
AccessWear: Making Smartphone Applications
Accessible to Blind Users

Prerna Khanna
pkhanna@cs.stonybrook.edu
Stony Brook University, USA

Shirin Feiz
sfeizdisfani@cs.stonybrook.edu
Stony Brook University, USA

Jian Xu
jianxu1@cs.stonybrook.edu
Stony Brook University, USA

IV Ramakrishnan
ram@cs.stonybrook.edu

Stony Brook University, USA

Shubham Jain
jain@cs.stonybrook.edu

Stony Brook University, USA

Xiaojun Bi
xiaojun@cs.stonybrook.edu
Stony Brook University, USA

Aruna Balasubramanian
arunab@cs.stonybrook.edu
Stony Brook University, USA

Abstract
In this paper, we present AccessWear, a system that

improves the accessibility of smartphone touchscreen in-
teractions for blind users using smartwatch gestures. Our
system design is human-centered, namely, it incorporates
the design goals that were learned from a formative user
study with 9 blind participants. The formative study showed
that blind users liked the idea of using smartwatch gestures
as an alternative: 4 participants liked that when using smart-
watch gestures, they did not have to bring their expensive
phones out in public and 6 participants liked that smart-
watch gestures can be performed with one-hand, as the other
hand is usually occupied in holding a cane or a guide dog.
Even though there are several advantages to smartwatch
gestures, our study also shows that gestures performed by
blind users have different patterns compared to sighted users,
making gesture recognition more challenging. To this end,
AccessWear makes two contributions. The first is a gesture
recognition system that works specifically for blind users
that is lightweight and does not require per-person training.
The second is a near-zero-effort gesture replacement system
that does not require any changes to the original application.
AccessWear uses input virtualization techniques so that a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9990-6/23/10. . . $15.00
https://doi.org/10.1145/3570361.3592495

given gesture can replace the touchscreen input seamlessly.
We implement AccessWear on an Android smartphone and
Android watch. We perform a quantitative and qualitative
study with 8 blind participants. Our study shows that Ac-
cessWear can recognize gestures with a 92% accuracy and
the end-to-end latency when using an alternate gesture was
53 msec on average. The qualitative study shows that when
participants perform a task, consisting of a series of gestures,
the system is robust, does not have perceived delays, and
does not add physical or mental load on the users.

CCS Concepts
• Human-centered computing→ Ubiquitous and mo-
bile computing design and evaluation methods; Acces-
sibility systems and tools; Gestural input.

Keywords
Gesture recognition, Accessibility, Mobile Systems, Virtual-
ization

ACM Reference Format:
Prerna Khanna, Shirin Feiz, Jian Xu, IV Ramakrishnan, Shubham
Jain, Xiaojun Bi, and Aruna Balasubramanian. 2023. AccessWear:
Making Smartphone Applications Accessible to Blind Users. In
The 29th Annual International Conference on Mobile Computing and
Networking (ACM MobiCom ’23), October 2–6, 2023, Madrid, Spain.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3570361.
3592495

1 Introduction
There are over 1 million blind users in the US [12]. Blind

users interact with their phones using touchscreen, voice, ex-
ternal keyboard, braille keyboard [23, 45] or use the edge of

https://orcid.org/0000-0003-0162-0052
https://orcid.org/0000-0001-6054-7305
https://orcid.org/0000-0001-5337-1639
https://orcid.org/0000-0002-1768-7043
https://orcid.org/0000-0002-4864-6420
https://orcid.org/0000-0002-9716-7709
https://orcid.org/0000-0003-3720-2215
https://doi.org/10.1145/3570361.3592495
https://doi.org/10.1145/3570361.3592495
https://doi.org/10.1145/3570361.3592495

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Khanna et al.

the phone as a guide [43]. However, the most typical interac-
tion mode for information-seeking and content-exploration
tasks is to use touchscreen gestures.

Unfortunately, touchscreen interactions are challenging—
some gestures (i.e. two or three-finger swipe) require both
hands for interactions which is hard when holding a cane
or a guide dog [1], users are susceptible to shoulder-surfing
attacks [54], and gestures can become overloaded [32]. Blind
users do use voiced interactions as an alternative, largely
for text entry tasks. But voice interactions are unreliable in
noisy environments, can compromise the privacy of a user,
and are prone to errors [8].

In response, we design AccessWear, a system that al-
lows blind users to flexibly and universally use alternate
gestures to replace touchscreen gestures, especially for con-
tent seeking tasks. For example, a user can flick their wrist
to the right instead of taking their phones out and swiping
right on the screen. A different user may use a different ges-
ture, such as moving their forearm up, to swipe right on the
screen. To achieve this goal, we design (1) a new gesture
recognition system specifically designed for blind users, and
(2) a near-zero effort system so that any user can replace
a touchscreen gesture with an alternate gesture, without
requiring any changes to the application.

Existing gesture recognition systems require large amounts
of training data [22, 56], need personalized learning [52], or
require specialized hardware or high-end computation [30,
52] (see Table 4). Further, our formative study, with 9 blind
participants, found that blind users perform gestures dif-
ferently compared to sighted users, and existing gesture
recognition systems do not work well for blind users.

AccessWear captures short hand and wrist gestures
with IMU sensors, available in all smartwatches. IMU sensors
are made up of gyroscope, accelerometer, and magnetome-
ter sensors. We find that accelerometer and magnetometer
sensors introduce additional noise. Gyroscope, on the other
hand, is less noisy for short gestures and are ideal to capture
hand and wrist movements which are primarily rotational.
When analyzing data from the gyroscope, we observe that
even when the overall gestures are different across different
users, there is a distinct nucleus that remains the same. We
isolate this distinct nucleus buried inside the gesture using
lightweight algorithms and compare its similarity with pre-
defined nucleus templates to identify the correct gesture in
real-time. This low-cost gesture recognition system works
with only gyroscope data, and does not require per-user
model training or large amounts of training data. Further,
our evaluations show that gyroscope alone is sufficient to
identify short-range hand and wrist gestures, without the
need for expensive sensor fusion techniques that combine
information from all three IMU sensors (see Figure 13).

For zero-effort gesture replacement, we design an input
virtualization technique that decouples the application in-
teraction from the application logic. Most mobile operating
systems are designed such that applications receive sensor
inputs from a single sensor service. AccessWear creates a
virtual sensor service that can virtually generate a gesture
and feed it to the application as though it was generated
locally. This allows AccessWear to work without requiring
changes to the application or design specially handcrafted ap-
plications [33]. AccessWear then uses a simple metaprogram
specification to specify alternate gesture mappings.

We implemented AccessWear on an Android smart-
phone and an Android smartwatch. In our first set of eval-
uations, we measured the quantitative and qualitative per-
formance of AccessWear based on a user study with 8 blind
participants (8 out of the 9 participants from the formative
study returned for the evaluation study). During the user
study, we asked the participants to map five smartwatch
gestures to the smartphone touchscreen gestures of their
choice. They then performed an exploratory task requiring
them to search for an object on the screen using the alter-
native smartwatch gestures. AccessWear end-to-end latency
between performing a gesture on the watch to observing the
result on the smartphone was 53 msec on average, well under
the reaction time of users [21]. The accuracy of gesture recog-
nition in controlled settings is 92% across all gestures and
all blind users. Based on an exit survey, all users found that
AccessWear was robust, easy to use, and was not physically
or mentally demanding.

Performing real-world, long-duration, studieswith blind
users is challenging. Instead, we conduct a user study with
5 sighted participants in real-world settings to evaluate the
technical capabilities of AccessWear. The study shows that
the false positive rate when using AccessWear during ev-
eryday activities is low and AccessWear works with several
common applications without requiring application changes.

2 Formative study
We conducted an IRB-approved study to characterize

the challenges faced by blind users when interacting with
their smartphones. As part of the study, we also wanted to
understand if smartwatch gestures are a good replacement
for touchscreen interactions. To this end, we (i) solicit feed-
back from blind users on the use of alternate smartwatch
gestures, and (ii) capture smartwatch gestures performed
by blind users (and also sighted users for comparison) to
analyze how well we can recognize smartwatch gestures.

Blind users interact with smartphones predominantly
using the touchscreen, especially for content-seeking tasks,
and they use screen readers (such as TalkBack [27] for An-
droid and VoiceOver [7] for iPhone) to read out the content

AccessWear: Making Smartphone Applications Accessible to Blind Users ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

of the screen. To this end, we focused on touchscreen inter-
action using screen readers for this study.
Participants: We recruited 9 blind participants between the
ages of 22-61 (17 male and 8 female). Table 7 in Appendix
1 shows the demographics and other details about the par-
ticipants. All blind participants were completely blind and
knew how to use a screen reader. None of the participants
had any motor impairments that affected their interaction
with smartwatch gestures.

In addition, we recruited 16 sighted participants who
were only asked to perform smartwatch gestures, to com-
pare gestures performed by blind vs sighted users. All other
studies were conducted only for blind participants.
Apparatus: During our training, we used iPhone 8 plus
to demonstrate the screen reader (VoiceOver) actions and
touchscreen actions [6]. All users were asked to wear Fossil
Gen 5 smartwatch. When the participants performed ges-
tures, the IMU data was streamed via Bluetooth to the phone.
It took 1.5 hours to conduct the user study and each blind
participant was paid $100 for their time.
Design: The experiments for the first part of the study (with
only blind participants) consisted of asking the participants
to interact with their smartphones using touchscreen ges-
tures. During the study, we asked the participants their ex-
perience in using touchscreen interactions and their pref-
erences when using smartwatch gestures. In addition, we
designed a comparative experiment in which we studied
how participants (both blind and sighted) perform smart-
watch gestures. We divided our sighted participants (16 in
total) into two random groups of size 8 with participants
of one group receiving a visual demonstration of the ges-
tures during the training while the second group received
a verbal description of the gestures. We repeated the same
experiment with the blind participants all of whom received
verbal descriptions similar to the ones given to the sighted
participants.

