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ABSTRACT
�is paper explores the minimal dataset necessary at vehicular edge
nodes, to e�ectively di�erentiate drivers using data from existing
in-vehicle sensors. �is facilitates novel personalization, insurance,
advertising, and security applications but can also help in under-
standing the privacy sensitivity of such data. Existing work on
di�erentiating drivers largely relies on devices that drivers carry, or
on the locations that drivers visit to distinguish drivers. Internally,
however, the vehicle processes a much richer set of sensor informa-
tion that is becoming increasingly available to external services. To
explore how easily drivers can be distinguished from such data, we
consider a system that interfaces to the vehicle bus and executes
supervised or unsupervised driver di�erentiation techniques on
this data. To facilitate this analysis and to evaluate the system, we
collect in-vehicle data from 24 drivers on a controlled campus test
route, as well as 480 trips over three weeks from �ve shared uni-
versity mail vans. We also conduct studies between members of a
family. �e results show that driver di�erentiation does not require
longer sequences of driving telemetry data but can be accomplished
with 91% accuracy within 20s a�er the driver enters the vehicle,
usually even before the vehicle starts moving.
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1 INTRODUCTION
As vehicles are becoming programmable and connected, they are
capable of supporting novel applications by computing the stream
of data available on the vehicular platform. We expect that an
increasing number of applications will enjoy access to internal ve-
hicle data. Modern automobiles contain hundreds of sensors and
actuators that exchange data on internal buses. A small part of this
data has already been exposed in the OBD-II standard but the ma-
jority has, to date, been used only internally. Recently, car makers
have been experimenting with opening more of this information
to smartphone or in-car apps [16, 22]. Such data is also increas-
ingly accessible through telematics services and could potentially
be processed in the cloud.

Driver speci�city of data. One relevant question in this con-
text is how driver-speci�c the data is. How easily can di�erent
drivers of a vehicle be distinguished from such in-vehicle data—or,
more precisely, what is the minimal amount of data necessary to
e�ectively distinguish drivers? �e answer to this question will
help in understanding the feasibility of building driver-speci�c ap-
plications for the many vehicles that are used by multiple drivers.
We focus on shared vehicles in a professional or commercial se�ing,
and personal use se�ing, where applications include personaliza-
tion of vehicle se�ings (e.g., automatically adjusting entertainment,
preferred temperature, transmission, or suspension con�gurations
to driver preferences), automated vehicle use logs, driver-dependent
pay-as-you-drive insurance, or unauthorized vehicle use detection
(where a vehicle might notify owners when it encounters an unex-
pected driver). �e answer to this question will also contribute to an
understanding of the privacy implications of such in-vehicle data.
�e more easily drivers can be distinguished, the less anonymous
one can expect this data to be.

Existingwork. Existing product solutions to distinguish drivers
usually require a token, such as a smart key fob, that the driver
carries. Such systems are robust only if every driver consistently
uses a separate key fob. �ey are o�en limited to two keys due
to cost and cannot distinguish drivers when keys are shared in
commercial se�ings with more than two drivers. �e academic
literature has also explored how mobile devices in vehicles can
determine whether they are used in the driver area of the vehicle,
which would usually indicates that their owner is the driver [12,
23, 24]. Such techniques can also identify the driver, but depend on
speci�c interfaces to the vehicle, keeping the phone close-by while
driving, or the usage of more advanced wearable devices.

Existing work towards understanding the driver-speci�city of
vehicle data has been limited to a few parameters such as vehicle
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movement and steering inputs [5]. More work exists, of course, on
location data which can also be obtained from cell phones inside a
vehicle [7–9]. Such techniques require a complete trace of vehicle
data from a longer trip. �ese results therefore tell us that drivers
can be identi�ed in longer sets of data but do not identify a minimal
set of data for identi�cation or convey a good sense about the ease
of this identi�cation.

A pre-trip pro�ling approach. In this paper, we address these
questions by examining in-vehicle data streams and exploring a dri-
ver di�erentiation system that can rely on minimal time sequences
of in-vehicle data. We de�ne minimal time sequences in terms of
the amount of time that has passed since approaching the vehicle
for a new trip. �is allows us to understand the driver-speci�city
of di�erent types of in-vehicle data generated over the course of
a trip, and it is also consistent with the personalization use case,
wherein the vehicle needs to rapidly identify the driver to switch
to the driver’s preferences. Our system can leverage the sensing
and computation modalities of the vehicular edge platform, thereby
enabling support for driver identi�cation faster than mainstream
approaches, using unexplored in-vehicle sensor data.

