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ABSTRACT

This paper explores a new wearable system, called JawSense, that

enables a novel form of human-computer interaction based on un-

voiced jaw movement tracking. JawSense allows its user to interact

with computing machine just by moving their jaw. We study the

neurological and anatomical structure of the human cheek and jaw

to design JawSense so that jaw movement can be reliably captured

under the strong impact of noises from human artifacts. In particu-

lar, JawSense senses the muscle deformation and vibration caused

by unvoiced speaking to decode the unvoiced phonemes spoken by

the user. We model the relationship between jaw movements and

phonemes to develop a classification algorithm to recognize nine

phonemes. Through a prototyping implementation and evaluation

with six subjects, we show that JawSense can be used as a form of

hands-free and privacy-preserving human-computer interaction

with 92% phoneme classification rate.
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Figure 1: JawSense: concept and motivation

1 INTRODUCTION

Speech and touch-typing are the twomost common inputmodalities

for smart devices [10]. However, they pose challenges in many

scenarios where touch-typing restricts hands-free operation and

speech commands are not desirable.

For example, people with vision, speech, or motor neuron disabil-

ities often rely on additional devices to interact with their comput-

ing machines like the Switch Access for Android [3]. Carrying an

additional switch and navigating through it overloads many com-

mands on few buttons, further restricting the scope of interaction.

Deaf-blind people rely on Tadoma to gauge what the other person

is speaking by tracking speech articulators’ movement and sensing

the vibrations [19]. This technique is not preferred as people do not

prefer to touch each other’s face and invade their personal space.

Hands-free operation is desired for users whose hands are fully

occupied (e.g., a pianist wants to turn music sheet, a VR/AR user

wants to type username/password, a user wants to answer message

during a meeting, etc.) or those who have difficulty in coordinat-

ing their hands (e.g., Parkinson, Amyotrophic Lateral Sclerosis

(ALS), and quadriplegic patients). In addition, with the COVID’19

pandemic, healthcare facilities require contactless interaction with

equipment and smart devices. Speech commands are not preferred

in public settings when sensitive information is involved as they

can be eavesdropped, posing a breach in privacy [1]. Also, speech

commands can not be used in noisy environments. In recent years,
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various input modalities have been proposed to cater to accessibil-

ity needs and provide hands-free operation [8]. The use of teeth

gestures in these works is not as intuitive as using language based

commands.

In this paper, we present JawSense, a hands-free, socially accept-

able, privacy-preserving, and intuitive input sensing modality.

It recognizes the unvoiced phonemes based on jaw movement

patterns. Different phonemes involve different manner in which

the jaw moves and the muscles around it contract and retract. We

use a low-cost accelerometer to capture signals from articulators

like jaw and cheeks to identify the unvoiced phoneme. Phonemes

are the building blocks for words, thus recognizing phonemes can

lead to potential sentence recognition. Our contributions are as

follows:

• Identifying the best sensor placement location for single

sensing modality for reliably capturing jaw movement and

developing a socially acceptable wearable. Our prototype

can be retrofitted to headphones/ earphones.

• Proposing a new jaw sensing technique for hands-free, privacy-

preserving, and intuitive interaction with computing devices.

• Devising an algorithm to isolate unvoiced commands from

voiced commands via spectrum area selection.

• Evaluating our system with six participants with real-world

experiments. JawSense achieves an accuracy of 92% in de-

tecting nine phonemes.

The rest of the paper is organized as follows. Section 2 discusses

the domain knowledge and core intuition that enables JawSense.

Next, Section 3 presents the system design. Then, Section 4 intro-

duces the implementation, setup and evaluation. We discuss the

future directions in Section 5 and conclude in Section 7.

2 BACKGROUND AND CHALLENGES

Human speech is a sequence of different sounds. A meaningful

sound helps to distinguish between different words. For instance,

mat and pat are differentwords distinguished by the sounds, /m/ and

/p/, respectively. /m/ and /p/ are known as phonemes. Phonemes

are the smallest sound acting as building blocks for words in any

language. The human voice generation mechanism has three sub-

parts: the lung, the vocal cord, and articulators. The lung produces

the air pressure required to vibrate the vocal cord. The vocal cord

vibrates to produce audible vibrations, and articulators articulate

sounds coming from the larynx. The jaw has often been deemed

an articulator due to its involvement in speech.