We asked each participant to perform 10 gestures in a
counterbalanced order, repeating each gesture 3 times. The
gestures were forearm directional gestures, shape-related
gestures, finger tapping gestures, and wrist gestures. We
selected these gestures because they are common gestures
used in similar studies [19, 52].
Procedure: The study starts with a survey regarding the
smartphone and smartwatch interaction habits of the par-
ticipants. See Appendix 1, Table 7 for a summary of user re-
sponses. After conducting the gesture experiments described
above, a semi-structured interview was conducted.

2.1 Key Takeaways
1: Need for alternate gestures: Our study largely corrob-
orates related literature regarding smartphone interaction
challenges for blind users [16, 54]. All of the users found at

"Givesme the confidence to not take out the phone, everyone carries
a watch, if I wave no one will know I am using a phone"
"In public, I don’t feel comfortable with the phone, I don’t want to
draw much attention, swipes and all gestures are less noticeable"
"More security, keep phone inside the pocket."
"Convenient, easy access"

Table 1: Some user responses to the question "The ad-
vantages of performing gestures using a smartwatch?"
Forearm and Wrist Upwards, Right, Left, Downwards, Flick

wrist
7

Shape In air square, Circle 5
Finger Pinch, finger taps 7
Wrist rotations Left rotate, Right rotate 3

Table 2: Median preference scores for different gesture
categories (7: high preference, 1: low preference).
least one touchscreen interaction difficult to perform and
more than half found at least one of the touchscreen interac-
tions difficult to remember. For example, 2 participants found
selecting the first and the last item on the screen difficult
and 2 of them found finger swipes confusing.

When specifically asked about the advantages of using
a smartwatch to interact with applications, 4 participants
mentioned that they feel more secure if they don’t have to
take their expensive phones out in public places and 6 partic-
ipants liked that they can perform one-handed interactions
using the smartwatch. Table 1 summarizes a few additional
responses. When specifically asked about perceived disad-
vantages of using a smartwatch, 4 participants did not find
any disadvantage, 3 did not want to perform elaborate ges-
tures that will attract attention to them, 1 participant was
concerned about false positives, and 1 participant was con-
cerned about forgetting to wear the watch.
2: Gesture preference: Users prefer finger and forearm ges-
tures over shape gestures and wrist rotation gestures. Table 2
shows the median ratings given for different categories of
gestures, where 7 represents high preference and 1 represents
low preference. The interquartile range (IQR) of scores for
these gestures was low, i.e. 0, 1, 0, 0 respectively, indicative of
less variance across the users. A non-parametric Friedman
test of differences was performed to compare the ratings
for the four gesture categories. There was a significant dif-
ference between the categories (𝑋𝑟

2 (3) = 23.73, 𝑝 < 0.001).
We use the five forearm and wrist gestures in Table 2 when
implementing and evaluating AccessWear because they were
highly preferred by participants in our study.
3: Blind users perform gestures differently: Figure 1
shows the same gesture (flick) performed by 2 sighted users
with visual training and 2 blind users with verbal training.
Visually, the gestures performed by sighted users are sim-
ilar, but those performed by blind users are different. We
measure the similarity between the gestures by estimating
the distance between each gesture and a predefined gesture

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Khanna et al.

(a) (b) (c) (d)

Visual training
Verbal training

Figure 1: Gyroscope data of flick gesture for two sighted
users (a), (b) who were shown the gesture visually, and
two blind users (c) and (d). There is a larger variation in
how gestures are performed by blind users compared
to sighted users.

template. The distance is measured using Dynamic Time
Warping (DTW) that aligns the two gestures and then es-
timates the euclidean distance between the two temporal
sequences [39].

The average distance between the gestures performed
by blind users and the standard template is 65.2. Even among
blind users, there are large differences. If we use one of the
blind user’s gestures as the template and compare it with all
others, the average distance is 77.05. In contrast, the distance
between the gestures performed by sighted users (with vi-
sual training) is 29.8. A significance test (ANOVA) confirms
that there is significant dis-similarity between gestures of
blind and sighted users with visual training. The reason for
this difference is likely because of the difference between
verbal and visual descriptions. For sighted users who were
only given a verbal description of the gesture, the distance
between the individual gesture and the gesture template
increases to 66.3.

The takeaway is that existing gesture recognition tech-
niques [22, 56] that use training data from sighted users are
unlikely to work well for blind users.
4: Users have different mapping preferences: Finally,
we asked the participants to map alternate smartwatch ges-
tures to replace touchscreen interactions based on their pref-
erences. There was large variability in how users mapped
gestures. For example, for selecting the previous item on the
screen, typically performed using the touchscreen left swipe
with one finger, 44% of blind participants wanted to use a
“forearm left" gesture while 22% of the participants wanted
to use the “forearm right" gesture. Table 3 shows the gesture
mappings picked by 9 blind participants for 5 commonly
used screen reader actions.

3 AccessWear Challenges
The goal of AccessWear is to make it significantly easy

for blind users to interact with smartphone applications and
screen readers using smartwatch gestures. AccessWear fo-
cuses on content-seeking applications such as browsing or
listening to music which are popular among blind users (see
Table 7 Appendix 1). Content creation applications such as

Screen Reader action Gestures

1. Select and speak an item
Flick wrist (44%, 4/9),
Finger: pinch/tap (33%, 3/9),
Forearm: up/ down (22%, 2/9)

2. Select previous item

Forearm: left (44%, 4/9),
Forearm right: (22%, 2/9),
Finger: left (22%, 2/9),
Flick wrist (11%, 1/9)

3. Select next item
Forearm: right (55%, 5/9),
Finger: right (22%, 2/9)
Others (22%, 2/9)

4. Scroll up a page

Forearm: up (55%, 5/9),
Flick wrist (22%, 2/9),
Finger: up (11%, 1/9)
Forearm: down (11%, 1/9)

5. Scroll down a page

Forearm: down (44%, 4/9),
Flick wrist (33%, 3/9),
Finger: down (11%, 1/9)
Forearm: up (11%, 1/9)

Table 3: Variety of gesture mappings chosen for per-
forming screen reader actions across 9 blind users.

Sensors No T No P M
ViBand [30], [36] A ✗ ✗ ✗

uWave [34], [13] A ✗ ✗ ✓

[2], [28], [29] A ✗ ✓ ✗

[37] A ✗ ✓ ✓

Serendipity [52] A, G ✗ ✗ ✗

RisQ [40] A, G, M ✗ ✓ ✓

ArmTrak [47] A, G, M ✓ ✗ ✗

MUSE [46] A, G, M ✓ ✓ ✗

[53] A, G ✗ ✗ ✗

LimbMotion [60] A, G, Acoustic ✗ ✗ ✓

ArmTroi [35], [61],
[56] A, G ✗ ✗ ✓

Tapnet [22], [4] A, G ✗ ✓ ✓

[25] A, G ✗ ✓ ✗

AccessWear G ✓ ✓ ✓

Table 4: Previous works in gesture recognition using
IMU. A: accelerometer, G: gyroscope, M: magnetometer.
No T: No training, No P: No personalization, and M:
Runs on mobile

writing emails or messages require keyboard input and are
not a focus of this work. There are two main challenges in
designing AccessWear:
Gesture recognition challenges. Despite considerablework
in gesture recognition, real-time gesture recognition on resource-
constrained devices is still an open problem. Table 4 shows
the related work on gesture recognition that uses IMU sen-
sors readily available on smartwatches (the related work is
expanded in §9). These works have one or more of the fol-
lowing limitations—they require large amounts of training
data, require per-person training, or cannot run on a mobile
device.

AccessWear: Making Smartphone Applications Accessible to Blind Users ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

For example, the state-of-the-art gesture recognition
system TapNet [22] requires large amounts of data training
data (135K samples). In fact, we trained TapNet with data
collected from blind users and found that they work poorly
with limited training data (§7.2). Collecting data for blind
users on a large scale to train deep learning models is ex-
pensive and time-consuming. Further, our formative study
shows that blind user gestures have a large variance; there-
fore using training data is likely insufficient. Other works
such as Serendipity [52] are trained with relatively smaller
amounts of data (600 samples from each sighted user), but
require per-person training before the system can be used.
Per-user training has a huge overhead in terms of designing
a data collection system catered to work with blind users.

Besides the above challenge, AccessWear’s gesture recog-
nition system should be lightweight so that it can run on
mobile devices. Previous works [46, 52] that use intensive sig-
nal processing techniques or compute heavy particle filters
cannot run on mobile devices.
Gesture replacement challenges. Related works that de-
sign alternate gestures for smartphone interactions [19, 33]
require that applications be rewritten to work with alternate
gestures. This severely limits the applicability and useful-
ness of the system. Our goal in AccessWear is to design a
near-zero-effort gesture replacement, where users can spec-
ify how they want to map alternate smartwatch gestures
to touchscreen gestures, but the application itself does not
need to be modified. The key problem is that in smartphone
applications, the application logic and the interactions are
coupled, making it hard to change the interaction without
modifying the application.