We �rst examine sensor information shared on the vehicle bus
for its driver speci�city. �is analysis includes data that was so far
largely unavailable to external entities. We �nd that, in addition
to the expected driving telemetry data generated while the vehicle
is steered, the data streams contain a rich set of �elds that re�ect
other driver actions, such as fastening seat belts, closing doors, or
changing HVAC se�ings. A particularly revealing burst of this data
occurs at the start of a trip, before the vehicle starts moving. Based
on this insight, we explore a pre-trip data pro�ling approach and
compare it with the use of more conventional driving telemetry
data. Pre-trip data are due to driver actions taken in the �rst 20
seconds a�er entering the vehicle and include: the time at which the
vehicle door was closed, the vehicle was started, the seatbelt was
fastened, and the brake pedal was released. Driving telemetry data
includes vehicle speed, acceleration/deceleration pa�erns, braking
pa�erns at stop signs, or turn signal use. We consider a system that
monitors these events on the vehicle bus, extract timing features,
and distinguish di�erent drivers of one vehicle using a classi�er. We
conduct controlled experiments with 24 volunteer drivers, who take
a test vehicle along a pre-de�ned campus course. We also collect and
analyze a real-world dataset of 480 trips from �ve shared university
mail-vans spread over 12 weeks. Finally, we conduct a three-week
study with households and present the results. �e experiments
reveal that the data when starting the car is actually more revealing,
than the driving behavior on the roadway.

In summary, the salient contributions of this work are the fol-
lowing:

• accessing a rich set of in-vehicle sensor data through a cus-
tomCAN bus interface and examining its driver-speci�city;
this explicitly includes data that was so far inaccessible
through interfaces such as OBD-II and OpenXC.

• designing classi�er features and a system that allows dis-
tinguishing drivers based on a minimal set of in-vehicle
sensor data, with no additional hardware cost.

• evaluating the system with data from 480 real-world trips
collected over 3 weeks from �ve university mail vans, with

Figure 1: Timing events of the �rst minute of a trip.

24 drivers in a controlled experiment, and 103 trips with
four drivers across two households.

• �nding that data from the vehicle start is particularly spe-
ci�c to individual drivers, allowing our system to achieve
91% of accuracy within 20s a�er the driver enters the vehi-
cle in the real-world mail van experiment.

2 BACKGROUND AND APPLICATIONS
Modern vehicles are equipped with many Electronic Control Units
(ECUs) that control and monitor di�erent vehicle modules, such as
the engine, power windows, HVAC, power seats, or doors. Most
ECUs are connected to the Controller Area Network (CAN) bus [4],
which is a standardized vehicle data bus that allows those ECUs
to communicate with each other. Many vehicle functions require
(aggregated) sensor data from other ECUs. For this reason, many
sensor data �elds are broadcast on this bus.

2.1 Accessing In-Vehicle Data
�e extent to which this data is accessible through the On-Board Di-
agnostics II (OBD II) port1 varies. OBD II is a standard interface for
vehicles to provide self-diagnostics and data reporting capabilities,
and has been mandatory for vehicles sold in the United States since
1996. While this port is usually directly connected to the CAN bus,
only a small subset of �elds are mandatory, primarily �elds relevant
for government permission testing and basic troubleshooting. In
modern vehicles, the majority of in-vehicle data uses proprietary
encodings and is not directly accessible through the OBD II stan-
dard. In recent years, we have witnessed e�orts to open more of
this proprietary in-vehicle data to external entities, since there exist
considerable opportunities to exploit this data for other applications.
For example, OpenXC [22] provides access to select proprietary
in-vehicle data �elds through a special OBD-II adapter. Similar
to some standard OBD-II adapters, this OBD-to-Bluetooth device
relays CAN messages to Bluetooth equipped mobile devices (e.g.,
smartphones), but it decodes additional proprietary �elds through
a custom �rmware. Similarly, the OnStar AppFramework provides
access to select proprietary �elds of General Motors vehicles with
OEM-enabled APIs2. With the increasing availability of broadband
(e.g., LTE) connectivity in vehicles, car makers could also remotely
access and process vehicle data.

