
Panoptes: Servicing Multiple Applications Simultaneously using
Steerable Cameras

Shubham Jain
WINLAB, Rutgers University
shubhamj@winlab.rutgers.edu

Viet Nguyen
WINLAB, Rutgers University
viet.nguyen@rutgers.edu

Marco Gruteser
WINLAB, Rutgers University
gruteser@winlab.rutgers.edu

Paramvir Bahl
Microso� Research
bahl@microso�.com

ABSTRACT
Steerable surveillance cameras o�er a unique opportunity to sup-
port multiple vision applications simultaneously. However, state-
of-art camera systems do not support this as they are o�en limited
to one application per camera. We believe that we should break
the one-to-one binding between the steerable camera and the ap-
plication. By doing this we can quickly move the camera to a new
view needed to support a di�erent vision application. When done
well, the scheduling algorithm can support a larger number of ap-
plications over an existing network of surveillance cameras. With
this in mind we developed Panoptes, a technique that virtualizes
a camera view and presents a di�erent �xed view to di�erent ap-
plications. A scheduler uses camera controls to move the camera
appropriately providing the expected view for each application in a
timely manner, minimizing the impact on application performance.
Experiments with a live camera setup demonstrate that Panoptes
can support multiple applications, capturing up to 80% more events
of interest in a wide scene, compared to a �xed view camera.

CCS CONCEPTS
•Computer systems organization →Sensors and actuators;
Real-time system architecture; •Information systems →Mobile
information processing systems;

KEYWORDS
Camera, Scheduling, Virtual views, Smart infrastructure, Video
analytics, Pan-Tilt-Zoom

ACM Reference format:
Shubham Jain, Viet Nguyen, Marco Gruteser, and Paramvir Bahl. 2017.
Panoptes: Servicing Multiple Applications Simultaneously using Steerable
Cameras. In Proceedings of�e 16th ACM/IEEE International Conference on
Information Processing in Sensor Networks, Pi�sburgh, PA USA, April 2017
(IPSN 2017), 12 pages.
DOI: h�p://dx.doi.org/10.1145/3055031.3055085

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
IPSN 2017, Pi�sburgh, PA USA
© 2017 ACM. 978-1-4503-4890-4/17/04. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3055031.3055085

Traffic Volume
Monitoring Anomaly

Detection

License Plate
Recognition

Video Analytics Applications

CLOUD
SERVICES

Steerable PTZ CameraFixed View Camera

PROPOSEDCURRENT

Traffic Volume
Monitoring

CLOUD
SERVICES

Video Analytics Application

Figure 1: Cloud analytics platform for cameras.

1 INTRODUCTION
Surveillance cameras are becoming ubiquitous. �e United King-
dom houses �ve million surveillance cameras, many of them in Lon-
don, which has one surveillance camera for every 11 people [1, 2].
Networked cameras cover key areas of highways, they are mounted
on adaptive tra�c signal systems for tra�c light control, and they
are increasingly deployed in our o�ces and homes (e.g., Nest-
Cam [3]). Many of these cameras can be remotely controlled over
the Internet, feeding live streams to a distant cloud. �is then,
creates an opportunity to harness such cameras for additional vi-
sion analytics applications that gather data far beyond the original
intended purpose of a deployed camera.

Outdoor surveillance cameras can be used for a wide range
of analytic tasks, such as tra�c volume measurements, behavior
mapping, amber alert scanning, pedestrian monitoring, and tra�c
violations. Some of them are shown in Fig 2. Similarly, security
cameras can be used for pet overseeing, security monitoring, baby
activity etc. �e ability to add analytics apps to existing camera
feeds could contribute much to satisfy the data demands of future
envisioned smart home and smart city applications. We therefore
envision a cloud-based platform that allows adding many diverse
analytics applications to existing cameras and support them in a
concurrent manner.

Supporting multiple simultaneous �xed view analytics applica-
tions on the same camera o�en creates challenges because their
view and image requirements tend to di�er. Hitherto cameras are
o�en installed with a speci�c application in mind and their view

IPSN 2017, April 2017, Pi�sburgh, PA USA Jain et al.

Parking spot monitoring Car Counting

Pedestrian counting Weather MonitoringSeason tracking

License Plate Recognition

Figure 2: A 180 degree panorama from our PTZ camera, displaying the scene and regions of interest for potential applications.

(i.e., position, orientation) is carefully adjusted to �t this applica-
tion, as shown on the le� in Fig 1. Technology trends are leading to
more �exible, steerable camera designs, enabling tra�c operators
to steer them occasionally to look for other events of interest. Even
though such cameras could in theory satisfy all applications, le�ing
applications directly issue steering commands would likely lead
to con�icts. Moreover, such steering would need to keep up with
steering and network latencies.

We propose Panoptes,1 a view virtualization system for (electron-
ically or mechanically) steerable cameras. We develop a mobility-
aware scheduling algorithm for steering control, thus enabling
multiple applications to be supported simultaneously on a single
camera, as in Fig 1. Each application can specify its view require-
ments (e.g., orientation, resolution, zoom) and the system provides
it with a view that meets them. We refer to these views as virtual
views. �e goal of virtual view abstraction is to make steering
changes transparent to applications. �is is based on the insight
that temporary steering away of a camera can be easily masked by
replaying the previous virtual view image, if no signi�cant change
occurs in the view at that time.

To know when to steer, our proposed system learns mobility
pa�erns in its view and predicts when motion or change is likely in
each virtual view. Tra�c scenarios, for example, o�en exhibit fairly
regular, constricted motion pa�erns (a car’s movement follows the
roadway, which allow predicting when the car will enter a region
of interest). We bene�t from the continuous form of this motion to
learn mobility pa�erns in the scene for scheduling steering actions.

To summarize, we make the following contributions:

• a virtual view abstraction for sharing a camera among
multiple applications with �xed view requirements.

• a mobility-aware scheduling algorithm that anticipates
object velocity, network latency, and steering speed be-
fore steering the camera to the application speci�c view
(camera position). �e scheduler maximizes the number
of applications served while minimizing the number of
events missed.

1Panoptes, meaning all-seeing, is named a�er the 100-eyed Argus Panoptes in Greek
mythology.

We evaluated the system with a total of 2870 hours of video
collected over 5 months and demonstrate that Panoptes can support
multiple applications on a steerable camera, capturing up to 80%
more motion events, compared to commonplace �xed view cameras.

2 RELATEDWORK
�e space of steerable cameras predominantly focuses on tracking
moving objects, especially people [4, 5]. �ese cameras o�en fol-
low one target or rotate through preset positions to capture more
targets. However, the camera view is tightly bound to one spe-
ci�c application. Ilie et al [6] proposed an active camera control
technique, which explores the space of camera con�gurations and
cluster regions of interest. �is clustering is done based simply on
proximity and does not take expected motion into account.