As different phonemes are articulated differently, we utilize mo-

tion signals captured by a low-cost sensor from articulators like the

jaw and cheeks for identifying phoneme. We use an accelerometer

to measure the motion due to its simplicity, low-cost, and compara-

tively lower power consumption than other motion sensors.

We conduct a set of in-lab experiments to assess the feasibility of

detecting a phoneme using a single accelerometer. In particular, we

use the accelerometer signals from the jaw and cheeks. We chose

nine of the most spoken phonemes across 451 languages [21] as

listed in Table 1. We placed an accelerometer on the lower portion

of the temporomandibular joint (TMJ), as shown in Figure 1. The

TMJ acts like a sliding hinge connecting the skull and the lower jaw,

permitting the jaw to move up and down, and in lateral direction.

+Z

+Y

+X
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/a/ /j/ /p/
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Figure 2: Time domain representation signals when user

speaks different phonemes.

Ph /m/ /k/ /i/ /a/ /j/ /p/ /u/ /n/ /o/

Wd man king bit cat jug pay put net pot

Table 1: Nine most used phonemes of occurrence across 451

languages. (Ph - Phoneme, Wd - Word)
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Figure 3: /m/ has a wider frequency profile compared to the

plosive phoneme /k/.

Placing it lower on the TMJ, allows JawSense to be retrofitted on

any off-the-shelf headphones.

Our experiments are designed to answer the following questions:

(1) Can a single accelerometer sensor be used to capture human jaw

movement during phoneme articulation? (2)What noise sources affect

the system performance?

Figure 2 shows time domain accelerometer signals for differ-

ent phonemes, which demonstrates distinguishable characteristics.

Figure 3 further shows an example of the frequency domain repre-

sentation of the dominant axis (y-axis) for two phonemes /m/ and

/k/. The plosive phoneme /k/, in which airflow is blocked and then

released in a burst, is more contracted in bandwidth compared to

the other nasal phoneme /m/. This set of experiment establishes

that jaw movement signal exhibits characteristics both in time and

frequency domain for a particular phoneme.

■ Challenges.While the preliminary results are very promis-

ing, realizing JawSense is difficult due to the following challenges.

Accelerometer, along with jaw movement, can be affected primarily

by two other sources: body movements and mechanical waves

(music) from external sources vibrating the system. Figure 4 shows

the spectrogram when a user is performing different activities (nod-

ding, head rotation, yawning, etc.) and in different conditions (noisy

acoustic environment) while wearing the JawSense prototype. As
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Figure 4: Spectrogram of signals in different conditions. (a)

Quiet environment. (b) Body movements (c) External acous-

tic noise.

seen, body movements (nodding, yawning) have far lower energy

and frequency than other activities. Previous studies show that

accelerometer’s performance is affected by acoustic signals [23].

Unsurprisingly, our prototype’s accelerometer is also affected in an

external acoustic environment.

3 SYSTEM DESIGN

JawSense enables unvoiced sound recognition via a ear-worn sys-

tem. Figure 5 shows the JawSense’s system overview. JawSense

includes (1) an ear-worn device that non-obtrusively tracks the

human jaw movement in real-time, and (2) an algorithm to remove

the noise from human artifacts (e.g., nodding, yawning), extract

unvoiced signal, and classify the detected unvoiced phoneme.

■ Preprocessing. First step is to preprocess the raw accelerom-

eter data. We take samples equivalent to 2 seconds of data and call

it as a window. We then divide the window into frames of half a

second. We take this frame size as it is long enough to capture

an entire jaw movement. From the 3 axis accelerometer data, we

remove the effect of gravity (offset removal). A mean average filter

is used to smooth the signal and remove jitters.

■Motion artifactsmitigation. Human jawmotion creates mil-

limeter motion captured by the accelerometer at the skin surface.

With a low-cost sensor, it results in only fewmV of voltage captured

by the Analog-to-Digital Converter (ADC) on the microcontroller.

At the same time, motion artefacts create similar or often stronger

signals in amplitude that are the mixed with the jaw movement

signal readings. To remove the noise caused by human artefacts, in-

cluding but not limited to nodding, head movements, and yawning,

JawSense applies a high-pass filter on the pre-processed signals.

