting, X-T: X-Translator-30F, PDR: Pedes-
trian Dead Reckoning, KF: Kalman Filter. Results demon-
strate the effectiveness of ViFiT-30F to reduce frames with
only 37.75

1683 = 2.24% of video frames needed to reconstruct good
bounding boxes (IoU = 0.55 > 0.5).

To interpret the result of ViFiT-30F in Fig. 4, 𝑅𝑀 processes 58
windows (1 + 58 × 29 = 1683 frames) in one scene shown by
"ALL", out of which in each of the 37.75 windows ViFiT-30F queries
bounding boxes of the first frame from video on average, result-
ing in 2.24% frames used. In other words, ViFiT-30F has generated
good bounding boxes for the rest of missing frames, accounting for
1 − 2.24% = 97.76% of a video. Note the average IoU and AP@.5
of these predictions are 0.55 and 0.56 while IoU > 0.5 is generally
considered good. This result has demonstrated the effectiveness of
our system by exploiting other modalities from phone domain, in-
cluding IMU and wireless data to save video data. Compared to IoU
or AP, we highlight the practical benefit of MRF that it tells a prac-
titioner a quantitative number to determine the minimum frames
(e.g. for saving network transmission) required for reconstruction.
Continuous Reconstructed Trajectory Length Interval. On
average, ViFiT-30F is able to continuously reconstruct decent bound-
ing boxes in 1.55 windows, resulting in 45.01 frames, which corre-
spond to 4.5 seconds with frame rate of 30 FPS. ViFiT-30F is capable
of reconstructing a continuous trajectory with a maximum length
of 87 frames. Samples are visualized in Fig. 3. For each window, re-
constructed bounding boxes are shown in Row 1. Compared to the
GT in Rows 2, we can see that ViFiT can generate decent bounding
boxes in a window using only a single frame.

4.4 System Analysis
In this section, we analyze the system from various perspectives.
Phone Feature Ablation Study. We conduct an ablation study
on accelerometer (A), gyroscope (G), magnetometer (M) and FTM
(F) data shown in Fig. 5 (a). Overall, combining all features yields
the best performances with IoU, AP@.5 and AP@.1 of 0.5, 0.47 and
0.82, respectively. A single feature results in lower scores (light red),
while any combination generally assists in better reconstruction. F
is more useful when combining all A, G and M, demonstrating the
design choice of phone features in our system.
Benchmark on Window Length (𝑊𝐿).We conduct benchmark-
ing on variousmethods by varyingwindow lengths (𝑊𝐿) in outdoor
scenes in Fig. 5 (b). Observe that most existing methods fail to pro-
duce desirable bounding boxes (IoU > 0.5) when only the first frame
is available. Overall, ViFiT outperforms all baselines.
Analysis on Vision-only Object Detector.We evaluate the state-
of-the-art vision model’s detection when all frames are available.
By the time we conduct the experiment, YOLOv5 [6] is the most
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Figure 5: (a): Phone Feature Ablation Study on Vi-Fi-Former-
30F in all 5 scenes. A: Acceleration, G: Gyroscope Angular
Velocity, M: Magnetometer Reading, F: FTM. With all phone
features (stars in green), Vi-Fi-Former-30F achieves the best
performance. (b): Top right is better. ViFiT achieves higher
AP with longer window lengths compared to other baselines.

Model AP@.5 ↑ FR ↓ Modality #Params (M)

YOLOv5m 0.91 100 % Vision 21.2
YOLOv5n 0.90 100 % Vision 1.9
ViFiT-10F 0.82 2.25 % Vision, IMU, FTM 0.15
ViFiT-30F 0.56 2.24 % Vision, IMU, FTM 0.15

Table 1: Analysis with Vision-only model YOLOv5 in outdoor
scenes. RF: Frame Ratio, n: nano, m: medium. ViFiT-10F and
ViFiT-30F are able to preserve decent bounding boxes with
IoU 0.71 and 0.55 (>0.5 good), resulting in AP@.5 of 0.82 and
0.56, respectively.

recent model. Results are shown in Table 1. Overall, ViFiT-10F and
ViFiT-30F preserve decent bounding boxes, achieving an AP@.5
as 0.82 and 0.56 in the outdoor scenes, compared to 0.91 and 0.90
by YOLOv5m (medium) and YOLOv5n (nano), respectively. ViFiT-
10F and ViFiT-30F achieve an IoU of 0.71 and 0.55 while IoU>0.5
is generally considered as good. Although our model requires ad-
ditional IMU and FTM data, the large visual data reduction with
only an extremely small portion of 2.24% frames needed in a video
demonstrates it as a decent trade-off. Last but not least, our model
is lightweight (0.15M #Params) that does not bring much overhead
to existing systems, compared to 1.9M and 21.2M for YOLOv5 nano
and medium.