�e most closely related work is MultiSense [7], which also seeks
to support multiple applications on a steerable camera. MultiSense,
however, addresses a di�erent application domain: applications
that have been designed for steerable cameras and seek to steer the
cameras themselves. It inter- leaves steering requests from these ap-
plications. �e system then focuses on resolving con�icts between
commands issued by di�erent applications, and allocating the sen-
sor resource. MultiSense implemented an application independent
weight-based fair sharing scheme for PTZ cameras. In contrast,
we focus on accommodating multiple �xed-view applications on a
steering camera, which we believe represents the vast majority of
vision analytics applications. Fixed-view applications were usually
developed for regular cameras and do not issue steering commands.
Keeping this in mind, Panoptes adds a layer of abstraction and
conceals steering actions from the applications. �is allows us to
use any conventional vision algorithms in a plug-and-play manner.
It also provides an opportunity for the system to steer camera to
maximize capture of motion.

Panoptes also proposes view virtualization, which generates
candidate camera views that can sometimes support multiple ap-
plications simultaneously by accommodating regions of interest
of di�erent applications in one camera view. MultiSense, in com-
parison, can only accommodate one application at a time through
virtual sensor and multiplexing, where each camera position allows
capture for one application.

Panoptes: Servicing Multiple Applications Simultaneously using Steerable Cameras IPSN 2017, April 2017, Pi�sburgh, PA USA

Many important contributions in vision analytics come from the
computer vision community, that has long propounded detection
and recognition algorithms in surveilled environments. Automated
vehicle tracking and classi�cation [8, 9], anomaly detection [10],
pedestrian tracking [11], face recognition [12] have all been widely
explored and enhanced over the years. However, these algorithms
are o�en designed for unchanging camera views, and their perfor-
mance is severely a�ected if the camera moves. Panoptes enables
state-of-art vision algorithms to run concurrently on a single cam-
era, and provides them with expected unchanging views through
the concept of view virtualization.

�ere are also multiple works on multi-camera surveillance net-
works. However, they usually coordinate to support only one ap-
plication, such as tracking people [13], identifying people [14, 15],
or object-tracking [16]. �reshi et al. [17] suggest greedy algo-
rithms such as weighted round robin to distribute targets to di�er-
ent cameras. Yao et al. [18] propose an adaptive camera assignment
algorithm for assigning resources to objects for a uniformly dis-
tributed computational load. For omnidirectional cameras, Chen
et al. [19] quantitatively formulate the e�ectiveness of a camera in
observing the tracked object and use this metric to decide hand-o�
between cameras. Panoptes is di�erent in utilizing motion pa�erns
to schedule diverse applications.

3 BACKGROUND
Many modern cameras are steerable, either through a mechanical
or an electronic mechanism. Mechanically steerable cameras, more
commonly known as Pan-Tilt-Zoom (PTZ) cameras, as shown in
Fig 3, are frequently used in the surveillance realm. �ey use motors
to rotate the camera along the horizontal and vertical axes (pan
and tilt), and adjust the zoom lens, therefore allowing optical zoom.
However, they can only observe events in one direction at a time.
Mobility-aware scheduling can thus schedule when and where the
camera is pointed at any time.

Figure 3: Mechani-
cally steerable cam-
eras’ 3 degrees of
freedom.

Intriguingly, image sensor reso-
lution (e.g., hundreds of megapix-
els [20]) and processing advances
have led to the availability of om-
nidirectional, or 360� cameras. �e
lens and image sensor in some of
these cameras are designed to cover
a wide view, frequently a 360� view
through a �sheye lens, with no abil-
ity to zoom. �ese cameras place
much higher requirements on the
quality of the lens and it is di�cult
to match the quality of an optical
zoom in motorized PTZ cameras.
�ey are not electronically steer-
able and thus mobility-awareness may not be very useful to these
cameras. Although popularly, 360� cameras are constructed by
mounting multiple cameras on a rig, pointing in various directions.,
where each has the ability to zoom. �ese are, in-e�ect, electron-
ically steerable cameras. �ey do not require any moving parts,
which simpli�es construction, deployment, and eliminates mechan-
ical wear. �ey also o�er near-zero camera steering latency since

there is no need to wait until the motor has moved the camera and
overall one can expect such designs to lower costs and signi�cantly
increase the usage of steerable cameras.

By virtualizing views from the panoramic scene for each appli-
cation, a 360� camera can contrive electronic steering by extracting
and transmi�ing only the virtual views over the network, thus
making the system bandwidth e�cient. Mobility-awareness can
enable the 360� system to control the precise camera needed for
conducting speci�c operations such as zoom and input resolution
for an application.

For a readily deployable and practical system, we prototype and
demonstrate our system on existing mechanically steerable PTZ
cameras. However, the proposed work is generic in its applicabil-
ity to both, mechanically (PTZ) and electronically (360) steerable
cameras.

Existing control standards. While steerable cameras are usu-
ally manually steered via a joystick by the operator, they do o�er
standard network APIs that are also suitable for automatic con-
trol. �e Open Network Video Interface Forum, or ONVIF [21],
is a global open industry forum that standardizes communication
between IP-based security products, and has de�ned a standard
for controlling steerable cameras. ONVIF is built upon Web ser-
vice standards. It uses Simple Object Access Protocol (SOAP) for
message transfer, WSDL (Web Service De�nition Language) for
describing the service and XML for data description syntax. Some
manufacturers also provide their proprietary SDK (e.g. [22]) for
controlling additional camera parameters. However, neither ON-
VIF [23] nor the proprietary APIs automate camera steering to
facilitate support for multiple concurrent applications.

Analytics Use Cases. While there are many potential use-cases
of analytics with steerable cameras spanning residential, commer-
cial, and public se�ings, we consider a concrete example in a tra�c
related-se�ing.

Tra�c Volume Monitoring is useful for tra�c and parking plan-
ning, tra�c light timing, and real-time tra�c or parking informa-
tion services. Typically car counting algorithms [8, 24, 25] track
key features along the entry point and the exit point of a route [26].

License Plate Scanning is increasingly deployed for applications
such as toll booth payment, amber alert scanning, speed monitoring
systems etc. Typical LPR vision algorithms scan the image frame to
locate a license plate and runs character recognition techniques [27,
28] on the small region within the detected plate.

No Turn on Red prevents drivers from turning right when the
tra�c signal is red. It is a violation increasingly being caught by
the use of auto-enforcement cameras. �is application need not
run continuously, but only when the tra�c light is red.

While such vision algorithms can seemingly be run in parallel
on the same camera-feed, several challenges exist in practice. We
discuss them next.

4 CAMERA ANALYTICS CHALLENGES
Cloud computing services can easily provide processing resources
for many analytics applications, but the use of multiple analytics
applications on the same steerable camera feed is challenging due
to the following factors.

IPSN 2017, April 2017, Pi�sburgh, PA USA Jain et al.

Camera View 3Camera View 1

Camera View 2

(a) Panoramic view of partial camera coverage. Camera can
only observe a small area at a time, known as the Camera
View.

Virtual View for
parking spot monitoring

Virtual View for
pedestrian counting

Camera View 1

Virtual View for incoming
and outgoing cars

Camera View 3

(b) Extracting Virtual Views from di�erent camera views.

Figure 4: Virtual View abstraction from scene.

Sensitivity to view changes. �e setup of many existing vision
systems is view-speci�c. Even slight view changes through steering
could bring de�ned regions of interest such as the inboxes and
outboxes in tra�c volume monitoring out of alignment with the
roadway.