To this end, in AccessWear, we design (i) a robust ges-
ture recognition system that works well with simple sensors
available on a smartwatch with no per-user training or large
training datasets, and (ii) an input virtualization system that
allows a user to flexibly use the smartwatch gestures to in-
teract with unmodified applications.

4 AccessWear Gesture Recognition
We focus on gesture recognition for forearm and wrist

gestures. In §8 we show that the techniques can be extended
to other gestures.

4.1 Insights
1. Using gyroscope data only: AccessWear’s gesture recog-
nition uses Inertial Measurement Unit or IMU sensors that
are commonly available in most devices including smart-
watches. IMUs consist of three sensors: gyroscope, magne-
tometer, and accelerometer, and many gesture recognition
systems fuse information from all three sensors. However,
magnetometer readings are known to be affected by ferro-
magnetic interference [46]. In our experimental environment,

(a) (b) (c)

accelerometer
gyroscope

(d) (e) (f)

Figure 2: Accelerometer and gyroscope data for the
flick gesture across 3 different users. Visually, the ac-
celerometer data is considerably different across users
compared to the gyroscope data.

(a) (b) (c) (d) (e)

gyroscope significant axis

Figure 3: The significant axis of gyroscope data when
the flick wrist gesture is performed by 5 different users.
The nucleus looks similar (marked in red), but Pre-
stroke and Post-stroke look visually dissimilar.

the standard deviation of magnetic field density variation
reaches over 24 𝜇T, which can result in a tracking error of
over 50 degrees. Similarly, the accelerometer data is noisy
compared to gyroscope data because it captures both linear
and gravity motion. Figure 2 shows the accelerometer and
gyroscope data when a flick gesture was performed by three
blind users; visually, the accelerometer data across users is
more dissimilar compared to the gyroscope data.

To address the shortcomings of the accelerometer and
magnetometer, our system relies only on the gyroscope sen-
sor. The insight here is that human arm and handmovements
are primarily rotational since their motion is restricted to the
surface of a sphere that is centered at the shoulder, elbow, or
wrist. This motion can be captured using a gyroscope even
when the gesture is seemingly linear. Further, by doing so
we avoid the computational and power overhead of sensor
fusion techniques.

The one disadvantage of the gyroscope is the drift. How-
ever, our goal is to identify short-duration gestures and not
track gestures over time, making drift a non-issue.
2. Identifying nucleus: Each individual has a unique style
in which they move their arm and hands. Upon observing
the gyroscope data of different users at a more granular
level, we find that despite the overall differences in gesture
patterns, each gesture exhibits a distinct signature. A gesture
can be divided into three phases [10, 58]: i) pre-stroke, ii)
nucleus, and iii) post-stroke. The pre-stroke refers to the
initial movement in a gesture where a user is preparing to
perform the gesture, for example, moving their arm to a
starting position. The post-stroke is at the completion of

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Khanna et al.

the gesture where, for example, the arm moves away from
the gesture position. The nucleus is the core of the gesture,
following the pre-stroke.

In Figure 3, these phases can be observed in the gyro-
scope data captured when the flick gesture is performed by 5
different users. The nucleus (marked by a red oval) is visually
similar across users while pre-stroke and post-stroke phases
vary, likely due to differences in how users approach the
start and end of a gesture. AccessWear leverages this nucleus
similarity in its gesture recognition pipeline.

4.2 AccessWear Gesture Recognition
Pipeline

Figure 4 shows the gesture recognition pipeline. This
section elaborates on each component of the pipeline.
4.2.1 Gating Function. Continuously streaming data from
the smartwatch to the phone and running the gesture recog-
nition pipeline is expensive. To keep the power and com-
pute costs in the system low, we need to know when a user
is potentially performing a gesture. We introduce a gating
function that is triggered when significant arm movement is
detected. This gating function ensures that data is sent from
the watch to the smartphone only when a gesture is likely
performed. If the magnitude of gyroscope data exceeds an
empirically determined threshold along any axis, the gating
function is set to true and triggers the rest of the gesture
recognition pipeline. We chose the threshold value to be
0.5𝑑𝑝𝑠 , which is able to capture most movements performed
on the smartwatch. We picked a conservative threshold to
avoid missing a possible gesture.
4.2.2 Nucleus Detection. Gesture recognition starts by iden-
tifying the nucleus of the gesture. We first determine the
axis with the highest rotational variation (hereafter referred
to as the significant axis, 𝑔𝑠) and calculate the energy. Next,
we use a sliding window and compute the root-mean-square
(RMS) energy in this signal window. Empirically we use a
sliding window size of 20. For each window, RMS energy (𝐸)
is: 𝐸 =

√︃
1
𝑁

∑
𝑛 |𝑔𝑠 (𝑛) |2

We implement a lightweight change point detection
algorithm to examine the difference in RMSE in consecutive
windows. If the RMSE values are close, we discard the new
window and continue using the first window as a reference
window. When the difference in energy between the refer-
ence and the newwindow exceeds an empirically determined
threshold, the change points are noted. The nucleus is deter-
mined by two change points. Figure 5 shows the detected
nucleus in a gesture.

In our experiments, we use a threshold value of 0.4; i.e.,
if the difference in energy between two windows exceeds 0.4,
we mark it as a change point. This value was based on experi-
ments conducted using different thresholds (see Appendix 2).

GATING FUNCTION NUCLEUS
DETECTION

WRIST/FOREARM
GESTURE RECOGNITION

Smart Watch Smart Phone

Gesture
Templates

Gesture

Figure 4: AccessWear gesture recognition pipeline.

40 60 80 100 120 140 160 180 200
Samples

0.75

0.50

0.00

0.25

ra
d
/s
ec Pre-stroke

Post-stroke

Nucleus

Figure 5: Nucleus boundaries detected based on the
change in the RMS energy. Red lines show the change
points.

The threshold is robust across the population studied in this
work, as shown by the high accuracy of our gesture recog-
nition technique (§7.2). But, a (future) longitudinal study is
needed to assess the robustness of this threshold across a
large population.
4.2.3 Distinguishing forearm and wrist movements. Based on
our data analysis, we observe that the nucleus of a forearm
and a wrist gesture look similar. However, wrist gestures are
performed very quickly and have a lower range of motion as
compared to forearm gestures. The nucleus of a wrist gesture
is narrow, whereas the nucleus of a forearm gesture is wider
(longer duration). Figure 6 (a), (b) shows the nucleus of a
forearm and wrist gesture respectively.

The frequency response of a forearm gesture has lower
energy, as seen in Figure 6 (c), while that of the wrist ges-
ture has high energy in certain frequencies, as seen in Fig-
ure 6(d). Wrist and forearm gestures can, therefore, be distin-
guished based on the frequency response. However, transla-
tion to the frequency domain using techniques like Fourier
transform can induce latency and is not feasible in a real-
time system [41]. Instead of frequency domain features, we
closely examine the time-series data from the nucleus of the
wrist gesture to extract features. We observe that due to the
impulse-like nature of the wrist gesture, jitters are observed
in the nucleus. We identify these jitters in real-time using a
lightweight peak detection algorithm. Based on the nucleus
duration and jitters, we classify each gesture as a wrist or
forearm gesture.
4.2.4 Recognizing the gestures. The final step is to classify
the nucleus. To this end, the detected nucleus is matched
against a library of pre-defined gesture templates. In con-
trast to existing approaches that require large amounts of
data, this library contains one template for each gesture.
We decided not to use training data from blind users, and

AccessWear: Making Smartphone Applications Accessible to Blind Users ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

0 20 40 60 80

(a)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

ra
d/

se
c

0 20 40 60 80

(b)

-0.6

-0.4

-0.2

0

0.2

ra
d/

se
c

0 20 40 60 80

(c)
Time (sec)

10

20

30

40

50

60

F
re

qu
en

cy
 (

H
z)

0 20 40 60 80

(d)
Time (sec)

10

20

30

40

50

60
F

re
qu

en
cy

 (
H

z)

Figure 6: (a) Nucleus of a forearm gesture, (b) nucleus
of a wrist gesture that shows jitters, (c) frequency re-
sponse of a forearm gesture that shows the lack of a
high energy component, (d) frequency response of a
wrist gesture that shows a high energy component.

therefore, the templates are obtained from a sighted user.
The detected nucleus is matched against potential gestures
using Fast-DTW [44], which is an approximation of DTW
that requires linear time complexity and is appropriate for
real-time systems. If the distance returned by the Fast-DTW
template matching for a probable gesture occurrence is be-
low an empirically determined threshold, we confirm it as a
gesture. We choose this threshold to be a distance of 50. In
our evaluations, we find that when a gesture is performed,
the distance value is considerably less than 50. A lower dis-
tance signifies a high similarity between the template and
the gesture. This lightweight algorithm is capable of running
in real-time on mobile devices.
4.2.5 Lock/Unlock gesture. Even with the gating function,
there is a chance for high false positives because arm/hand
movements performed during day-to-day activities may be
mistaken for a gesture. Instead, we propose one gesture that
can lock and unlock AccessWear; a user simply unlocks Ac-
cessWear when needed and lock it again. However, how does
one recognize the lock/unlock gesture? We design a separate,
lower power pipeline to recognize the lock/unlock gesture.
We choose a turn wrist gesture as the lock/unlock gesture.
To detect the lock/unlock gesture, we use a similar template
matching using Fast DTW [44], but do not differentiate be-
tween forearm or wrist gestures.

5 AccessWear Input Virtualization
The remaining challenge is—how canwe flexibly replace

the original touchscreen gesture with an alternate gesture
without requiring changes to the application?