Spectrogram in Fig. 4 shows that these body movements have a low-

frequency range ś less than 1 Hz ś while jawmovements associated

with phonemes have a frequency profile in [5,100] Hz range. As a

result, JawSense applies a 1 Hz high-pass filter on the pre-processed

signals to remove low frequency motion artifacts.

■ Unvoiced signal extraction from acoustic noise. As dis-

cussed in Section 2 performace of accelerometers is affected by

interference of acoustic signals. While human artifacts induce noise

levels in a lower frequency range, audible sounds from external

sources causes frequency disturbances over a wide range of fre-

quency as shown in Figure 4 (c). The frequency profile of phoneme-

induced jaw movement is from 5 to 100 Hz. Assuming only one

phoneme in a two second window, no two consecutive frames are

expected to have [5,100] Hz frequency range in the absence of ex-

ternal noise. If there are more than two such frames, we identify

the window as acoustic noise event. The sound waves interacting

with the sensor have lower energy compared to those produced

by jaw movements. This allows for energy based thresholding. We

find the ratio of energy for each frame with the window. The frame

with highest ratio is identified as a frame with phoneme. Wiener

filter is used to remove acoustic noise from unvoiced phoneme.

■ Voiced and unvoiced sound detection. After reducing ef-

fect of noise components we intend to detect if the phoneme is said

in voiced or unvoiced manner. This assists users when they want

to interact with the JawSense system and system outside it. E.g.

interacting with VR using unvoiced commands and voiced com-

mands for communicating with people. Figure 6 shows the time

domain representation and frequency spectrum (y-axis) for the

same phoneme, once in an audible manner and then just jaw move-

ment. In Figure 6, (1) is associated with jaw opening, (2) deformation

of skin around jaw, (3) with jaw closing. (1) and (3) are not affected

by voiced phoneme, but as vibrations travel through skin, there is a

high frequency component associated with (2) that is marked in (4).

The higher frequency component associated with audible phoneme

is in the base frequency of human speech [80,255] Hz. This is from

the vibrations caused by vocal cords while making a sound that

travel up-to prototype through cheek muscles. JawSense uses this

property for detecting audible phonemes. Specifically, if the energy

of spectrum in [80,220] Hz is greater than thrice the noise floor for

more than 0.2 sec, jaw movement is considered voiced.

■ Unvoiced phonemes classification. Once we remove hu-

man artifacts and the effect of external noise components, we clas-

sify non-audible phonemes. We assume that if phoneme is voiced,

users must interact with components outside our system and need

not be classified. As observed in Figure 2 and 3 both time and

frequency domain representation have characteristics based on

manner of jaw movement. Hence, we extract time and frequency

domain features. In time domain, we select features that are inde-

pendent of magnitude as different users may have different extent

to which they can open their jaw. We use skewness, area under the

curve, and kurtosis as time domain features and first eight Discrete

Fourier Transform (DFT) coefficients for getting frequency domain

characteristics. This set of nine features is used to train a Support

Vector Machine (SVM) classifier.

4 EVALUATION

We conducted a series of real-world experiments to validate the

performance of JawSense. In this section, we first describe our ex-

perimental setup. We then analyze the performance of voiced vs un-

voiced phoneme detection. Next, we evaluate the overall phoneme
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Figure 5: JawSense system overview
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sentations of unvoiced and voiced phoneme /m/ respectively.

The figure shows: jaw opening (1), skin contraction (2), jaw

closing (3), and voiced phoneme introducing high frequency

component (4).
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Figure 7: JawSense prototype

classification model. Lastly, we evaluate the overall system perfor-

mance in a real-world scenario.

■ Experimental setup. We build the JawSense prototype with

two key design goals: (1) To have a small form-factor wearable

that does not interfere with the jaw functioning, and (2) To have a

socially acceptable design. The JawSense prototype consists of an

Arduino Nano 33 BLE Sense and an off-the-shelf IMU MPU 9250

retrofitted on a headphone. Surgical tape was used so the wires do

not hurt the user. The prototype did not cause discomfort to the

user. Our prototype collects the three axes accelerometer data at

550 Hz. The system communicates to an HP Notebook laptop via

Bluetooth. Fig. 7 shows our prototype worn by a participant.

We conduct experiments with six volunteers. The age group

of participants is 17-55 years, with three males and three females.