1www.obdii.com
2h�ps://developer.gm.com
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Figure 2: System Overview.

2.2 Applications
With increasing access to in-vehicle data, we foresee a broad vista
of vehicle apps, many of which may bene�t from implementing
driver-speci�c functions. Let us consider the following examples.

In-Car Personalization. Modern vehicles are capable of per-
sonalizing se�ings according to our preferences. Some vehicles
already automatically learn and switch to personal se�ings for ra-
dio station, temperature, dashboard display brightness, navigation
view, among others. �is is straightforward for vehicles driven by
only one driver. Some vehicles provide two keys with di�erent
electronic IDs and encourage drivers to consistently use the same
key. �e vehicle then switches preferences based on the key. �is
remains inaccurate whenever drivers share keys, which is very
common. Particularly in family se�ings, drivers may opt for the
nearest or most easily obtainable key fob and leave, or o�en some
may set one of the fobs aside as a backup in case of emergencies,
while they continue to share the same key. One might argue that
drivers can easily be distinguished by using their smartphone as
an authenticator. Again, this has limitations when family mem-
bers who share a car, ride together. With more than one driver’s
smartphone being present inside the car, driver distinction becomes
di�cult if that’s the sole di�erentiation mechanism.

Pay-as-you-drive Insurance. With the rising popularity of
usage-based insurance premiums, automotive insurance companies
are now tracking driver behavior with incentives for safe driving.
�is is primarily done via estimation of parameters like rapid accel-
eration, hard braking, air bag deployment etc., by reading sensor
data over the CAN bus. In addition to adjusting insurance rates
based on driver behavior and actual vehicle usage, pay-as-you-drive
insurance rates could also take into account who actually drove the
vehicle.

Targeted Advertisement. Advertising revenues have had a
signi�cant impact on the Internet and mobile economy. With the
trend towards programmable, and connected vehicles, they can
also be expected to play a role in vehicle-related applications. Dri-
ver di�erentiation can help in constructing personal pro�les and
improve the targeting of advertisements.

Detecting Unauthorized Use of Vehicle. Vehicles are rapidly
being connected to the Internet with broadband technologies. If the
vehicle can di�erentiate drivers, it could also potentially identify
unauthorized drivers. On detecting such an unauthorized driver,

the vehicle could notify the owner or, with su�cient con�dence,
other authorities.

All these applications bene�t from a low-cost system to distin-
guish di�erent drivers of a shared vehicle. Driver di�erentiation is
thus a fundamental technique for the future vehicle applications to
provide customized experiences to the users.

3 DRIVER DIFFERENTIATION
We seek to identify a minimal time-sequence of in-vehicle data
to distinguish drivers by identifying events that are closely tied
to driver habits and behaviors but minimally a�ected by driving
conditions and other tra�c participants.

3.1 Selection of Pre-Trip Events
We analyzed the available in-vehicle data and identi�ed 14 �elds
that are available in many vehicle models and whose value com-
monly changes early in a trip. �ese �elds are illustrated in the
timeline in Fig. 1, derived from one example trip with a mail van.
Note that the vehicle generates data even before it starts moving
and that many of these initial events directly correspond to driver
actions such as door opening (DO), door closing (DC), starting the igni-
tion (ISU), seatbelt fastening (SF), shi�ing gear (SU) and releasing the
brake pedal (RB). As the engine is turned on and the vehicle begins
to move, additional driving and telemetry data streams indicating
steering wheel angle (SWA), engine revolutions per minute (RPM),
vehicle speed (V), and acceleration (AP) values become available.

We hypothesize that the pre-trip events generated before the
vehicle moves are not only available early a�er entering the ve-
hicle but are also particularly distinctive because they are largely
dependent on habit and una�ected by the road con�guration and
actions of other tra�c participants. While the type of events does
not di�er across drivers, the order and precise timing of these ac-
tions is mostly determined by habit. To what degree one turns the
steering wheel while leaving a parking lot is o�en a�ected by the
presence of other obstacles and vehicles at that particular location.
�e relative timing of ignition start and seatbelt fastening, in com-
parison should not depend signi�cantly on these external factors.
�ese steps, their speci�c order (sequence) and their timing interval
should therefore, be helpful in creating a minimal driver pro�le.