Virtual Sensor Service
Sensor Service

User
Layer

Framework
Layer

Hardware
Layer

Smartphone

Phone
App

Window Manager Service

Sensors Virtual Touch
Sensor

(a)

Record Touch Gesture
Swipe

Replay Swipe

[t1, x1, y1]
[t2, x2, y2]

……

(b)

Figure 7: (a) The VirtualSensorService layer generates
virtual touch events as though generated by a user
locally, (b) Record-and-Replay mechanism to record
and replay touch gestures.

AccessWear supports near-zero-effort gesture replace-
ment using three techniques: (1) A metaprogram specifi-
cation that specifies which smartwatch gesture should re-
place which touchscreen interaction on the smartphone, (2)
A record-and-replay method that recreates any touchscreen
gesture on the smartphone screen virtually, and (3) An Input
virtualization technique that puts them all together.

When an alternate gesture is identified on the smart-
watch, AccessWear uses the metaprogram to map the smart-
watch gesture to the touchscreen interaction. AccessWear
then replays the touchscreen interaction on the smartphone
using record-and-replay, which is automatically delivered to
the application as is usual. The application runs as though
the touchscreen interaction was generated by a user and
performs the necessary action in response to the interaction.

5.1 Metaprogram specification
Let’s say a user wants to replace the touchscreen ges-

ture, swiping right on the screen, with a forearm right gesture
on the smartwatch. This information is encoded as ametapro-
gram which stores the mapping between smartwatch to
phone gestures. Figure 9 (a) shows an example of such a
metaprogram. We assume that a default set of mappings will
be available for a user, but a user can customize the mappings
as needed. To make the metaprogram specification easier,
we design a simple GUI to specify, view, or change gesture
mappings as illustrated in Figure 9 (b).

5.2 Record-and-replay
AccessWear uses a record-and-replay technique to gen-

erate the touchscreen gestures virtually. The intuition here
is that the number of touchscreen gestures are finite and
enumerable. Accordingly, we assume that the user performs
common touchscreen gestures on the phone. When doing
so, we record the coordinates of the gesture and then replay
it at run-time. Figure 7(b) shows the record-and-replay. This

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Khanna et al.

technique can be used to generate gestures/interactions such
as swiping left or right, scrolling, etc.

However, this alone is not sufficient. A user may click
on a button or other UI (User Interface) elements. To replay
these interactions, one needs to dispatch the touch event to
the specified UI element. AccessWear leverages the Virtual
Sensor Service to achieve this. While replaying the touch
event, each event contains time series coordinates. This in-
termediate data can precisely locate the target UI element. In
effect, the Virtual Sensor Service doesn’t need to understand
the semantics of the UI element but can still trigger a touch
event. One additional issue is that users may want to inter-
act with the phone when the phone screen is switched off.
However, when the screen is switched off, the applications
no longer function and cannot receive inputs [55]. We use
existing techniques [54, 55] to allow applications to continue
functioning even when the screen is switched off.

Of course in some rare cases, an application may sup-
port a touch interaction at a specific location on the screen;
for example, a long press at the corner of the screen where
there is no UI element. To replay such an interaction, we
expect that the user would record the touch interaction at
the same location.

5.3 Input Virtualization
Most mobile operating systems are designed such that

all hardware sensors (touchscreen, IMU, etc) go through a
sensor service that dispatches the sensor data. Since all appli-
cations receive inputs from the sensor service, this provides
a natural modular boundary to abstract the application logic
from the user interaction. AccessWear implements a virtual
sensor service that intercepts the sensor dispatcher and adds
a new sensor redirect mechanism. This redirection allows the
application to receive input events fromAccessWear’s virtual
sensor as though the touch event was generated locally. In
Android, this is achieved by modifying the InputDispatcher
class, but the general idea is applicable to other mobile OSes.
Figure 7 (a) shows the design.

6 Implementation
We implemented AccessWear on Android OS 7.1.2 and

Android Wear 2.0 smartwatch OS. Other mobile operating
systems such as iOS, have a similar architecture for sensor
framework design, and it is possible to replace the Android
watch with an Apple watch by installing the watch proxy.

6.1 Run-time Implementation
The system consists of an AccessWear proxy running

on the smartwatch and an AccessWear service running on
a phone paired via Bluetooth. Figure 8 shows the run time
overview of the system. The AccessWear watch proxy polls
the gyroscope data at 100 Hz and sends the 3-axis data in

Gyroscope Sensor

AcessWear
Watch Proxy

Smart Watch

Gesture
Recognition

Mapping Meta-
Program

Touch Screen
Hardware

AccessWear
Phone Service

Smart Phone

App

Touch
Replayed

Figure 8: Run-time system implementation.

batches of 10 to the phone. Batching reduces the communi-
cation overhead [3].

The AccessWear phone service runs as a system-level
thread at the Framework Layer. The phone service performs
two tasks at run-time: (1) Gesture recognition, and (2) Re-
play touch gestures. We implement the gesture recognition
pipeline using gyroscope data streamed over Bluetooth as
described in Section 4.2.

6.2 Metaprogram Implementation

(a) (b) (c)

Figure 9: Gesture Mappings options. (a) Example XML
file used to represent the metaprogram. (b) and (c) User
interface used to record touchscreen inputs and change
gesture mappings.

Before runtime, AccessWear creates a metaprogram
specification for gesture mapping and records touchscreen
interactions. We implement the metaprogram specification
as an XML file and we provide a GUI to specify and change
the metaprogram. Figure 9 shows an example.

7 Evaluation
We conducted a real-world, IRB-approved, user study

with 8 blind participants and a trace-driven study using the
data collected. The 8 participants also participated in the
formative study and returned for the evaluation study. We
summarize the findings from our system evaluation:

• Real-time performance: The end-to-end latency
between performing a smartwatch gesture and trig-
gering an application response is an average of 57

AccessWear: Making Smartphone Applications Accessible to Blind Users ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

msec. Further, a user can interact with an applica-
tion, requiring multiple gestures, with a 95.8% accu-
racy.

• Accuracy of gesture recognition: The Access-
Wear gesture recognition is 34% more accurate than
state-of-the-art gesture recognition systems includ-
ing Serendipity [52], TapNet [22], and other sensor
fusion-based gesture recognition systems.

• Usability: An exit survey showed that blind users
found AccessWear easy to use and robust.

Devices: All evaluations are performed on an LG Nexus
5 smartphone and Fossil Gen 5 smartwatch. The Nexus 5
phone and the Fossil Gen 5 smartwatch run the AccessWear
service as shown in Figure 8.

7.1 Study Setup with Blind Users
Participants: The 8 participants (5 male and 3 female) age
ranges from 34-61. Since the participants were part of the
formative study, they were familiar with the motivation. It
took 1.5 hours to conduct the study and each blind participant
was paid $150 for their time.
Study Design: We adopted a repeated measures within-
subject study design [49]. In the study, participants map
smartwatch gestures to touchscreen gestures and then use
the smartwatch gestures to interact with the application
instead of using the touchscreen. We currently support 5
smartwatch gestures (Figure 10). The participants map it to
the fivemost popular touchcreen gestures, where the popular
touchscreen gestures were obtained from the formative study.
The default mapping is shown in Table 5.
Task: We designed an item selection task in which the par-
ticipants are asked to find an item on the screen and select it.
The participant selects an item from a 3 × 3 grid, where dif-
ferent rows have different category items (colors, countries,
fruits). The participant repeats this selection three times, and
in each round the order of categories and items are random-
ized. While the participant is performing the task, we record
a video as ground truth for our evaluation (not including
face) and log the events on the phone.

A task requires that the participant performs a series
of gestures to choose an item; on average, each participant
performed 15 gestures to complete all the tasks. In effect, this
experiment evaluates the ability of a participant to (i) recall
the right gesture and (ii) perform the gesture seamlessly
even when performing a task that requires higher cognitive
engagement.
Procedure: We begin the study with an introductory survey
about phone interactions and smartwatch gestures. This
is followed by a briefing session where the participant is
introduced to the AccessWear system. The experimenter
then asks the participant to select a mapping between a set of
watch gestures and phone gestures. The experimenter inputs

(a) (b) (c) (d) (e)

Figure 10: Gestures for Accesswear evaluation with
blind users. (a) Forearm upwards, (b) Forearm right, (c)
Flick wrist, (d) Forearm left, (e) Forearm downwards.

Gesture Mapping
Forearm upwards Two finger swipe up
Forearm right Two finger swipe right
Flick wrist Swipe right
Forearm left Two finger swipe left
Forearm downwards Two finger swipe down

Table 5: Defaultmappings between the smartwatch and
touchscreen gestures provided by AccessWear. Users
were able to change the mapping as needed.

the selected mapping and asks the participant to practice
the mapping on a training app that reads out the gesture
performed and plays the corresponding mapping. Once the
user is satisfied with the mapping we move to the task. The
participants practiced the mappings for about 5 minutes on
average.
Trace-based study.During the user study, the experimenter
also asks the participants to perform the 5 gestures 3 times in
a counterbalanced order. When the gestures are performed,
the timestamps and sensor data from the accelerometer, lin-
ear accelerometer, gyroscope, magnetometer, and orientation
sensor are logged at 100 Hz. This trace allows us to do re-
peatable comparison studies to compare different gesture
recognition systems. Traces are collected while the user is
sitting as users typically do not perform these gestures while
walking.

7.2 Baselines
We compare AccessWear’s gesture recognition with the

following state-of-the-art.
• Serendipity [52] is a gesture recognition system that uses
personalized SVMmodels to classify gestures for each user.
For our implementation, we use the features described in
the paper and train an SVM classifier for each user.