They were asked to record each of the nine phonemes 20 times.

Two of them were asked to conduct additional experiments under

different scenarios to assess the robustness of the system. Theywere

asked to perform the unvoiced phonemes 20 times while performing

the following movements: head nodding, yawing, voiced phoneme

articulation, and music playing in the background.

■ Detecting unvoiced phoneme. JawSense distinguishes skin

surface vibrations and deformation of unvoiced phoneme from

voiced phonemes by analysing the energy of the frequency spec-

trum. Fig. 8 shows the precision and recall of the unvoiced phoneme

detection.We reduce false negatives for unvoiced phonemes to pre-

vent the system from omitting any phonemes and skipping classifi-

cation. We observe that the unvoiced phoneme shows a precision

rate of 0.91 and a recall rate of 1, which implies a lower false nega-

tive rate. Voiced phonemes show a precision rate of 1 and a recall

rate of 0.9, which implies a lower false positive rate.

Unvoiced
Phoneme

Voiced
Phoneme

0.00

0.25

0.50

0.75

1.00 Precision

Recall

Figure 8: Unvoiced-Voiced phoneme detection rate.

■ Phoneme classification. JawSense achieves the unvoiced

phoneme recognition accuracy of 92% across six subjects and nine

phonemes. Figure 9 shows the confusion matrix of the recognition

accuracy over the investigated nine phonemes. We observe that /a/

and /i/ are most erroneous phonemes. Despite their similarity, the

system still achieves 94% and 75% recognition rate for/a/ and /i/.

We believe that by training personalised models for each user we

can achieve a higher accuracy since it would account for individual

variations. We leave this avenue for further research.
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Subject S1 S2 S3 S4 S5 S6

Accuracy 0.87 0.86 0.82 0.81 0.80 0.88

Table 2: Leave one out accuracy for each subject. Standard

deviation is 0.31.

a i j k m n o p u

a

i

j

k

m

n

o

p

u

0.94 0 0 0 0.06 0 0 0 0

0.22 0.75 0 0 0.03 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0.96 0 0 0 0 0.04

0 0 0 0 0.95 0 0.05 0 0

0 0 0 0 0 0.96 0 0 0.04

0 0 0 0.04 0 0 0.92 0 0.04

0 0 0.04 0 0 0 0.04 0.92 0

0 0 0 0 0.05 0 0 0 0.95
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0.2

0.4

0.6

0.8

1.0

Figure 9: Classification accuracy for nine phonemes.

We observe that the acceleration of the jaw movement varies

among users, which could be caused by differences in jaw structure

across individuals. To assess the impact of this variation, we con-

duct leave-one-user-out validations and obtain a mean recognition

accuracy of 84%. Table 2 shows accuracy for when each subject is

left out from training set. The accuracy for each user is compara-

ble with the others showing that the model is generalizable for all

subjects.

■ Sensitivity analysis. To assess the robustness of the system,

we evaluate JawSense with data containing human motion artifacts

like head nodding and yawning, and in the presence of external

acoustic noise like music playing in the background. Fig. 10 shows

the precision and recall for the two subjects who performed the

experiments in these conditions. JawSense achieved an accuracy of

96% under controlled (no external noise) conditions for these two

subjects. Even after adding human motion artifacts and external

acoustic noise JawSense attained an accuracy of 94% and 90% respec-

tively, demonstrating the robustness in real-world environment.

Controlled
Environment

Human
Artifact

External
Acoustic Noise

0.00

0.25

0.50

0.75

1.00
Precision

Recall

Figure 10: Phoneme classification accuracy in different con-

ditions. 0.96 in controlled conditions, 0.94 with motion arti-

facts, and 0.90 in external acoustic noise.

5 DISCUSSION AND LIMITATIONS

We present our initial efforts towards building a low-cost unvoiced

sound detection system. We further discuss limitations, directions

for future research, and potential applications:

JawSense’s limitations. The current prototype has following

limitations: (1) Body movements that create high frequency noise

may induce false-positives for audible phonemes. This can be avoided

by using a microphone to distinguish between high frequency com-

ponents induced from body movements and audible phoneme ar-

ticulation. (2) We can not reliably understand the confounding

nature of phoneme classification with the current system. In the

future, we plan to map the motion signal to jaw movement. This

would help better understand the phoneme identification. (3) In

our current prototype, the accelerometer has to be placed in a fixed

orientation; with change in the orientation the model would have

to be retrained. We plan to integrate gyroscope measurements into

the system, which will give information about current orientation

hence making it possible to transform current orientation to a

reference orientation. (4) Presently, we have not evaluated the sys-

tem’s efficiency such as energy consumption, latency, and change

in temperature. We plan to address this in the next iteration of the

system.