To support the hypothesis, we conducted a preliminary exper-
iment with eight drivers. �e drivers were instructed to drive a
Cadillac CTS and complete a loop in the parking lot. Each driver
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repeated the experiment 10 times. For this preliminary experiment,
drivers were asked to consistently follow their regular habits, to
reveal possible distinct pa�erns across drivers. We describe our
in-the-wild experiments in the evaluation section. Figure 3 shows
the pre-trip event timing collected from those drivers in a sca�er
plot with quartiles marked for each event type. Time zero is de-
�ned as the door open event, the �rst event related to this trip. �e
data shows that the relative timing is quite distinct across drivers,
even when drivers started the vehicle in the same controlled test
situation. We also observe that these pre-trip events occur within
20 seconds a�er opening the door in all cases.

3.2 System Overview
Based on the aforementioned insights, we consider a driver di�er-
entiation system that seeks to distinguish drivers using a minimal
time sequence of in-vehicle data. �e system primarily consists
of three components, vehicle bus data capture, feature extraction,
outlier rejection, and driver di�erentiation. It obtains in-vehicle
data, particularly pre-trip events, through a CAN bus interface. �e
feature extraction module scans this data to identify the start of a
new trip, extract event timings, and construct a feature vector. �is
vector is then examined for outliers before being processed by a
classi�cation algorithm, that matches the feature vector to pro�les
constructed from past trips of the same vehicle. In applications
where labeled training data does not exist, the use of unsupervised
classi�cation techniques is also possible, and presented in Section 5.

�ere are multiple possible realizations of such a system in prac-
tice, and we illustrate the design space through the following ex-
amples. Potentially, all the above mentioned components could
be directly embedded in the vehicles, perhaps as part of a driver
personalization feature that is transparent to users. Such built-in
components could directly access the CAN bus and acquire the
necessary data from there. A second possibility is that the fea-
ture extraction and driver di�erentiation functions are executed
in cloud-based car maker applications and receive access to the
vehicle data stream over increasingly available wireless broadband
data connections to vehicles. For commercial se�ings, where the
same driver may end up driving di�erent vehicles on di�erent days,
running the driver di�erentiation module on a remote server is
more suitable. However, for drivers who share the same car, such
as members of a family, the computation can be done locally on the
vehicle itself. A third possibility is that the components are realized
within a third-party application that acquires sensor data through a
vehicle manufacturer developer API. Depending on the availability
of suitable APIs and other considerations, such applications could
reside either on an app platform in the vehicle or in the cloud. It is
also possible that some components are located on a mobile device
brought into the vehicle, which pairs with a vehicle interface that
provides access to the vehicle bus. In our experiments, we focused
on this last option, a smartphone interface that allows data capture,
with feature extraction and classi�cation can be performed either
in the cloud or in the vehicle.

3.3 Driver Pro�ling
We create a robust driver pro�ling approach, that extracts features
resilient to precise driving style but derived from driving habits.

3.3.1 Feature Selection. Our features emphasize pre-trip data
that represent seemingly innocuous habitual pa�erns of every dri-
ver, which are crucial in distinguishing them from others. For every
pre-trip event k , the corresponding feature is de�ned as ∆tk , which
is the time di�erence between the occurrence of event k and k − 1.
Speci�cally, our pre-trip feature vector fpt , is de�ned as follows.

fpt = [∆tDC , ∆tI SU , ∆tSU , ∆tSF , ∆tRB ]

Here, ∆tDC represents the time di�erence between the occur-
rence of the (driver) Door Close (DC) event and the occurrence of a
reference starting event, which marks the beginning of the vehicle
data stream for the new trip. Unless otherwise mentioned, we use
the (driver) Door Open (DO) event as the reference event, since
this was the �rst observable event on the vehicles that we exper-
imented with. Similarly, ∆tI SU , ∆tSU , ∆tSF , and ∆tRB represent
the time di�erence of the Ignition Switch Usage (ISU), Shi� Usage
(SU), Seatbelt Fastened (SF), and Release of the Brake pedal (RB)
events to events DC , ISU , SU , and SF , respectively. �e feature
vector is always constructed in the same order irrespective of the
actual order of events. In considering time intervals between spe-
ci�c events, we capture their relative occurrences. �e DO and DC
events are usually triggered when the driver enters the car. �e ISU
event represents starting the engine. �e Seatbelt Fastened event
occurs when the driver fastens their seatbelt. Shi� Usage refers
to changing the se�ing on an automatic transmission from park
mode to another mode, o�en drive or reverse. Lastly, the Release
Brake event marks the instance when the brake pedal was released
to start driving.