• TapNet [22] is a CNN-based tap detection system for mo-
bile phones. We change the TapNet multi-task network to
perform a single task by modifying the tap/no-tap classi-
fier to a 5 gesture classifier. We split our data (8 users, 5
gestures performed three times by each user) into training
(70%) and testing (30%) sets to train a generalized model.
The model does not converge as the training data we have
is just 84 samples as opposed to 135𝐾 training samples
used in the TapNet paper.

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Khanna et al.

Forearm
up

Forearm
right

Flick
wrist

Forearm
left

Forearm
down

Gestures

0

50

100

150

200

250

Ti
m

e
(m

se
c)

Gesture recognition and replay
Streaming 3 axis gyroscope data

Figure 11: Average latency be-
tween the smartwatch gesture to
application reaction.

Fo
rea

rm
 up

Fo
rea

rm
 rig

ht

Flic
k w

ris
t

Fo
rea

rm
 le

ft

Fo
rea

rm
 do

wn

Forearm up

Forearm right

Flick wrist

Forearm left

Forearm down

0.87 0.13 0 0 0
0 0.91 0.09 0 0
0 0.08 0.85 0.08 0
0 0 0 1 0
0 0 0 0 1

0.00

0.25

0.50

0.75

1.00

Figure 12: Confusion matrix for
AccessWear gesture recognition
across 8 blind users.

Ac
ce

ssW
ea

r

Se
ren

dip
ity

SV
M ba

se
d
Ta

pN
et

CN
N ba

se
d LS

TM

DTW

gy
ros

co
pe

DTW

ac
ce

ler
om

ete
r

DTW
 Ka

lm
an

filt
eri

ng

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Figure 13: Accuracy comparison
for different gesture recognition
systems across 8 blind users.

• LSTM-based models are commonly used for tasks such
as activity recognition. We develop an LSTM-based ar-
chitecture, which consists of Bi-Directional LSTM layers,
followed by Batch normalization, and a classifier. We split
our data into training (70%) and testing (30%) to train a
generalized model.

• DTW-variants is a commonly used technique [39] to com-
pare the similarity between gestures. This technique is
used to compare time series data that have varying speeds.
We implement DTWsimilaritymeasures using an accelerom-
eter, gyroscope, and a fusion of multiple sensors.

7.3 Results
End-to-end latency: Figure 11 shows the end-to-end delay
of the AccessWear system for the five gestures in Figure 10.
The latency is calculated as the time taken between perform-
ing the gesture on the watch to the application reaction to
the input. We use NTP [38] to synchronize the clocks of the
watch and the phone.

Across all five gestures and users, the average reaction
time to the gesture is 57 msec, much smaller than the 220
msec reaction time that users can tolerate [21]. Quantita-
tively, this means that AccessWear works near real-time.
Broken down further, the mean time spent in data streaming
is 46 msec. It only takes 11 msec to recognize the gestures.
Task completion: Each of the 8 users performed the task 3
times. All but one participant was able to complete the task
with an average task completion accuracy 95.8%. One use
took an exploratory approach to randomly find items in the
screen, and therefore, could not complete the task.
Gesture recognition accuracy: We next evaluate the ac-
curacy of gesture recognition using the collected traces. Fig-
ure 12 shows a confusion matrix. The overall accuracy is 92%
which shows that even though AccessWear’s gesture recog-
nition runs efficiently on mobile devices, that doesn’t come
at a cost of accuracy. We observe that due to a lack of visual
feedback, participants do not necessarily perform a gesture
as described, and can sometimes move their arms up/down

or left/right, triggering some misclassifications. However,
these misclassifications are rare and do not affect the overall
user experience, as discussed later in this section.
Comparison with baseline: Figure 13 shows the compari-
son between AccessWear’s gesture recognition and that of
baseline techniques. AccessWear outperforms all other ap-
proacheswith the LSTM-basedmodel (70%) and the Serendipity-
like model (65%) performing better than Tapnet’s CNNmodel
(50%). TapNet requires large amounts of data for training
which is difficult to obtain for the blind user population. This
result further shows that AccessWear can work well with
the limited amount of data.

Further, we trained an LSTM-basedmodel using the data
we collected during our sighted user study with 16 users. The
accuracy of the model, when tested with sighted users (70%
training set and 30% test set), is 89% but this value drops to
48% when tested with blind users. This result corroborates
our observation that blind users perform gestures differently
compared to sighted users.

Questions Mode of Score (IQR)
Did you find the system reliable? 7 (1)
Did you find the system robust? 7 (1.25)
Did you find the system responsive? 7 (0.25)
Is the system physically demanding? 1 (1.25)
Is the system mentally demanding? 2 (1)
Does the system meet your expectations? 7 (0)

Table 6: Mode of Likert scale score across 8 blind users.
The score ranges from 1 to 7 where 1 indicates strongly
disagree and 7 indicates strongly agree. The table also
shows the IQR or Interquartile Range. Lower IQR sug-
gests less variance in user responses.

We also compare the accuracy with DTW approaches
that, similar to AccessWear, compare the distance to a tem-
plate. We see an accuracy drop of nearly 52% and 68% for
gesture recognition using DTW on gyroscope and accelerom-
eter data respectively. IMU tracking papers [46, 47] fuse all

AccessWear: Making Smartphone Applications Accessible to Blind Users ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

three sensor readings accelerometer, gyroscope, and magne-
tometer for gesture tracking. To evaluate the performance
of sensor fusion techniques, we employ Kalman filter [24] (a
sensor fusion algorithm) based on template matching. We
still see low accuracy as the magnetometer and accelerom-
eter data have significant noise. In affect, using gyroscope
alone is sufficient in recognizing arm and wrist gestures
performed by blind users.
Qualitative Feedback: We ask the participants about their
experience using AccessWear. Users were asked to answer
questions about the system performance on a scale of 1 to 7,
with 1 being ‘strongly disagree’ and 7 being ‘strongly agree’.
Table 6 shows the mode of scores. All users find AccessWear
reliable and responsive and using alternate gestures was not
mentally or physically demanding. We also conducted a SUS
(System Usability Scale) survey which showed similar results
regarding the usefulness and robustness of AccessWear. We
present those results in Appendix 3.

8 Technical capabilities of AccessWear
In the previous section, we evaluate the performance of

AccessWear with blind users in controlled settings. Evaluat-
ing some of the technical capabilities of the system requires
longer duration studies that are difficult to perform with
blind users. Instead, we perform a set of user studies with 5
sighted users, also on the LG Nexus 5 smartphone and the
Fossil Gen 5 smartwatch.

8.1 Energy Consumption
Methodology: We compare the total energy consumption
when using smartwatch gestures for the same task as de-
scribed in the previous section. Total energy includes polling
and streaming of gyroscope data on the watch. On the phone,
total energy accounts for running the gesture recognition
pipeline, replaying the touch gestures, and playing audio
and vibratory feedback when applicable. We perform this
experiment separately so it does not affect the integrity of
the task. The participant performs a random set of all 5 ges-
tures repeated 10 times for one minute. When the gestures
are being performed, AccessWear runs the gesture recog-
nition pipeline and the application responds to the gesture
based on the metaprogram specification (we use the default
mapping). We use the Batterystats tool [5, 31] tool to mea-
sure energy consumption on both the watch and the phone.
Other common tools such as Monsoon Power Monitor could
not be used on modern phones since the battery cannot be
removed.

Figure 14a shows the total energy for different gestures
averaged over all runs. The flick wrist gesture consumes
more energy because the application vibrates in response to
the gesture, which adds to the energy consumption. To put

the energy numbers in context, we compare the energy con-
sumed by AccessWear with the energy consumed to scroll
an Instagram page for 1 minute on the phone. AccessWear
consumes less than half the energy compared to Instagram
scrolling. We also compare the power consumed by Access-
Wear on the watch to a heart rate monitor running for 1
minute and find that the energy consumption is comparable.
We note that the energy consumption on the watch and the
phone when AccessWear is locked is considerably lower (see
Figure 14c). All the energy numbers reported in this experi-
ment are the delta over the standby energy consumed by the
phone or watch. Standby energy for the phone is 8 mAh and
for the smartwatch is 4 mAh over a period of 1 minute.

In a separate experiment, we compare the energy con-
sumed by the smartphone when using the alternate gesture
vs using the touchscreen gestures. AccessWear consumes
20% more energy when using the alternate gestures, due to
the gesture recognition pipeline and replaying the touch-
screen gestures. We omit the figure due to space constraints.

8.2 False positive detection in real-world
settings

Methodology: The goal of this study is to evaluate the num-
ber of times a smartwatch falsely thinks a gesture was per-
formed when a user is wearing their AccessWear-enabled
smartwatch. Lower the false positives, the better. For these
experiments, the participants wear the AccessWear-enabled
watch for 5 hours while going about their daily lives. Access-
Wear is locked during the 5 hours; we estimate the number
of times AccessWear is mistakenly unlocked and the ges-
ture recognition pipeline is triggered. Participants are asked
to maintain a log of the activity they did every half hour.
The participants were not provided any information about
AccessWear except demonstrating the lock gesture to them.

Figure 14b shows the false positive rate per hour; i.e.,
the number of times an AccessWear gesture was triggered
over the 5 hours. The gestures were triggered only once
per hour on average, except for two instances. In these two
instances, the gesture was triggered—6 times and 4 times
respectively within an hour. When mapped with the activity
log, during this time the participant was washing dishes
and opening a bottle. AccessWear reduces the per-hour false
positive rate by 31.5% when compared to the previous false
positive detection studies in real-world settings for gesture
recognition [26].