5 CONCLUSION
In this paper we designed ViFiT, a system that hosts a transformer-
based deep learning model to generate tracking information for
missing frames in a video. Our work showed that by using strate-
gically selected small number of video frames along with phone’s
IMU data as well as Wi-Fi FTM can achieve high tracking accuracy.
In particular, ViFiT uniquely is able to reconstruct the motion trajec-
tories of human subjects in videos even if the corresponding video
frames were not made available or considered lost for processing.
To properly evaluate the video characteristics of the system, we pro-
pose novel IoU-based metricsMinimum Required Frames (MRF) and
Minimum Required Frames Ratio (MRFR) for a Camera-GPU system.
ViFiT achieves 0.65MRFR, significantly lower than the second best

method Kalman Filter of 0.91 and the state-of-the-art LSTM-based
model X-Translator of 0.98, resulting in an extremely large amount
of frame reduction of 97.76%. Through extensive experiments we
demonstrated that ViFiT is capable of tracking the target with high
accuracy, making it applicable in real world scenarios.

6 ACKNOWLEDGEMENT
This research has been supported by the National Science Foun-
dation (NSF) under Grant Nos. CNS-2055520, CNS-1901355, CNS-
1901133.

REFERENCES
[1] Bryan Bo Cao, Abrar Alali, Hansi Liu, Nicholas Meegan, Marco Gruteser, Kristin

Dana, Ashwin Ashok, and Shubham Jain. 2022. ViTag: Online WiFi Fine Time
Measurements Aided Vision-Motion Identity Association in Multi-person Envi-
ronments. In 2022 19th Annual IEEE International Conference on Sensing, Commu-
nication, and Networking (SECON). IEEE, 19–27.

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. 2020. End-to-end object detection with trans-
formers. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part I 16. Springer, 213–229.

[3] Changhao Chen, Xiaoxuan Lu, Andrew Markham, and Niki Trigoni. 2018. Ionet:
Learning to cure the curse of drift in inertial odometry. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 32.

[4] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang, and Huchuan Lu.
2021. Transformer tracking. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 8126–8135.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[6] Glenn Jocher et. al. 2021. ultralytics/yolov5: v6.0 - YOLOv5n ’Nano’ models,
Roboflow integration, TensorFlow export, OpenCV DNN support. https://doi.org/
10.5281/zenodo.5563715

[7] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

[8] Ronny Hug, Stefan Becker, Wolfgang Hübner, and Michael Arens. 2021. Quanti-
fying the complexity of standard benchmarking datasets for long-term human
trajectory prediction. IEEE Access 9 (2021), 77693–77704.

[9] Qiang Li, Ranyang Li, Kaifan Ji, and Wei Dai. 2015. Kalman filter and its applica-
tion. In 2015 8th International Conference on Intelligent Networks and Intelligent
Systems (ICINIS). IEEE, 74–77.

[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 740–
755.

[11] Hansi Liu. 2022 [Online]. Vi-Fi Dataset. https://sites.google.com/winlab.rutgers.
edu/vi-fidataset/home

[12] Hansi Liu, Abrar Alali, Mohamed Ibrahim, Bryan Bo Cao, Nicholas Meegan,
Hongyu Li, Marco Gruteser, Shubham Jain, Kristin Dana, Ashwin Ashok, et al.
2022. Vi-Fi: Associating Moving Subjects across Vision and Wireless Sensors. In
2022 21st ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN). IEEE, 208–219.

[13] Nicholas Meegan, Hansi Liu, Bryan Cao, Abrar Alali, Kristin Dana, Marco
Gruteser, Shubham Jain, and Ashwin Ashok. 2022. ViFiCon: Vision and Wire-
less Association Via Self-Supervised Contrastive Learning. arXiv preprint
arXiv:2210.05513 (2022).

[14] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. 2016.
MOT16: A benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831
(2016).

[15] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. 2009. You’ll
never walk alone: Modeling social behavior for multi-target tracking. In 2009
IEEE 12th international conference on computer vision. IEEE, 261–268.

[16] BoyuanWang, Xuelin Liu, Baoguo Yu, Ruicai Jia, and Xingli Gan. 2018. Pedestrian
dead reckoning based on motion mode recognition using a smartphone. Sensors
18, 6 (2018), 1811.

[17] Huatao Xu, Pengfei Zhou, Rui Tan, Mo Li, and Guobin Shen. 2021. LIMU-BERT:
Unleashing the Potential of Unlabeled Data for IMU Sensing Applications. In
Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems.
220–233.

[18] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, and Dongwei Ren.
2020. Distance-IoU loss: Faster and better learning for bounding box regression. In

18

https://doi.org/10.5281/zenodo.5563715
https://doi.org/10.5281/zenodo.5563715
https://sites.google.com/winlab.rutgers.edu/vi-fidataset/home
https://sites.google.com/winlab.rutgers.edu/vi-fidataset/home

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Data Preprocessing
	3.2 ViFiT Design
	3.3 Training

	4 Evaluation
	4.1 Baseline Methods
	4.2 Evaluation Metrics
	4.3 Overall Performance
	4.4 System Analysis

	5 Conclusion
	6 Acknowledgement
	References