In addition to pre-trip �elds, we also extract features from the
driving �elds for comparison. Our driving feature matrix fd , is
de�ned as follows:

fd =


bp1 ap1 rpm1 tp1 ts1 v1 swa1
bp2 ap2 rpm2 tp2 ts2 v2 swa2
...

...
...

...
...

...
...

bpN apN rpmN tpN tsN vN swaN


Each row in fd is a feature vector at some time i . Every feature

is the value of the sensor as read from the vehicle bus. bpi and
api represent how far the Brake Pedal and Accelerator Pedal are
pressed at time i . Similarly, rpmi denotes the engine Revolutions
Per Minute, and tpi represents the �ro�le Position. Turn Signal is
signi�ed by tsi . vi and swai stand for the values obtained from the
vehicle Velocity and Steering Wheel Angle sensors. �e frequency
and range of these sensors is shown in Table 1.

3.3.2 Adaptive Outlier Rejection. �e normalized feature vector
is used as an input to a learning algorithm. Using all the features
in fpt can help us di�erentiate drivers, but is easily a�ected by
slight variations in event timings. To account for day to day driving
behavior, we devise an adaptive outlier rejection technique. We
note that although pre-trip sequences are peculiar to each driver,
they are not always exactly comparable. Circumstances may arise
when drivers break out of their pre-trip routine, causing a larger
than usual delay in one of the events, as a result of which the
subsequent events might be delayed as well. A common example
is when drivers are interrupted by a phone call. Consequently,
the corresponding feature is an outlier compared to past values
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Figure 3: Pre-trip �elds timeline - Controlled Experiment.
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Figure 4: Our system implementation.

of that feature for the same driver. In such cases, we do not want
the outlying time interval to a�ect our classi�cation. �e adaptive
outlier rejection technique is designed to identify such outliers at
test time, and adapt to them. We examine our pre-trip feature vector
for outliers by comparing each feature value to the distribution of
that feature. We deem a particular feature as an outlier if it lies
one standard deviation or more above the mean for that feature. In
this case, we dispose of that feature, but retain the subsequent time
intervals (features). Note that we only remove at most one feature
from fpt . In case of multiple outliers, we discard the feature that is
the furthest. �e feature vector is now reduced to n-1 values.

3.3.3 Two-step Driver Validation. For driver validation at run
time, we perform outlier rejection and model selection. We use
supervised learning for di�erentiating between drivers. During
the training phase, we train a classi�er using all the features (n=5),
called the complete model. In addition, we �t separate models on
di�erent combinations of all but one feature in the training data.
We achieve this by removing one column (feature) at a time. We
refer to these models as partial learners. Partial learners learn from
n − 1 features. Note that we train partial learners on the entire test
set and not just those with outliers. Removing at most one feature

at a time limits the total number of models to n + 1. If an incoming
pre-trip sequence has no outliers, i.e. it conforms to within one
standard deviation around the mean of the feature, we use all the
features in fpt and test it against the complete model. When we
observe an outlier in incoming trip data, say a long delay for event
k , we dispose of the ∆tk , but retain the subsequent time intervals.
Our algorithm classi�es the driver by testing this feature vector
(with n-1 features), against the corresponding partial learner.

We use Support Vector Machine (SVM) with a linear function as
our learning algorithm, with 5-fold cross validation. We observed
this simple learner to give the best performances for our data as
compared to other kernels, such as cubic and gaussian, and di�erent
learning algorithms like k-means clustering and decision trees.
Additionally, this simple approach is computationally lightweight
and suitable for real-time driver di�erentiation on COTS mobile
devices. In an automated vehicle use logging, the set of drivers
is typically known, and labeled training data may be available
from earlier manual logs. In other applications, such as vehicle
personalization, the number of drivers is far less. To collect training
samples, the data logging application prompts the driver to mark
the ground truth with a simple screen touch at the end of each trip.