Con�icting view requirements. Vision applications are fre-
quently interested in di�erent parts of the panoramic view. Volume
monitoring requires a wider view that contains a path from an
inbox to the outbox. License plate recognition requires a zoomed
view that focuses on area where the license plate of a vehicle is
likely to be oriented towards the camera. In many cases, these
requirements con�ict, meaning that they cannot be achieved with
one camera orientation and zoom level.

Slow camera tuning speeds. Mechanically steerable cameras
have an inherent latency due to the time taken by the camera to pan,
tilt or zoom. Most modern cameras pan at a speed of 100�/second,
and capture images during the transitions, but for the most part,
vision applications cannot use these blurry frames.

Variable network latency. Steering commands from a remote
location will reach the camera a�er a variable and potentially sig-
ni�cant delay, particular for the emerging LTE connected cameras.
LTE measurements show average latencies of 70ms but frequent
spikes to 200ms and beyond [29].

5 SYSTEM DESIGN
We propose a system-level approach to the aforementioned chal-
lenges, that aims to support multiple applications simultaneously
by steering the camera towards expected motion. Rather than ex-
posing camera steering control and associated latencies to each
application, the system makes steering transparent to applications:
it aims to present an unchanged virtual view to each application
even when the camera has moved. By creating separate unchanging
virtual views for each application, it addresses application’s sensi-
tivity to view changes. �e system then exploits mobility awareness
to manage con�icts as well as mask network and steering latencies.
�is means that the system learns where to expect mobility and
seeks to steer the camera in time to observe motion events.

View Virtualization. A Virtual View is an application-speci�c
abstraction of the camera view. It is de�ned by

VV = {priority, ROI, R, fr } (1)

Camera View 3 Camera View 4

Figure 5: Virtual View mapping across camera views for car
counting application.

Traditionally, one camera is bound to one application. Panoptes
associates every application to a corresponding virtual view, de�ned
by its requirements at initialization. It is assigned a priority and a
region of interest in the scene, its ROI . �e application also speci�es
a required resolution, R, and an acceptable frame rate, f r .

Typically, the virtual view for an analytics application is simply
the view that the camera would be steered to by the operator if this
application were running in isolation. Many vision applications
only use a smaller part of the camera view, a region of interest
(ROI). For those applications, a virtual view can be de�ned as a
rectangular subregion of a camera view. Such views are virtual
because the actual camera position may not be completely aligned
with this view. If the actual view encompasses the virtual view,
the system simply extracts the virtual view region from the actual
camera view and presents this to the application (as long as the
resolution requirements can be met), shown in Fig 4b. As a camera
pans or tilts, the system updates the region to be extracted so that
the extracted virtual view remains unchanged, as demonstrated in
Fig 5.

Virtualization becomes more challenging when several virtual
views do not completely �t in a camera view (or the zoom factor
cannot satisfy resolution requirements). In this case, the system
scheduler seeks to intelligently steer the camera to still maximize
the capture of events of interest in all views. �is is based on
predicting when events (motion) occurs in a camera view. Since
there exists a risk that events of interest will be missed, application
developers can select whether this process should be transparent to
the vision application or whether the application should be noti�ed
when the virtual view is not actively monitored by the system.
�e �rst option is important to support legacy applications. �e

Panoptes: Servicing Multiple Applications Simultaneously using Steerable Cameras IPSN 2017, April 2017, Pi�sburgh, PA USA

Virtual View
Mapper

Mobility-Aware
Scheduler

Predictor

Car Counting No Turn
On RedLPR

Applications

Mobility-Awareness
View Virtualization

Control {p, t, z}

Frames

Mobility Map
Maintenance

Camera View
Selector

Prediction Zone
Generator

Archive

Figure 6: System Overview.

second allows more sophisticated applications be�er estimate the
uncertainty inherent in their analytics results.

Scheduling Views with Motion Prediction. O�en, applica-
tions are interested in video sequences where motion occurs in
the view. In most scenes, the degree of motion determines how
frequently the view needs to be updated. For example, if a cam-
era monitors a parking lot, it could turn away without any loss
of information, when no vehicle or person is approaching. Any
missing static parts of the video can be easily reconstructed from
a single image or a short video sequence. �is insight then allows
the system to choose what part of the scene a camera must capture,
when there are no simultaneous motion events across those views.
If the system can accurately predict when a moving entity will enter
a virtual view, it can steer the camera just in time to capture this
motion event. We therefore propose that cameras learn mobility
pa�erns in their scene and use this awareness to predict motion
events.

System Overview. While our proposed camera control system
works for both, mechanically and electronically steerable cameras,
we build our prototype using PTZ cameras as they are a large part
of the existing infrastructure across countries. At di�erent camera
positions, these cameras view di�erent regions of the scene. We
call these camera views, rendered on a panoramic view in Fig 4a.
Each camera view may have one or more virtual views for di�erent
applications, as illustrated in Fig 4b. Our system consists of two
primary components: View Virtualization and Mobility Awareness.
�e key processing steps are depicted in Fig 6. �e virtual view
mapper extracts an application’s virtual view from the current
camera view and passes it to the analytics application.

Meanwhile the predictor computes location estimates for moving
entities in the scene and provides these predictions to the sched-
uler. �e scheduler steers the camera to maximize motion capture.
�e virtual view mapper obtains the current camera position from
the scheduler to accurately map raw frames to virtual views for
applications. During the initialization phase, the system learns
common trajectories from the scene and stores them as a mobility
map, providing information on motion distribution in the scene.
Mobility map is used by the Prediction Zone Generator to identify

prediction zones corresponding to virtual views. �is information
is then passed on to the Camera View Selector for determining can-
didate camera views, and aid in mobility-aware scheduling. We
discuss the details of these components in the following sections.

6 MOBILITY AWARENESS
In this section, we present the details of mobility-awareness in
steerable cameras.

6.1 Learning Mobility Patterns
Most environments have common motion pa�erns, speci�c to the
scene being observed. We discuss below how we learn these pat-
terns.

6.1.1 Sensing motion paths. �e tracking module tracks all ac-
tive entities in the scene and learns their trajectories. �is is per-
formed during the initialization phase, and continuously updated
during camera operation. Each trajectory is initialized by the initial
position of the object. �is position is determined by detecting
foreground blobs in the image sequence. �e detected blobs are
tracked using a Kalman Filter. �e e�ciency of a Kalman �lter in
estimating trajectories of multiple moving targets has well been
established in the vision community [8, 30], and it enables us to
handle brief occlusions. We can further improve this by replacing
it with more sophisticated tracking schemes. �ese techniques
exploit the spatio-temporal context information along with motion
constraints, signi�cantly promoting the robustness of tracking in
the presence of longer occlusions. �e detected trajectories are
archived by the system.

6.1.2 Mobility Maps. We de�ne a mobility map as a two dimen-
sional distribution of motion in the scene. Fig 8b shows the mobility
map generated over a scene. A scene is de�ned as the maximum
possible panoramic view of the camera. We create the mobility
map by dividing the entire scene in discrete cells. Each pixel in
the camera image belongs to one cell in the grid. We empirically
chose square cells of sixty pixels each. By probing into the history
of trajectories, we assign each cell a motion quotient, Qm , which
quanti�es how much of the motion in the scene transpires in that
cell. For any cell k , it is de�ned as:

Qm (k) =
Motion e�ents in the cell k

Motion e�ents in the scene
(2)

Here, motion events correspond to frames with moving objects.
Our objective is to maximize motion capture from the scene, and
this metric helps us distinguish between regions of high motion
events from those with relatively fewer motion events. �e ROI
for any virtual view is de�ned as the set of cells in that virtual
view. Additionally, every virtual view also has a motion probability
a�ribute, pm . It is the sum of the motion quotients of all cells in
the virtual view, and is given by:

pm =
X

k 2C
Qm (k) (3)

where C is the set of cells in that virtual view.