By designing a lock mechanism, AccessWear is able to
reduce the probability of a user inadvertently triggering Ac-
cessWear gestures. Figure 14c shows the cost of the locking
mechanism in terms of energy consumed. In this experiment,
we unlock AccessWear 30 seconds into the experiment and
lock it again after 1 minute. When locked, AccessWear con-
sumed only 0.014 mAh energy on the phone and 0.0012 mAh

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Khanna et al.

Forearm
up

Forearm
right

Flick
wrist

Forearm
left

Forearm
down

Gestures performed 10 times

10−2

10−1

En
er

gy
 (m

Ah
)

0.17

0.0076

Phone Watch

(a) Total energy consumed by Access-
Wear on the phone and watch. Dotted
lines show the energy consumed by In-
stagram (on phone) and heart monitor
(on watch) for comparison.

9:00am 10:00am 11:00am 12:00pm 1:00pm 2:00pm
Time of day

0

2

4

6

8

10

fal

se
 po

sit
ive

s /
 ho

ur

User 1
User 2
User 3
User 4
User 5

(b) The number of false positive ges-
tures recorded in a 5-hour trace for 5 dif-
ferent users. In all but three cases, the
number of false positives is less than 3
times an hour.

0 30 60 90
Time elapsed (sec)

0.00

0.02

0.04

En
er

gy
 (m

Ah
)

Phone Watch

(c) Energy consumed when the system
is locked for 30 seconds, and then un-
locked for 1 minute. AccessWear only
consumed 0.014 mAh energy (phone)
and 0.0012 mAh (watch) when locked.

Figure 14: Evaluating technical capabilities of AccessWear.

energy on the watch. When unlocked, the energy increases
to 0.046 mAh (phone) and 0.004 mAh (watch).

One limitation with this study is that a blind user’s cane
or guide dog could potentially trigger false positives. We will
require a longitudinal study with blind users to evaluate this
aspect further.

(a)
Forearm

up

(b)
Forearm

right

(c)
Flick
wrist

(d)
Forearm

left

(e)
Forearm

down

(f)
Pinch
finger

(g)
Turn
wrist

(h)
In air
circle

x y z

Figure 15: Nucleus for different gestures. x,y, and z are
the axes of gyroscope data.

8.3 Extending AccessWear to more gestures
So far, we evaluated AccessWear for 5 forearm and wrist

gestures. However, AccessWear’s gesture recognition tech-
nique can support more gestures. Adding a new gesture
requires determining the nucleus and creating a template
of the nucleus. One criterion for adding a new gesture is
that the nucleus needs to be sufficiently different from the
nucleus of other gestures (Pearson correlation coefficient
< 0.5). We add three new gestures to AccessWear: circle in
the air, pinching a finger, and turning wrist. The nucleus of
all eight gestures are shown in Figure 15.

We evaluate the accuracy of the gesture recognition
of the 8 gestures with data collected from 5 sighted users.
Each user performs each gesture 3 times. Figure 16 shows
that the accuracy across the 8 gestures is 93%, showing that
AccessWear can recognize more than just forearm and wrist
gestures. In contrast toML-based baseline techniques, adding
a new gesture to the system does not require any additional
data collection overhead.

For
ea

rm
 up

For
ea

rm
 rig

ht

Flic
k w

ris
t

For
ea

rm
 le

ft

For
ea

rm
 do

wn

Pin
ch

fin
ge

r

Tur
n w

ris
t

In
air

 cir
cle

Forearm up

Forearm right

Flick wrist

Forearm left

Forearm down

Pinch finger

Turn wrist

In air circle

0.8 0 0 0 0 0.13 0.07 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0.86 0 0 0.14 0

0 0 0 0 1 0 0 0

0 0 0.08 0 0.08 0.83 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
0.0

0.2

0.4

0.6

0.8

1.0

Figure 16: Confusion matrix for gesture recognition ac-
curacy across 5 sighted users and 3 additional gestures.
The result shows that AccessWear’s gesture recogni-
tion can be extended beyond arm and wrist gestures.

8.4 Interacting with unmodified
applications

The key feature of AccessWear is that it does not re-
quire any modifications to the smartphone application. To
evaluate the user experience when interacting with unmodi-
fied applications using AccessWear’s alternate gestures, we
asked the 5 sighted users to interact with Spotify, YouTube,
Gallery, and a Browser. The users used the 8 gestures and
mapped each of them to a touchscreen gesture of their choice.
The experimental setup is similar to the study in §7.

We then ask the participants to rate their user experi-
ence, perceived delay, and robustness on a scale of 1 to 5, with
1 being a great experience and 5 being a poor experience. In
terms of perceived delays, the mode across all 5 users and
all apps was 1, which indicates that there is no perceived
delay. In terms of user experience, the mode across all 5
users for Spotify, Gallery, and Browser, was 4 or 5 indicating
good user experience. However, the mode for YouTube was

AccessWear: Making Smartphone Applications Accessible to Blind Users ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

3. One reason was that the “swipe right" gesture was used by
the participants to go to the next video, but the application
instead forwarded the video due to the placement of the
touchscreen replay. This is a limitation in AccessWear; when
replaying a touchscreen gesture, the gesture may interact
with the elements on the screen and result in unexpected
application behavior.

9 Related Work
IMU-based Gesture Recognition. There has been con-
siderable work on using IMUs for gesture recognition. In
Table 4, we summarized these works. The state-of-the-art
models are TapNet [22], Serendipity [52], and gesture cus-
tomization [56]. We discuss TapNet and Serendipity in our
evaluation; the former needs a large training set and the
latter needs personalization. The gesture customization [56]
work is more recent. This work focuses on sighted users
only but also uses gyroscope data similar to AccessWear and
proposes few shot learning using a small amount of person-
alized data. However, the work requires extensive training
data to train the base model, which is difficult to obtain for
blind users.

ViBand [30] shows that oversampling the accelerometer
sensor can capture fine-grained gestures. uWave [34] shows
that with one sample from a user, accelerometer data can
capture the motion gesture patterns. However, we find that
accelerometer data contains a mixture of linear and gravity
acceleration, making it noisy. The state-of-the-art in gesture
tracking MUSE [46], ArmTrak [47], ArmTroi [35] are able to
track gestures, rather than only recognize gestures. They use
sensor fusion to compensate for drift over time. The problem
is that these works rely on heavy signal processing or require
point cloud generation, both of which are computationally
heavy for a mobile phone.
Gesture Recognition. Other works have used different sen-
sors such as an array of proximity sensors [19], barometric
pressure sensors [59], and electrical impedance tomogra-
phy [48] for gesture recognition. WristLens [57] enables
single-handed gestures on surfaces using an optical motion
sensor embedded in a wrist strap, allowing the user to lever-
age any proximate surface, including their own body, for
input and interaction. However, these sensors are not readily
available on smartwatches. Microphone [50, 51] has been
used for gesture recognition but it suffers from the drawback
of not being able to work in the presence of external acous-
tic noise. WiFi-based gesture recognition [26] has shown
good accuracy, but only works in smart building type of
environments.

Finally, most gesture recognition works only recognize
gestures, but do not design a gesture replacement. Wrist-
Whirl [19] is one of the few works that use gesture recog-
nition (using proximity sensors) to replace existing smart-
phone gestures. However, it requires that the application be
rewritten to work with alternate gestures.
Smartwatch Gestures for Accessibility. Smartwatches
are used in many scenarios for visually impaired users. One
of the earliest works uses smartwatch gestures in an app
that identifies "wet floor" signs [42]. Smartwatches are also
used for interactions in navigation [18], writing [11], map
exploration [9, 20], and Braille reading [14]. In this work,
we leverage the smartwatch for alternate gestures. Despite
previous research which suggests that there are differences
between how visually impaired users do gestures compared
with sighted peers [16], there is not any recent work on
gesture recognition for visually impaired users.

Another important direction in accessibility research is
to provide alternative interaction for the screen reader. For
instance, related work creates a ring [17, 33] or a deformable
surface [15] as inputmodalities that can replace screen reader
actions on smartphones. However, these works need special-
ized hardware and require handcrafted applications to work
with alternate gestures.

10 Conclusion
Motivated by the needs of blind users, we explored how

commodity smartwatches can be leveraged to improve the ac-
cessibility of smartphone interactions. We developed Access-
Wear, wherein we design a practical smartwatch-based ges-
ture recognition system that runs on resource-constrained
mobile devices in real-time. These gestures are then mapped
to touchscreen gestures on the smartphone through a novel
input virtualization mechanism. AccessWear allows blind
users to interact with their devices conveniently via a smart-
watch, alleviating their concerns about shoulder-surfing and
phone safety. AccessWear’s design enables the extension
to multiple gestures and can support any mobile applica-
tion without the need to modify it. In a study with 8 blind
users, we find that AccessWear is accurate with 92% gesture
recognition accuracy, and can run in real-time.

Acknowledgments
We sincerely thank our anonymous shepherd and re-

viewers for their insightful comments and suggestions. This
work was supported in part by a Google Research Scholar
award, the National Science Foundation under award num-
bers 2110193, 2153056, 2125147, 2113485 and the National
Institutes of Health under award numbers R01EY030085,
R01HD097188.

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Khanna et al.

References
[1] Ali Abdolrahmani, Ravi Kuber, and Amy Hurst. 2016. An empirical

investigation of the situationally-induced impairments experienced
by blind mobile device users. In Proceedings of the 13th International
Web for All Conference. 1–8.