Generalizing JawSense. The current prototype of JawSense

uses off the shelf accelerometer along with a battery and micro-

controller. In the future, we plan to make the system robust to

various noise sources and evaluate on a larger sample size. This

can be achieved by the use of multi modal sensing systems like

outward facing microphone and gyroscope. Also, a system with a

smaller form factor can be retrofitted with existing behind the ear

earphones and headphones. Apple’s second-generation AirPods

are enabled with accelerometers. Also, Apple is working towards

building earphones capable of supporting on-device inference [13].

Recognizingwords and sentences.We recognize nine phonemes

at a sampling rate of 550 Hz. We envision more phonemes can be

distinguished with 1) higher sampling rate and higher frequency

details and 2) combination of accelerometer and gyroscope signals.

Previous studies [11, 12] have shown that higher sampling rate can

give information about fine grained bio vibrations. Also, with a

gyroscope we get an estimate of change in orientation. We envi-

sion to use sensor fusion techniques to measure displacement and

change in angle of jaw. These can serve as important parameters for

phoneme classification. These further improvements would pave

the way for word and sentence recognition with multi-modal and

more granular data.

Speech disorder detection. Speech disorders limit an individ-

ual’s ability of articulation. This includes slurred speech, stuttering,

mumbling, etc. As these disorders are associated with TMJ (Figure

1), we believe JawSense can be used for diagnosis and evaluation of

speech disorders [16].

Speech verification.Many IoT devices use speech commands

to authenticate a user and for machine-user interaction. This leaves

user privacy at stake. JawSense can be used to interact with IoT

devices by using unvoiced commands, keeping user privacy intact.
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6 RELATED WORK

Prior research has explored lip and mouth motion tracking via con-

tactless and contact-based approaches. Non-contact systems utilize

either vision-based methods or wireless signals, such as ultrasound,

radio waves, etc. Vision-based methods [4, 15] use images captured

from a camera to track the mouth’s motion for interpreting silent

talk. However, these systems are susceptible to variations in camera

placement and lighting conditions. WiFi signals have been used

to track motion of articulators. One such system is WiHear [22],

which leverages multipath effects and wavelet packet transforma-

tion. Though the system overcomes the line of sight limitations

found in vision based systems, it is easily affected by body move-

ments. Ultrasound methods [5, 6] leverage Doppler Shift for motion

detection. SilentTalk [20] uses ultrasound generated from mobile

phone to analyze the frequency shift induced due to lip movements.

These systems are not entirely hands-free, and do not distinguish

between voiced and unvoiced sounds.

Contact based approaches use sensors like microphone, EEG,

EMG, and systems combining signals from brain and muscles.

Acoustic systems [2] place a microphone very close to the mouth

and detecting non-audible murmur (NAM). SottoVoce [9] utilizes

high frequency (3.5MHz) ultrasonic sensor placed under jaw. Though

accurate, the system requires human organs exposed to high fre-

quency ultrasound, effects of which are still unknown. EMG and

EEG have been widely studied for silent lip movement tracking

[18]. Jorgensen et al. [7] recorded surface signals from the sublin-

gual areas associated with vocal tract’s muscle activity. AlterEgo[8]

and TYTH [14] are examples of systems that use neuromuscular

and combination of brain muscle signals for silent communication.

These systems are robust in movement recognition but require use

of multiple sensors setup. Prakash et. al [17] re-task earphones,

using them as input to detect teeth tapping and sliding. The system

focuses on tracking teeth grinding gestures instead of recognizing

speaking phoneme.

7 CONCLUSION

In this paper, we explored unvoiced sound recognition leveraging

the motion of articulators involved in human speech generation.

JawSense enables recognition of unvoiced phonemes via motion

signals from jaw and cheek muscles. We evaluate the system for six

subjects across nine phonemes achieving an accuracy of 92%. We

aim at continuous speech recognition with a smaller form factor in

future research.
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