6.1.3 Motion Prediction. Camera se�ings, such as pan-tilt-zoom
cannot be changed instantaneously. To capture motion in a virtual
view, it is important to have prior information of ensuing motion

IPSN 2017, April 2017, Pi�sburgh, PA USA Jain et al.

X

Y

Reference Frame2H3
0H11H2

2H0 = 0H1 x 1H2

Figure 7: Coordinate frame mapping using homography.

events, to adjust camera se�ings for a future time instant. �e
predictor is implemented as a decision tree based on the following
spatio-temporal features: the current location of the object, speed,
and heading. Instead of looking at an entire sequence, we only
consider the speed and heading in the last transition, i.e. from the
previous cell to the current cell. For every position sample obtained
from the tracking module, the predictor probes the mobility map
database for all trajectories that match the three features. We calcu-
late speed as the number of pixels traversed by the object from one
frame to the next. For those trajectories that most closely match
the criteria, the predictor looks up the cell where majority of the
matched tracks appeared a�er time tla . We call this the lookahead
time. �e resultant cell number is returned to the scheduler as the
predicted position. If the predicted cell belongs to a virtual view,
the scheduler acts accordingly. �is is an empirical data-driven
model and is independent of the scene. �us it can be applied to
any tra�c environment. In scenarios with slower objects, such as
people, where motion is less regular, Panoptes could be adapted by
shortening the look ahead time.

6.2 Identifying Prediction Zones
We introduce prediction zones as substitute views for a camera to
monitor. In the event where a virtual view is not in the camera’s
view but a prediction zone is, a motion event in the prediction zone
can trigger camera control. Prediction zone is de�ned as the subset
of cells capable of predicting motion in a virtual view. Inclusion of
prediction zones in a camera view enables the camera to capture
motion even for virtual views that may not be in the current camera
view. We use the lookahead time, tla for predicting whether an
object will be in a virtual view at the end of that time. Analogously,
any cell where an object was tla seconds before appearing in the
virtual view, is likely to trigger prediction for that virtual view.
Typically, the approach area leading up to a virtual view constitutes
its prediction zone. For each virtual view, we deduce the prediction
zones from the history of trajectories. We construct a View Table,
where every virtual view is associated with its probability of motion
pm , and prediction zones PZ :

View Table : VV ! PZ ,pm (4)

Each prediction zone also has a motion probability pzm , computed
as in Equation 3.

(a) Virtual Views. (b) Mobility Map.

(c) Prediction Zones (yellow)
and candidate camera views
(green).

(d) Default Camera View (red).

Figure 8: Camera View Selection steps (Snapshots from our
implementation).

6.3 Mapping Virtual Views
To ensure that applications are transparent to camera steering, the
system must successfully map virtual views from a camera view
to any other camera view as the camera steers. While coordinate
frame mapping is one of the oldest ideas in computer vision, previ-
ous proposals either (i) map the scene to camera coordinates, or (ii)
require complete camera calibration. �e camera coordinate sys-
tem alone cannot achieve this mapping, specially for mechanically
steerable cameras with moving parts. Minor manufacturing defects
can cause errors that accumulate over time and can gravely a�ect
system performance. Moreover, steerable cameras are equipped
with a wide-angle lens that su�ers from high lens distortion, which
varies from camera to camera. For a truly scalable surveillance
system, calibrating each camera or relying on the numbers pro-
vided by the manufacturer is not only an inconvenience, but also
impractical.

In contrast, we take advantage of homography [31] to map the
entire scene to a global reference frame. �is approach works for all
steerable cameras, irrespective of the manufacturer, and scales eas-
ily. Homography is the projective transformation from one image
to another, and can be used e�ciently to compute camera rotation,
and relate one camera view to other camera views. We use the view
from a prede�ned position of the camera as the reference frame and
map all points in subsequent frames to the reference frame, frame
0. Homography matrices, 3 ⇥ 3 matrix H , can be concatenated to
relate points in current frame to points in the reference frame. 0Hn
is the concatenation of intermediate homographies between frame
n and frame 0, given by

0Hn =
0H1 ⇥1H2......... ⇥n�1Hn . (5)

Fig 7 demonstrates this mapping from one frame to another. We
compute the homographies during camera initialization by using
the SURF [32] feature detector to detect keypoints in frames. By
using features from the scene, the system can adaptively update

Panoptes: Servicing Multiple Applications Simultaneously using Steerable Cameras IPSN 2017, April 2017, Pi�sburgh, PA USA

Data: Res - Camera View Resolution
Data: n - Number of applications
Result: CamView[] - Candidate Camera Views
begin

VV createVirtualViews(n)
foreach � 2 VV do

candidateView.add(�)
for i 2 to n do

B = getBoundingBox(�,VV (i))
if B.dimensions < Res then

candidateView.add(VV (i))
� B

else
PZ = getPredictionZones(VV (i))
foreach pz 2 PZ do

Bpz = getBoundingBox(�,pz) if
Bpz .dimensions < Res then

candidateView.add(pz)
� Bpz

end
end

end
end
CamView.add(candidateView)

end
end

Algorithm 1: Finding Candidate Camera Views.

Data: CamView[] - Candidate Camera Views
tla - Prediction Look Ahead Time
begin

CamViewcurrent CamView (0)
foreach f rame do

S getCurrentObjectPosition(frame)
foreach s 2 S do

f uture[s] = predict(s, tla)
end
destination = maxPriority(f uture)
c� = getCameraView(destination)
CamViewcurrent c�
startTimer();
if timerEnd then

CamViewcurrent CamViewnext
end

end
end

Algorithm 2:Mobility-Aware Scheduling.

homographies and accurately map points from any view to the
reference frame, eliminating any errors accumulated over time.

7 PANOPTES CAMERA CONTROL
�e camera control system needs to make one key decision: where
to look at any given time. We use the mobility awareness concepts
presented in Section 6 for camera control.

Candidate Camera Views
C D

Periodic steering
(continued)

Periodic steering

Predictive
steering

Dwell time
Unfinished dwell time

Steering reset
Steering delay

B

Motion
predicted in A

A

Figure 9: Sample timeline for events under mobility-aware
scheduling.

7.1 Camera View Selection
It is not always best to aim the camera at one virtual view, because
the requirements of a virtual view can o�en be satis�ed while also
simultaneously keeping other virtual views in the camera view. A
camera view refers to a particular pose or orientation of the camera
that views a part of the entire available scene, as shown in Fig 4a,
and is given by:

CV = {p, t, z, � ✓ V } (6)
where p, t , z are the pan, tilt, zoom values for that camera pose, and
V is the set of all virtual views.