[2] Ahmad Akl, Chen Feng, and Shahrokh Valaee. 2011. A novel
accelerometer-based gesture recognition system. IEEE transactions on
Signal Processing 59, 12 (2011), 6197–6205.

[3] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong. 2014.
Rio: a system solution for sharing i/o between mobile systems. In Pro-
ceedings of the 12th annual international conference on Mobile systems,
applications, and services. 259–272.

[4] Edwin Valarezo Añazco, Seung Ju Han, Kangil Kim, Patricio Rivera
Lopez, Tae-Seong Kim, and Sangmin Lee. 2021. Hand gesture recog-
nition using single patchable six-axis inertial measurement unit via
recurrent neural networks. Sensors 21, 4 (2021), 1404.

[5] Android. [n.d.]. Profile battery usage with Batterystats and Battery
Historian. https://developer.android.com/topic/performance/power/
setup-battery-historian

[6] Apple. [n.d.]. Learn VoiceOver gestures on iPhone. https://support.
apple.com/en-in/guide/iphone/iph3e2e2281/ios

[7] Apple. [n.d.]. VoiceOver Getting Started Guide. https://support.apple.
com/en-in/guide/voiceover-guide/welcome/web

[8] Shiri Azenkot and Nicole B Lee. 2013. Exploring the use of speech
input by blind people on mobile devices. In Proceedings of the 15th
international ACM SIGACCESS conference on computers and accessibility.
1–8.

[9] Sandra Bardot, Marcos Serrano, and Christophe Jouffrais. 2016. From
tactile to virtual: using a smartwatch to improve spatial map explo-
ration for visually impaired users. In Proceedings of the 18th Interna-
tional Conference on Human-Computer Interaction with Mobile Devices
and Services. 100–111.

[10] Gibran Benitez-Garcia, Muhammad Haris, Yoshiyuki Tsuda, and
Norimichi Ukita. 2020. Continuous finger gesture spotting and recog-
nition based on similarities between start and end frames. IEEE Trans-
actions on Intelligent Transportation Systems (2020).

[11] Syed Masum Billah, Vikas Ashok, and IV Ramakrishnan. 2018. Write-
it-yourself with the aid of smartwatches: A wizard-of-oz experiment
with blind people. In 23rd International Conference on Intelligent User
Interfaces. 427–431.

[12] CDC. [n.d.]. Fast Facts of Common Eye Disorders.
https://www.cdc.gov/visionhealth/basics/ced/fastfacts.htm.

[13] Casey A. Cole, Bethany Janos, Dien Anshari, James F. Thrasher, Scott
Strayer, and Homayoun Valafar. 2020. Recognition of Smoking Gesture
Using Smart Watch Technology. https://doi.org/10.48550/ARXIV.2003.
02735

[14] Aritra Dhar, Aditya Nittala, and Kuldeep Yadav. 2016. TactBack: Vibro-
tactile braille output using smartphone and smartwatch for visually
impaired. In Proceedings of the 13th International Web for All Conference.
1–2.

[15] Matthew Ernst, Travis Swan, Victor Cheung, and Audrey Girouard.
2017. Typhlex: Exploring deformable input for blind users controlling
a mobile screen reader. IEEE Pervasive Computing 16, 4 (2017), 28–35.

[16] Shirin Feiz and IV Ramakrishnan. 2019. Exploring feasibility of wrist
gestures for non-visual interactions with wearables. In Proceedings of
the 16th International Web for All Conference. 1–4.

[17] Catherine Feng. 2016. Designing wearable mobile device controllers
for blind people: a co-design approach. In Proceedings of the 18th Inter-
national ACM SIGACCESS Conference on Computers and Accessibility.
341–342.

[18] Ombretta Gaggi, Claudio E Palazzi, Matteo Ciman, and Armir Bujari.
2018. Stepbywatch: A smartwatch-based enhanced navigation sys-
tem for visually impaired users. In 2018 15th IEEE Annual Consumer
Communications & Networking Conference (CCNC). IEEE, 1–5.

[19] Jun Gong, Xing-Dong Yang, and Pourang Irani. 2016. Wristwhirl:
One-handed continuous smartwatch input using wrist gestures. In
Proceedings of the 29th Annual Symposium on User Interface Software
and Technology. 861–872.

[20] William Grussenmeyer, Jesel Garcia, and Fang Jiang. 2016. Feasibility
of using haptic directions through maps with a tablet and smart watch
for people who are blind and visually impaired. In Proceedings of the
18th International Conference on Human-Computer Interaction with
Mobile Devices and Services. 83–89.

[21] Henry Hamburger. 1969. Donald RJ Laming. Information, theory of
choice-reaction times. New York: Academic Press, 1968.

[22] Michael Xuelin Huang, Yang Li, Nazneen Nazneen, Alexander Chao,
and Shumin Zhai. 2021. TapNet: The Design, Training, Implementation,
and Applications of a Multi-Task Learning CNN for Off-Screen Mobile
Input. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. 1–11.

[23] Mohit Jain, Nirmalendu Diwakar, and Manohar Swaminathan. 2021.
Smartphone usage by expert blind users. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. 1–15.

[24] Rudolph Emil Kalman. 1960. A New Approach to Linear Filtering
and Prediction Problems. Transactions of the ASME–Journal of Basic
Engineering 82, Series D (1960), 35–45.

[25] Peiqi Kang, Jinxuan Li, Bingfei Fan, Shuo Jiang, and Peter B Shull. 2021.
Wrist-worn Hand Gesture Recognition while Walking via Transfer
Learning. IEEE Journal of Biomedical and Health Informatics (2021).

[26] Bryce Kellogg, Vamsi Talla, and Shyamnath Gollakota. 2014. Bring-
ing gesture recognition to all devices. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14). 303–316.

[27] Brian Kemler. 2021. Our all-new talkback screen reader. https:
//blog.google/products/android/all-new-talkback

[28] Minwoo Kim, Jaechan Cho, Seongjoo Lee, and Yunho Jung. 2019. IMU
sensor-based hand gesture recognition for human-machine interfaces.
Sensors 19, 18 (2019), 3827.

[29] Jonathan Knighten, Stephen McMillan, Tori Chambers, and Jamie Pay-
ton. 2015. Recognizing social gestures with a wrist-worn smartband.
In 2015 IEEE International Conference on Pervasive Computing and
Communication Workshops (PerCom Workshops). IEEE, 544–549.

[30] Gierad Laput, Robert Xiao, and Chris Harrison. 2016. Viband: High-
fidelity bio-acoustic sensing using commodity smartwatch accelerom-
eters. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology. 321–333.

[31] Sunjae Lee, Hoyoung Kim, Sijung Kim, Sangwook Lee, Hyosu Kim,
Jean Young Song, Steven Y Ko, Sangeun Oh, and Insik Shin. 2022.
A-mash: providing single-app illusion for multi-app use through user-
centric UI mashup. In Proceedings of the 28th Annual International
Conference on Mobile Computing And Networking. 690–702.

[32] Barbara Leporini, Maria Claudia Buzzi, and Marina Buzzi. 2012. Inter-
acting with mobile devices via VoiceOver: usability and accessibility
issues. In Proceedings of the 24th Australian Computer-Human Interac-
tion Conference. 339–348.

[33] Guanhong Liu, Yizheng Gu, Yiwen Yin, Chun Yu, Yuntao Wang,
Haipeng Mi, and Yuanchun Shi. 2020. Keep the Phone in Your Pocket:
Enabling Smartphone Operation with an IMU Ring for Visually Im-
paired People. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 4, 2 (2020), 1–23.

[34] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan.
2009. uWave: Accelerometer-based personalized gesture recognition

https://developer.android.com/topic/performance/power/setup-battery-historian
https://developer.android.com/topic/performance/power/setup-battery-historian
https://support.apple.com/en-in/guide/iphone/iph3e2e2281/ios
https://support.apple.com/en-in/guide/iphone/iph3e2e2281/ios
https://support.apple.com/en-in/guide/voiceover-guide/welcome/web
https://support.apple.com/en-in/guide/voiceover-guide/welcome/web
https://doi.org/10.48550/ARXIV.2003.02735
https://doi.org/10.48550/ARXIV.2003.02735
https://blog.google/products/android/all-new-talkback
https://blog.google/products/android/all-new-talkback

AccessWear: Making Smartphone Applications Accessible to Blind Users ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain

and its applications. Pervasive and Mobile Computing 5, 6 (2009), 657–
675.

[35] Yang Liu, Zhenjiang Li, Zhidan Liu, and Kaishun Wu. 2019. Real-time
arm skeleton tracking and gesture inference tolerant to missing wear-
able sensors. In Proceedings of the 17th Annual International Conference
on Mobile Systems, Applications, and Services. 287–299.

[36] David Mace, Wei Gao, and Ayse Coskun. 2013. Accelerometer-based
hand gesture recognition using feature weighted naïve bayesian clas-
sifiers and dynamic time warping. In Proceedings of the Companion
Publication of the 2013 International Conference on Intelligent user in-
terfaces companion. 83–84.

[37] Antigoni Mezari and Ilias Maglogiannis. 2018. An easily customized
gesture recognizer for assisted living using commodity mobile devices.
Journal of Healthcare Engineering 2018 (2018).