4 IMPLEMENTATION
We have implemented the entire system using a custom OBD-II
scan tool (dongle), a smartphone and a remote server. We place a
smartphone in the vehicle that can communicate with the dongle
over Bluetooth, as shown in Figure 4. Data can be requested through
the dongle, by using Parameter IDs (PIDs). �e dongle has been
speci�cally designed for research purposes to make available a large
set of internal vehicle bus �elds that are not yet available through
OBD-II or other interfaces such as OpenXC. �e dongle sends a
PID over the vehicle bus to request data.

We use the CARLOG [11] framework on the smartphone, which
is a programming framework, for accessing sensor data from the
vehicle. It houses a query optimizer that eases the task of querying,
capturing and parsing low level sensor information from vehicles,
and provides an interface for applications to access this information.
We use a ba�ery conscious smartphone application, shown in Fig 5
to record the sensor readings in our testbed of vehicles. �e app
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Pre-trip Fields Frequency (Hz) Range Driving Fields Frequency (Hz) Range
Door status (DO & DC) 10 Boolean Brake pedal (BP) 10 0-100
Ignition switch status (ISU) 10 Boolean Accelerator pedal (AP) 50 0-100
Seatbelt status (SF) 10 Boolean Revolutions per minute (RPM) 10 0-16000
Shi�er position (SU) 40 Integer(1-6,13,14,15) �ro�le position (TP) 10 0-100
Parking brake active 100 Boolean Turn signals (TS) Event Boolean

Vehicle velocity (V) 10 0-255 kmh
Steering wheel angle (SWA) 100 0-1340◦

Table 1: Fields captured from the CAN bus.

Pre-trip �elds Mid-size sedan Luxury vehicle Van
Before ISU A�er ISU Before ISU A�er ISU Before ISU A�er ISU

Door status (DO & DC) χ X X X χ X
Seatbelt status (SF) χ X χ X χ X
Shi� status (SU) χ X χ X χ X
Release break (RB) X X X X X X

Table 2: Availability of pre-trip �elds for di�erent vehicle models.

continues logging until the connection to the vehicle is lost or the
app receives no new sensor readings within 1 minute. In this timed-
out state, the app closes the connection with the vehicle data port
for 30 seconds; a�er this period, it reconnects to the vehicle, which
restarts the cycle. �e app sends speci�c prede�ned PIDs to the
OBD dongle, which then requests it to the CAN bus.

Figure 5: Logging Ap-
plication for In-vehicle
sensors.

�e application initializes a
subscription request to receive
data from the sensors required
for our pre-trip sensing. Among
other things, it lets us de�ne the
sensors and their associated fre-
quency, in samples per second. It
captures data received from the
dongle over extended period of
time, handles all the incoming
data, parses it and records it to
local storage. �e timestamp for
this data is applied in the applica-
tion when the event reaches the
Carlog framework. It does not al-
ways accurately re�ect the event
time, but we expect the error to
be small compared to event time
di�erences that we use for our al-
gorithm. In addition, the phone
is connected to the internet and
updates all this data to a remote
server, viaWiFi or cellular service.
�is ensures simultaneous sensing and uploading of the required
data �elds. For our proposed scheme, we access the on-board sen-
sors on vehicles. Table 1 lists some of the sensors whose values
are acquired by a smartphone with a bluetooth dongle, through
the On-Board Diagnostics (OBD-II) port. We also implemented

a real-time driver di�erentiation application for Android smart-
phones. �e classi�cation model is trained o�ine and loaded on to
the smartphone for real-time classi�cation as the driver approaches
the car and following pre-trip events.

5 PERFORMANCE EVALUATION
For evaluating our system, we aim to answer the following ques-
tions:

• What is the the minimal amount of data required to accu-
rately identify a driver?

• How is accuracy a�ected with increasing number of dri-
vers?

• Which vehicle data �elds are most useful for prompt and
accurate driver di�erentiation?

• How does training size impact system performance?
• How does unsupervised driver classi�cation compare to

supervised classi�cation?
• How does driver di�erentiation adapt to drivers within the

same household?
To gain an understanding of driver behavior, we carried out the

following experiment.