We compute candidate camera views, where each is an optimal
combination of one of more virtual views and/or prediction zones
that �t the camera’s �eld of view (FOV). An application’s virtual
view is said to �t a camera view if its bounding box is in the camera’s
FOV and the zoom se�ing of the camera is the same as that required
by the application. �e camera view selection technique, as also
seen in Algorithm 1, takes a greedy approach and iterates over all
virtual views. In each iteration, it selects a virtual view and a�empts
to �t it with all the other virtual views one by one. If the subset of
virtual views under consideration �ts into the camera FOV, their
bounding box now serves as a temporary view, and the algorithm
goes on to �nd other virtual views that �t the camera FOV with the
temporary view. For any virtual view that does not �t, the system
tries to include as many of its prediction zones as possible. �e
algorithm outputs candidate camera views. Fig 8c shows snapshots
from our implementation, where the virtual views are in blue, the
prediction zones in yellow and the candidate camera views in green.
It might seem intuitive to select a camera view that supports the
largest number of applications (i.e. �ts the largest number of virtual
views), but we noticed that o�en a large number of virtual views
can exhibit far less motion events.

Given the set of candidate camera views, we de�ne the impor-
tance I for each camera view based on motion probabilities of the
virtual views in it and priorities of the associated applications.

I =
X

i 2S
Pr (VVi) ⇤ [pm (VVi) + pzm (VVj)] (7)

IPSN 2017, April 2017, Pi�sburgh, PA USA Jain et al.

No-Turn
On-Red

LPR
Pedestr ian
Counting

(a) Sparse: Suburban Tech Center.

Pedestr ian
Counting

Car
Counting LPR

(b) Medium: Campus Parking.

No-Turn
On-Red

Car
Counting

LPR

(c) Dense: US Route 1.

Figure 10: Test environments with di�erent motion densities.

where, S is the set of virtual views in the camera view, Pr (VVi) is
the priority of the application i, pm (VVi) is the motion probability
of Virtual View i, as de�ned in Equation 3, and pzm (VVj) is the
motion probability of prediction zones of virtual view j , where j < S .
�is metric accounts for application priority as well as expected
motion in the corresponding virtual view, by weighing probability
of motion with application priority.

From all the candidate camera views, the system selects the one
with the maximum important I as the default camera view. Fig 8d
marks the chosen default camera view in red. �e scheduler starts at
the default camera view and scans other camera views in decreasing
order of Importance.

7.2 Mobility-Aware Scheduling
�e Panoptes mobility-aware scheduler scans candidate camera
views periodically, and predicts future positions for objects in its
view. When the predicted position belongs to a virtual view, the
camera is steered to the view containing that virtual view. �e dwell
time at each camera view is directly proportional to its importance,
I . �e scheduler always prioritizes predictions for a higher priority
application, and captures them �rst.

Keeping in mind that most applications are interested in motion,
we de�ne � as motion capture e�ciency. For each application, the
scheduler aims to maximize:

Max .
Motion e�ents captured

Actual motion e�ents
(8)

�e scheduler can e�ciently predict motion in any virtual view
due to the presence of prediction zones in candidate camera views.
�e camera uses these prediction as triggers to look away from the
current camera view, and capture events in the predicted view.

Fig 9 shows a sample sequence diagram for scheduling camera
views in Panoptes. �e camera starts at the default view, and then
periodically steers to the other views. Prediction for a virtual view
triggers the camera to fall out of scanning order and steer to the
view containing the virtual view.

Traditional scheduling schemes cannot be applied to camera view
scheduling domain. In a time-based fair-share scheduling scheme,
o�en the camera ends up looking at no motion in one view while
missing motion in another. A priority-only scheduling scheme
is ine�cient because high priority events may be less frequent,
such as ‘no-turn-on-red’, and with this scheme the camera spends

most of its time capturing no motion for the high priority view and
missing other relevant motion events in the scene.

7.3 Steering and Network Latency
In a real-time scenario, high network latency can cause the control
signal to the camera to be delayed, which in turn can lead to failure
in capturing motion events. In addition, camera steering latency
also has to be taken into account. As the candidate camera views
are pre-known, we can assume a constant speed between these
views. Our PTZ camera [33] o�ers a speed of 400�/second between
presets. We account for the steering latency by predicting object
location for a future time, tla , which is dependent on the camera
steering speed. If the camera has zero steering latency, one should
ideally, be able to switch from one view to another in no time.
However, even with zero steering latency, events will be missed
when prediction cannot be made from the current camera view, due
to the absence of prediction zones. �e control algorithm adapts
by predicting for tla ⇡ 1 second. When a prediction occurs for a
virtual view, the corresponding camera view is scheduled for time
tla � �t later, where �t is the steering delay.

More cameras are being installed in remote locations and relying
on the internet to communicate the video streams. O�ine storage
of videos may not be a�ected greatly by this delay, but it becomes
non-negligible for real-time camera control. A delayed control
command to the camera could lead to the steering starting much
later than intended, leading up to missed motion in the destination
camera view. We consider the case of a wireless link under LTE
latency to evaluate system performance under network delays.

8 TEST SCENARIOS
We evaluate our system across three environments with diverse
tra�c densities.

Sparse Tra�c. We mounted an IP camera [33] on the roof of
our building, in a suburban technology center, overlooking a street
and a parking lot. We recorded the video stream from this camera
24/7 for over 5 months. Fig 10a shows the three example virtual
views in the scene. Note that not all appear in the camera view at
the same time.

MediumTra�c. We installed a GoPro Hero 4 camera on the 5th
�oor of a campus building, overlooking a huge parking lot, shown
in Fig 10b. �is data was collected over 2 months. GoPro cameras

Panoptes: Servicing Multiple Applications Simultaneously using Steerable Cameras IPSN 2017, April 2017, Pi�sburgh, PA USA

Fixed Camera Round Robin Mobility-Aware
0

0.2

0.4

0.6

0.8

1

M
o

ti
o

n
 C

a
p

tu
re

 E
ff

ic
ie

n
c
y
 (
η
)

No Turn On Red
Pedestrian Counting
LPR

(a) Sparse Motion.

Fixed Camera Round Robin Mobility-Aware
0

0.2

0.4

0.6

0.8

1

M
o

ti
o

n
 C

a
p

tu
re

 E
ff

ic
ie

n
c
y
 (
η
)

Car Counting
Pedestrian Counting
LPR

(b) Medium Motion.

Fixed Camera Round Robin Mobility-Aware
0

0.2

0.4

0.6

0.8

1

M
o

ti
o

n
 C

a
p

tu
re

 E
ff

ic
ie

n
c
y
 (
η
)

No Turn on Red
Car Counting
LPR

(c) Dense Motion.

Figure 11: Comparison of mobility aware scheduling scheme with baseline schemes for camera view selection. Darker shade
represents higher priority.

have a wide �eld of view (FOV) and in this se�ing it is able to
capture the entire visible scene from the building. �is parking lot
is closest to the classroom building and hence the camera captures
a large number of pedestrians walking on sidewalks and across the
parking lot.

Dense Tra�c. We collaborated with the New Jersey Depart-
ment of Transportation (NJDOT) to obtain few days’ video feeds
from their surveillance cameras at US Route 1. A snapshot from
the video feed is shown in Fig 10c. �is is a heavy vehicular tra�c
scenario, devoid of pedestrians. �e rate of simultaneous motion
events is extremely high in this environment.