[38] David L Mills et al. 1985. Network time protocol (NTP). (1985).
[39] Meinard Müller. 2007. Dynamic time warping. Information retrieval

for music and motion (2007), 69–84.
[40] Abhinav Parate, Meng-Chieh Chiu, Chaniel Chadowitz, Deepak Gane-

san, and Evangelos Kalogerakis. 2014. Risq: Recognizing smoking
gestures with inertial sensors on a wristband. In Proceedings of the
12th annual international conference on Mobile systems, applications,
and services. 149–161.

[41] Chun-Su Park. 2017. Guaranteed-Stable Sliding DFT Algorithm With
Minimal Computational Requirements. IEEE Transactions on Signal
Processing 65, 20 (2017), 5281–5288. https://doi.org/10.1109/TSP.2017.
2726988

[42] Lorenzo Porzi, Stefano Messelodi, Carla Mara Modena, and Elisa Ricci.
2013. A smart watch-based gesture recognition system for assisting
people with visual impairments. In Proceedings of the 3rd ACM interna-
tional workshop on Interactive multimedia on mobile & portable devices.
19–24.

[43] Right-Hear. [n.d.]. How Do Blind People Use Smartphones?
https://youtu.be/IkQk8ZbToNo?t=54.

[44] Stan Salvador and Philip Chan. 2007. Toward accurate dynamic time
warping in linear time and space. Intelligent Data Analysis 11, 5 (2007),
561–580.

[45] Barbara Šepić, Abdurrahman Ghanem, and Stephan Vogel. 2015.
BrailleEasy: one-handed braille keyboard for smartphones. In As-
sistive Technology. IOS Press, 1030–1035.

[46] Sheng Shen, Mahanth Gowda, and Romit Roy Choudhury. 2018. Clos-
ing the gaps in inertial motion tracking. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking.
429–444.

[47] Sheng Shen, He Wang, and Romit Roy Choudhury. 2016. I am a
smartwatch and i can track my user’s arm. In Proceedings of the 14th
annual international conference on Mobile systems, applications, and
services. 85–96.

[48] Peter B Shull, Shuo Jiang, Yuhui Zhu, and Xiangyang Zhu. 2019. Hand
gesture recognition and finger angle estimation via wrist-worn modi-
fied barometric pressure sensing. IEEE Transactions on Neural Systems
and Rehabilitation Engineering 27, 4 (2019), 724–732.

[49] Lisa M Sullivan. 2008. Repeated measures. Circulation 117, 9 (2008),
1238–1243.

[50] Wei Wang, Alex X Liu, and Ke Sun. 2016. Device-free gesture tracking
using acoustic signals. In Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking. 82–94.

[51] Yanwen Wang, Jiaxing Shen, and Yuanqing Zheng. 2020. Push the
limit of acoustic gesture recognition. IEEE Transactions on Mobile
Computing (2020).

[52] Hongyi Wen, Julian Ramos Rojas, and Anind K Dey. 2016. Serendip-
ity: Finger gesture recognition using an off-the-shelf smartwatch. In
Proceedings of the 2016 CHI conference on human factors in computing

systems. 3847–3851.
[53] Chao Xu, Parth H Pathak, and PrasantMohapatra. 2015. Finger-writing

with smartwatch: A case for finger and hand gesture recognition using
smartwatch. In Proceedings of the 16th InternationalWorkshop onMobile
Computing Systems and Applications. 9–14.

[54] Jian Xu, SyedMasum Billah, Roy Shilkrot, and Aruna Balasubramanian.
2019. DarkReader: bridging the gap between perception and reality of
power consumption in smartphones for blind users. In The 21st Inter-
national ACM SIGACCESS Conference on Computers and Accessibility.
96–104.

[55] Jian Xu, Qingqing Cao, Aditya Prakash, Aruna Balasubramanian, and
Donald E Porter. 2017. UIWear: Easily adapting user interfaces for
wearable devices. In Proceedings of the 23rd annual international con-
ference on mobile computing and networking. 369–382.

[56] Xuhai Xu, Jun Gong, Carolina Brum, Lilian Liang, Bongsoo Suh,
Shivam Kumar Gupta, Yash Agarwal, Laurence Lindsey, Runchang
Kang, Behrooz Shahsavari, et al. 2022. Enabling hand gesture cus-
tomization on wrist-worn devices. In Proceedings of the 2022 CHI Con-
ference on Human Factors in Computing Systems. 1–19.

[57] Hui-Shyong Yeo, Juyoung Lee, Andrea Bianchi, Alejandro Samboy,
Hideki Koike, Woontack Woo, and Aaron Quigley. 2020. WristLens:
Enabling Single-Handed Surface Gesture Interaction for Wrist-Worn
Devices Using Optical Motion Sensor. In Proceedings of the Augmented
Humans International Conference. 1–8.

[58] Ying Yin and Randall Davis. 2014. Real-time continuous gesture recog-
nition for natural human-computer interaction. In 2014 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 113–120.

[59] Yang Zhang, Robert Xiao, and Chris Harrison. 2016. Advancing hand
gesture recognition with high resolution electrical impedance tomog-
raphy. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology. 843–850.

[60] Han Zhou, Yi Gao, Xinyi Song, Wenxin Liu, and Wei Dong. 2019.
Limbmotion: Decimeter-level limb tracking for wearable-based human-
computer interaction. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 3, 4 (2019), 1–24.

[61] Peide Zhu, Hao Zhou, Shumin Cao, Panlong Yang, and Shuangshuang
Xue. 2018. Control with gestures: a hand gesture recognition system
using off-the-shelf smartwatch. In 2018 4th International Conference on
Big Data Computing and Communications (BIGCOM). IEEE, 72–77.

https://doi.org/10.1109/TSP.2017.2726988
https://doi.org/10.1109/TSP.2017.2726988

ACM MobiCom ’23, October 2–6, 2023, Madrid, Spain Khanna et al.

Appendix

Appendix 1: Demographics of the
participants in the user study

ID Gender Studies
Participated

Commonly used
apps on phone

S1 M P, E Banking, video streaming,
games, maps

S2 M P, E Calling, YouTube

S3 M P, E Weather, iMessage, E-mail,
banking

S4 M P, E Radio, maps, financial,
money reader, Netflix

S5 F P, E YouTube, Amazon,
social media, games

S6 F P, E
Social media, maps,
browser, book-reader,
blind square, cash reader

S7 F P, E Kindle, amazon,
video calling

S8 M P, E Social media, calling,
Spotify, pandora

S9 F P Weather, iMessage, E-mail,
calling, blind square

Table 7: User study participants demographics. P: par-
ticipated in pilot study, E: participated in the evalua-
tion study.

The exploratory study consisted of 9 blind participants;
8 participants returned for the evaluation study (one partici-
pant dropped out). Table 7 shows the demographics of the
9 participants. 5 out of the 9 participants wore the watch
on their left hand. As part of the introductory survey, we
asked the participants the most common applications they
used on their phones. Every participant mentioned one or
more content seeking application, such as video streaming
and browsing. It is important that these content seeking
applications are made accessible for blind users.

Appendix 2: Nucleus threshold for gesture
recognition pipeline

The AccessWear gesture recognition pipeline uses a
threshold to recognize change points (§ 4.2.2). If the change
point, defined as the difference in RMS energy between two
sliding windows, is greater than a threshold, it is recorded as
the boundary of the nucleus. We evaluate the robustness of
the threshold. Figure 17 shows the gesture recognition accu-
racy across blind users at different nucleus threshold values.
Based on this experiment, we choose 0.4 as the threshold.

0.2 0.4 0.6 0.8 1.0
Nucleus Thresholds

0

20

40

60

80

100

Ac
cu

ra
cy

 %

Figure 17: AccessWear gesture recognition accuracy at
different nucleus thresholds.

Appendix 3: SUS survey responses after
using the AccessWear system.

After conducting a task-driven evaluation of Access-
Wear (§7), we conducted a System Usability Scale (SUS)
survey to characterize the usability of AccessWear. Table 8
shows the mode of SUS scores provided by the 8 blind par-
ticipants for the ten SUS questions. The survey results show
that AccessWear is easy to use.

SUS Questions Mode of
Score

I think that I would like to use this AccessWear
frequently. 4

I thought AccessWear system was easy to use. 5
I found the various functions in AccessWear
were well integrated. 5

I imagine that most people would learn to use this
system very quickly. 5

I felt very confident using the AccessWear system. 5
I found the AccessWear unnecessarily complex. 1
I think that I would need the support of a technical
person to be able to use AccessWear. 1

I thought there was too much inconsistency in
AccessWear. 1

I found AccessWear very cumbersome to use. 1
I needed to learn a lot of things before I could get
going with this system. 1

Table 8: Results of a SUS survey to quantify the usabil-
ity of AccessWear. The table shows the mode of the
Likert scale score as provided by the 8 participants for
each question. The score ranges from 1 to 5, where 5
represents strongly agree and 1 represents strongly dis-
agree.

	Abstract
	1 Introduction
	2 Formative study
	2.1 Key Takeaways

	3 AccessWear Challenges
	4 AccessWear Gesture Recognition
	4.1 Insights
	4.2 AccessWear Gesture Recognition Pipeline

	5 AccessWear Input Virtualization
	5.1 Metaprogram specification
	5.2 Record-and-replay
	5.3 Input Virtualization

	6 Implementation
	6.1 Run-time Implementation
	6.2 Metaprogram Implementation

	7 Evaluation
	7.1 Study Setup with Blind Users
	7.2 Baselines
	7.3 Results

	8 Technical capabilities of AccessWear
	8.1 Energy Consumption
	8.2 False positive detection in real-world settings
	8.3 Extending AccessWear to more gestures
	8.4 Interacting with unmodified applications

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