9 IMPLEMENTATION
To ensure a hardware agnostic solution, we used the ONVIF [21]
standard for controlling the camera. Our control algorithm is thus
general enough to be realized on any ONVIF-compliant camera.
We use OpenCV’s implementation for our tracking algorithm [34].

Figure 12: PTZ camera in-
stalled on the roof for data
collection.

�e PTZ camera used for
our data collection is a Pelco
Spectra Professional [33], as
shown in Fig 12. It streams
1080p H.264 video data at 30
fps. We set up a desktop on
the same network as the cam-
era, and captured the video
stream 24/7. All our code, in-
cluding the stream capturing
job, was wri�en in C++ us-
ing OpenCV and libVLC [35]
libraries. We set each candi-
date camera view as a preset.
Since active cameras typically
o�er faster pan-tilt speed between presets, this gives us the ben-
e�t of extremely low latency. For our camera, this speed was
400�/second. �is implies that the camera can switch between
any two views in less than a second. �e motion anticipation, there-
fore, need only be one second ahead in time, allowing the camera
ample time to switch to the required view to capture motion.

Camera Initialization. �e initialization procedure starts right
a�er camera setup to infer mobility pa�erns from the scene. During
this phase, the system identi�es a �nite set of M discrete poses.

Each camera pose transforms to a unique combination of {p,t,z}.
At any given time, the camera will have one of a �nite number of
states, de�ned by:

staten = {p, t, z, background, 0Hn , mobilityMap} (9)

where staten is the camera state for pose n and 0Hn is a running
estimate of the homography matrix that maps the nth pose to
the 0th pose. �is state is di�erent from camera view de�ned in
Equation 6, as camera views are determined based on the virtual
views and prediction zones, while initial states are used to scan the
environment and learn the mobility pa�erns.

10 EVALUATION
In this section we evaluate Panoptes’ performance and other design
choices. While the system can accommodate any application, we
focus on four example applications: (i) continuous car counting,
(ii) periodic no-turn-on-red, (iii) license plate scanning and (iv)
pedestrian counting. We selected these applications based on the
diversity of application frequency, camera pose requirements, and
tra�c environment. We use motion capture e�ciency � from Eqn 8
for quantifying performance. To this end, we seek to answer the
following questions:

• How does the mobility-aware scheduling compare to tra-
ditional scheduling schemes?

• How sensitive is Panoptes to steering and network latency?
• How well does the prediction work?
• What other factors a�ect system performance?

10.1 Mobility Aware Scheduling
We compare the proposed mobility-aware planning with �xed cam-
era capture and scheduling choices from traditional domains. We
carry out this evaluation across all three test environments. It
is evident from Fig 11 that a �xed camera can only cater to one
application. A priority-only scheme works the same way as a �xed-
camera capture, and captures events only for the application with
the highest priority. A time-based, or round robin, scheduling ap-
proach captures less than 40% events in each virtual view, across
all environments. For implementing round robin, each virtual view
was assigned a �xed slot before the camera is steered to the next
task. Note that small changes in the duration of the slot do not
a�ect the overall �.

IPSN 2017, April 2017, Pi�sburgh, PA USA Jain et al.

0 0.16 0.33 0.5 0.66 0.83 1
Camera Steering Latency [seconds]

0

0.2

0.4

0.6

0.8

1

M
o

tio
n

 C
a

p
tu

re
 E

ff
ic

ie
n

cy
 (
η
)

 Sparse Motion
 Medium Motion
 Dense Motion

Figure 13: Sensitivity to steering delay.

In environments with sparse motion, as seen in Fig 11a, Panoptes
is able to capture most events in each virtual view as simultaneous
events are rare. �e applications are listed in the order of decreasing
priority. �e assigned priorities are a heuristic choice and a�ect only
the � for individual applications. As we move to medium motion
scene in Fig 11b, the Car Counting application is still provided with
the highest number of motion events, but the tradeo� becomes
slightly noticeable in pedestrian counting and LPR. In dense motion
environments, such as the highway we chose, simultaneous events
are very frequent, making control decisions harder. Even in this
case, Panoptes performs be�er than the the other two approaches.

10.2 Sensitivity to Latency
We analyze the e�ect of steering latency and network latency on
Panoptes. Fig 13 shows the change in � with increasing steering
delay. Cameras have varying rotation speeds for pan, tilt and zoom,
which a�ects the motion captured from the scene. For cameras with
low tuning delays, we can e�ciently capture 85% of motion from the
scene. As the steering delay increases, the motion capture e�ciency
drops less than 5% for environments with sparse motion, because
of fewer concurrent motion events. In environments with medium
or dense tra�c, the decline in performance is more noticeable, and
up to 10%.

In Fig 14, we examine the performance of a test video under no
delay, network delay only, and steering and network delay. It is
evident that when the system experiences no steering latency and
network delays, very few events are missed. �ese are simultaneous
events, or those in another view that did not trigger prediction. We
used the app G-NetTrack Pro [36] to collect 4 days of LTE traces
with a �xed Nexus 5 smartphone, to simulate stationary networked
cameras.

Typically, the RTT is ⇡70 ms with peaks of 200 ms [29]. We
noticed similar values, and used the maximum ping values from the
trace with the highest variation to evaluate our system. It can be
noticed that our system compensates for peak network latency of
up to 250ms . Under the e�ect of steering latency, the overall motion
capture drops to 80% because the camera spends more time now
to switch between views. �is trace was computed for a steering
latency of 0.6 second, as that’s the amount of time needed by the
camera for switching between the furthest candidate views in our

0 500 1000 1500
Time [s]

Steering + LTE

LTE Delay

No Delay

 Captured Event
 Missed Event

Figure 14: E�ect of network and steering latency on a test
video.

Car Counting Pedestrian Counting LPR
0

0.2

0.4

0.6

0.8

1

M
o

tio
n

 C
a

p
tu

re
 E

ff
ic

ie
n

cy
 (
η
)

Oracle
Panoptes Predictor

Figure 15: Comparison of Panoptes predictor with Oracle’s
perfect motion prediction. �e events missed by the Oracle
represent those targets not in the camera view to trigger a
prediction.

scenario. �e combined e�ect of steering and network latency
corresponds to system performance of 72%.

10.3 Prediction Performance
We compare the overall motion capture e�ciency using the Panoptes
predictor to perfect motion awareness. Perfect motion awareness,
or Oracle, translates to making accurate predictions for objects in
camera view. It must be noted that if the object is not in the current
camera view, even the Oracle cannot predict its future location.
We compute � using the mobility aware scheduling, but instead of
predicting the future location of an observed object, we probe the
o�ine trace for the future location. Overall, the results in Fig 15
show that even with accurate predictions, some motion events will
be missed due to their concurrency, and steering latency. While the
Panoptes predictor is comparable to Oracle for the higher priority
applications, it loses approximately 10% events for the lower prior-
ity application, and is able to capture only 70% of the LPR events
compared to 80% � achieved by Oracle.

10.4 Scaling to Multiple Virtual Views
We also aim to identify the limit to the number of virtual views a
single steerable camera can reasonably support. Generally speaking,

Panoptes: Servicing Multiple Applications Simultaneously using Steerable Cameras IPSN 2017, April 2017, Pi�sburgh, PA USA

0 1 2 3 4 5 6
Number of virtual views in the scene

0

0.2

0.4

0.6

0.8

1

M
o

tio
n

 C
a

p
tu

re
 (
η
)

Figure 16: Adding more virtual views to the scene.

this number depends on how active the scene is. We added up
to 6 virtual views to the medium motion scenario. We de�ned
virtual views along various directions of motion and assigned equal
probability to all. As seen in Fig 16, with increasing number of
virtual views to support, the motion capture e�ciency reduces
from 100% for a single virtual view to 50% as we go up to 6 virtual
views. We infer that a single steerable camera can support only a
limited number of applications with reasonable motion capture. To
sustain a large number of applications over a wider scene, multiple
steerable cameras may be necessary. Multiple camera coordination
remains an interesting topic for future work.

11 DISCUSSION AND CONCLUSION
We have presented the design, implementation and evaluation of
Panoptes, a view virtualization and mobility-aware scheduling sys-
tem for steerable networked cameras. Unlike previous work, our
system focuses on supporting multiple applications through trans-
parently steering between their corresponding views, while main-
taining the abstraction of a �xed camera view for each application.
Our results show that with motion prediction and mobility-aware
scheduling, we can capture up to 80% more motion events than
with a �xed camera in our test scenes. We derive these results by
conducting experiments for four sample applications across three
di�erent tra�c environments.

As more cameras are equipped with a high resolution 360� lens
and compute capability, network and steering delays become in-
signi�cant. In this case mobility-aware scheduling may not apply.
For 360� cameras composed of one or more wide angle lens or
cameras, that can be optically zoomed, the proposed scheduling
technique may still be useful. �at being said, motorized cameras
are already a large part of the existing infrastructure, deployed in
millions across countries like China and Great Britain. �ey provide
the much needed optical zoom, thus proving that they have their
own bene�ts, and may not be completely replaced by 360� cameras.

While Panoptes does rely on position prediction for moving
objects, we do not re-identify the object a�er steering and any
captured motion is classi�ed as the anticipated motion.

As part of the current implementation, the responsibility to
distinguish between various objects in the view lies with the ap-
plication, and Panoptes is not made aware of the speci�cs of the
application. It can, however, be extended to implement and execute

a recognition algorithm, to distinguish between moving objects.
�is should enable it to schedule an application when correspond-
ing motion is of interest to the application.

We have evaluated the system in day and night conditions, as
well as in light snowy conditions. However, we excluded rainy
scenarios as water droplets on the camera dome obscure the camera
view and cause false tracks due to trickling. Other instances that
are hard to predict by our current implementation are constant
motion such as moving water (a river), and motion that is hard to
predict (opening of a window or door). Changes in illumination
also impact system performance.

�e proposed scheme is generic in its applicability to other cam-
era platforms, which includes but is not limited to security cameras
at home, surveillance drones, and dashboard cameras. Additionally,
it could be deployed in locations with an existing camera infras-
tructure, such as parking decks, supermarkets, and shopping malls.
For scenarios where motion is less regular, the object position may
still be predictable in a small time frame, and the proposed tech-
nique may still work relatively well. However, not all environments
have predictable entities and our approach works best for more
predictable objects across the scene.

Panoptes shows promise to allow cameras that were originally de-
ployed for a single application to be simultaneously used for other
analytics applications. Overall, we hope that this work demon-
strates the broader uses of existing cameras, and how they can be
enabled by automated camera control.

ACKNOWLEDGMENTS
�e authors thank Jakub Kolodziejski for his invaluable help in
camera setup, even on snowy days. �is material is based in part
upon work supported by a Microso� Research internship and the
National Science Foundation under Grant No CNS-1329939.

REFERENCES
[1] Telegraph 2013. One surveillance camera for every 11 people in Britain.

h�ps://goo.gl/gXFmwN. (2013).
[2] BBC 2006. Britain is Surveillance Society.

h�p://news.bbc.co.uk/2/hi/uk/6108496.stm. (2006).
[3] Nest Cam 2013. Nest Cam. h�ps://goo.gl/I85twa. (2013).
[4] Cash J. Costello, Christopher P. Diehl, Amit Banerjee, and Hesky Fisher. 2004.

Scheduling an Active Camera to Observe People. In Proceedings of the ACM
2Nd International Workshop on Video Surveillance &Amp; Sensor Networks (VSSN
’04). ACM, New York, NY, USA, 39–45. DOI:h�p://dx.doi.org/10.1145/1026799.
1026808

[5] J. C. Neves and H. Proena. 2015. Dynamic camera scheduling for visual surveil-
lance in crowded scenes using Markov random �elds. In Advanced Video and
Signal Based Surveillance (AVSS), 2015 12th IEEE International Conference on.

[6] Adrian Ilie and Greg Welch. 2014. Online Control of Active Camera Networks
for Computer Vision Tasks. ACM Trans. Sen. Netw., Article 25 (2014), 40 pages.
h�p://doi.acm.org/10.1145/2530283

[7] Navin K. Sharma, David E. Irwin, Prashant J. Shenoy, and Michael Zink. 2011.
MultiSense: Fine-grained Multiplexing for Steerable Camera Sensor Networks.
In Proceedings of the Second Annual ACM Conference on Multimedia Systems
(MMSys ’11). ACM, New York, NY, USA, 23–34. DOI:h�p://dx.doi.org/10.1145/
1943552.1943556

[8] A. J. Lipton, H. Fujiyoshi, and R. S. Patil. 1998. Moving target classi�cation and
tracking from real-time video. In IEEE WACV. DOI:h�p://dx.doi.org/10.1109/
ACV.1998.732851

[9] C. Stau�er and W. E. L. Grimson. 1999. Adaptive background mixture models
for real-time tracking. In IEEE CVPR. DOI:h�p://dx.doi.org/10.1109/CVPR.1999.
784637

[10] Vijay Mahadevan, Weixin Li, Viral Bhalodia, and Nuno Vasconcelos. 2010. Anom-
aly detection in crowded scenes. IEEE CVPR (2010). DOI:h�p://dx.doi.org/10.
1109/CVPR.2010.5539872

http://dx.doi.org/10.1145/1026799.1026808
http://dx.doi.org/10.1145/1026799.1026808
http://doi.acm.org/10.1145/2530283
http://dx.doi.org/10.1145/1943552.1943556
http://dx.doi.org/10.1145/1943552.1943556
http://dx.doi.org/10.1109/ACV.1998.732851
http://dx.doi.org/10.1109/ACV.1998.732851
http://dx.doi.org/10.1109/CVPR.1999.784637
http://dx.doi.org/10.1109/CVPR.1999.784637
http://dx.doi.org/10.1109/CVPR.2010.5539872
http://dx.doi.org/10.1109/CVPR.2010.5539872

IPSN 2017, April 2017, Pi�sburgh, PA USA Jain et al.

[11] Paul Viola, Michael J. Jones, and Daniel Snow. 2005. Detecting Pedestrians Using
Pa�erns of Motion and Appearance. Int. Journal of Computer Vision 2 (2005).
DOI:h�p://dx.doi.org/10.1007/s11263-005-6644-8

[12] Timo Ahonen, Abdenour Hadid, and Ma�i Pietikäinen. 2004. Face recognition
with local binary pa�erns. In ECCV 2004. Springer.

[13] Nam T. Nguyen, Svetha Venkatesh, Geo�West, and Hung H. Bui. 2003. Multiple
camera coordination in a surveillance system. ACTA Automatica Sinica (2003).

[14] A. W. Senior, A. Hampapur, and M. Lu. 2005. Acquiring Multi-Scale Images
by Pan-Tilt-Zoom Control and Automatic Multi-Camera Calibration. In IEEE
WACV/MOTIONS. DOI:h�p://dx.doi.org/10.1109/ACVMOT.2005.16

[15] C. J. Costello and I-Jeng Wang. 2005. Surveillance Camera Coordination�rough
Distributed Scheduling. In CDC-ECC ’05. DOI:h�p://dx.doi.org/10.1109/CDC.
2005.1582368

[16] K. Nummiaro, E. Koller-Meier, T. Svoboda, D. Roth, and L. Van Gool. 2003. Color-
Based Object Tracking in Multi-Camera Environments. Lecture Notes in Comp.
Sci. (2003).

[17] F. Z. �reshi and D. Terzopoulos. 2009. Planning ahead for PTZ camera as-
signment and hando�. In Distributed Smart Cameras, 2009. ICDSC 2009. �ird
ACM/IEEE International Conference on. 1–8. DOI:h�p://dx.doi.org/10.1109/ICDSC.
2009.5289420

[18] Yi Yao, Chung-Hao Chen, Andreas Koschan, and Mongi Abidi. 2010. Adaptive
online camera coordination for multi-camera multi-target surveillance. Computer
Vision and Image Understanding (2010). DOI:h�p://dx.doi.org/10.1016/j.cviu.2010.
01.003

[19] Chung-Hao Chen, Yi Yao, David Page, Besma Abidi, Andreas Koschan, and
Mongi Abidi. 2010. Camera hando� and placement for automated tracking
systems with multiple omnidirectional cameras. Computer Vision and Image
Understanding (2010). DOI:h�p://dx.doi.org/10.1016/j.cviu.2009.04.004

[20] Canon 2015. Canon goes resolution-crazy with a 250-megapixel sensor.
h�ps://goo.gl/hIKx7N. (2015).

[21] Onvif 2016. ONVIF. h�p://www.onvif.org/. (2016).
[22] Pelco 2016. Pelco SDK. h�ps://goo.gl/pI1CIZ. (2016).

[23] Onvif 2016. ONVIF Video Speci�cation. h�ps://goo.gl/W6B3nK. (2016).
[24] E. Bas, A. M. Tekalp, and F. S. Salman. 2007. Automatic Vehicle Counting

from Video for Tra�c Flow Analysis. In Intelligent Vehicles Symp. DOI:h�p:
//dx.doi.org/10.1109/IVS.2007.4290146

[25] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik. 1997. A real-time computer
vision system for measuring tra�c parameters. In CVPR. DOI:h�p://dx.doi.org/
10.1109/CVPR.1997.609371

[26] A. B. Chan, Zhang-Sheng John Liang, and N. Vasconcelos. 2008. Privacy preserv-
ing crowd monitoring: Counting people without people models or tracking. In
CVPR. DOI:h�p://dx.doi.org/10.1109/CVPR.2008.4587569

[27] Shyang-Lih Chang, Li-Shien Chen, Yun-Chung Chung, and Sei-Wan Chen. 2004.
Automatic license plate recognition. IEEE Trans. Intell. Transp.Syst. 1 (2004),
42–53. DOI:h�p://dx.doi.org/10.1109/TITS.2004.825086

[28] C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D. Psoroulas, V. Loumos,
and E. Kayafas. 2008. License Plate Recognition From Still Images and Video
Sequences: A Survey. IEEE Trans. Intell. Transp. Syst. 3 (2008). DOI:h�p://dx.doi.
org/10.1109/TITS.2008.922938

[29] Ashkan Nikravesh, Hongyi Yao, Shichang Xu, David Cho�nes, and Z. Morley
Mao. 2015. Mobilyzer: An Open Platform for Controllable Mobile Network
Measurements (MobiSys). ACM, New York, NY, USA, 16. DOI:h�p://dx.doi.org/
10.1145/2742647.2742670

[30] Erik V Cuevas, Daniel Zaldivar, and Raul Rojas. 2005. Kalman �lter for vision
tracking. (2005).

[31] R. I. Hartley and A. Zisserman. 2004. Multiple View Geometry in Computer Vision
(second ed.). Cambridge University Press.

[32] Herbert Bay, Tinne Tuytelaars, and Luc Gool. 2006. ECCV 2006. Chapter SURF:
Speeded Up Robust Features. DOI:h�p://dx.doi.org/10.1007/11744023 32

[33] Pelco 2016. Pelco Spectra. h�ps://goo.gl/M991vQ. (2016).
[34] OpenCV. 2017. OpenCV Motion Analysis. (2017).
[35] libvlc 2016. libVLC. h�ps://wiki.videolan.org/LibVLC/. (2016).
[36] G-NetTrack 2010. G-NetTrack Pro. h�ps://goo.gl/MHEQJ7. (2010).

http://dx.doi.org/10.1007/s11263-005-6644-8
http://dx.doi.org/10.1109/ACVMOT.2005.16
http://dx.doi.org/10.1109/CDC.2005.1582368
http://dx.doi.org/10.1109/CDC.2005.1582368
http://dx.doi.org/10.1109/ICDSC.2009.5289420
http://dx.doi.org/10.1109/ICDSC.2009.5289420
http://dx.doi.org/10.1016/j.cviu.2010.01.003
http://dx.doi.org/10.1016/j.cviu.2010.01.003
http://dx.doi.org/10.1016/j.cviu.2009.04.004
http://dx.doi.org/10.1109/IVS.2007.4290146
http://dx.doi.org/10.1109/IVS.2007.4290146
http://dx.doi.org/10.1109/CVPR.1997.609371
http://dx.doi.org/10.1109/CVPR.1997.609371
http://dx.doi.org/10.1109/CVPR.2008.4587569
http://dx.doi.org/10.1109/TITS.2004.825086
http://dx.doi.org/10.1109/TITS.2008.922938
http://dx.doi.org/10.1109/TITS.2008.922938
http://dx.doi.org/10.1145/2742647.2742670
http://dx.doi.org/10.1145/2742647.2742670
http://dx.doi.org/10.1007/11744023_32

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Camera Analytics Challenges
	5 System Design
	6 Mobility Awareness
	6.1 Learning Mobility Patterns
	6.2 Identifying Prediction Zones
	6.3 Mapping Virtual Views

	7 Panoptes Camera Control
	7.1 Camera View Selection
	7.2 Mobility-Aware Scheduling
	7.3 Steering and Network Latency

	8 Test Scenarios
	9 Implementation
	10 Evaluation
	10.1 Mobility Aware Scheduling
	10.2 Sensitivity to Latency
	10.3 Prediction Performance
	10.4 Scaling to multiple Virtual Views

	11 Discussion and Conclusion
	Acknowledgments
	References