5.1 Experimental Setup
Hardware and Signals. We used a 2008 Cadillac CTS vehicle (test
vehicle), an LG Nexus 5 phone and a custom OBD scanner (dongle)
to extract data from the vehicle. �is custom dongle provides ac-
cess to a richer set of vehicle data streams, compared to standard
dongles. During the experiments, the smartphone is located inside
the vehicle and the dongle is plugged into the OBD-II port. We
conducted an IRB approved study, and used coded data for drivers
instead of their actual identities. All participants are 18 years old
or older and have a valid driver’s license in United States.

Metrics. In our work, we evaluate the performance of driver
detection algorithms in terms of accuracy and data length. Accuracy
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Figure 6: (a) Controlled test environment, (b) Mailvan �rst test environment, (c) Mailvan second test environment, (d) Mailvan
third test environment

is the ratio of correctly identi�ed number of drivers to the total
number of drivers. Data length represents how much portion of
the data was used for the identi�cation process.

5.1.1 Controlled Experiment. To evaluate the performance of
our system, we �rst use a dataset that was collected by 16 volunteers
who drove the test vehicle on a 3 mile long road. �e drivers were
requested to drive as they normally would, and were not provided
any instructions. �ey were allowed to make any adjustments
they wanted, for example mirrors and seats. �e only instruction
provided to the drivers was to drive as usual along the given route.
Most volunteers were not aware of the vehicle data that we were
collecting other than it being related to driver’s behavior. During
this experiment, we monitored the activity of about 20 sensors, that
communicate di�erent types of vehicle state information. �ese
sensors describe the state of electronic vehicular subsystems such
as engine start events, cabin climate control and trip events such as
speeding, braking, thro�le positions and many others. Each driver
is asked to drive a pre-de�ned path 10 times during the same day
to create the database that consists of 160 traces. �e test path for
controlled experiment is shown in Figure 6 (a).

5.1.2 Mailvan Experiment. In the mail van driver di�erentiation
tests, we compare the results of our classi�er to anonymized ver-
sions of the USCMailing Services Department driver records. �ese
documents contain mandatory vehicle access logs that specify the
times when drivers acquire and release a van. Drivers sign-out a
single van before leaving the warehouse, and sign-in that van only
a�er returning to the warehouse. During a day, between 1 and 5
drivers will use a single van. Each day, the drivers initially sign-in
vans between 6 am and 8 am, and sign them out sometime around
5 pm. �e vans are utilized for most of the working business hours,
with delays between driver changes ranging from instantaneous to
60 minutes.

�e USCMail Service employees use the vans to traverse speci�c
routes for delivering incoming and outgoing university postage.
Each van is associated with a distinct set of routes, which are
typically related by location. �e three most common routes are
shown in Figure 6 (b)-(d). �e drivers use one van for example,
to travel North East from the warehouse towards the USPS o�ce
in the morning and a nearby satellite campus in the a�ernoon.

While traversing these routes the driver may make several stops to
service multiple buildings on the campuses. �ese stops typically
last between 10 and 60 minutes, and require the drivers to turn o�
and exit the vehicle. We consider each segment a di�erent trip if
the vehicle was turned o� at the end of a segment. �e mailvan
dataset is the result of measuring the electronic subsystems of 7
USC Mailing Service �eet vehicles, over a period of 6 months. Out
of the 6 months of vehicle data, we obtained 3 weeks of mail vehicle
access logs for each USC Mail Service employee. Digitizing and
anonymizing these driver logs requires manual e�ort, which limited
our access to only 15 days worth of records. In an e�ort to maximize
the number of driver changes included in our study, we selected
the 3 weeks of measurements from our dataset having the most
number of active vans and total number of sensor readings. �ese
3 weeks worth of data detail the actions of at least 5 vans each
day, during the months of September, October, and November. �is
dataset includes 480 trip start trails that we are mainly using in our
algorithm.

5.2 Driver Di�erentiation Evaluation
We evaluate the accuracy of the proposed driver di�erentiation al-
gorithm with respect to duration since entering the vehicle, various
classi�cation techniques, training size, dataset size and importance
of each pre-trip �eld. Unless otherwise speci�ed, for supervised
learning we use the 2-step driver validation with a 5-fold cross
validation.

5.2.1 Identifying minimal data. With longer driving traces a
driver can almost certainly be identi�ed by modeling the vehicle
speed, analyzing the destinations visited and the routes taken. �is
analysis, however, could take several minutes, or may be even hours.
Prompt identi�cation of drivers is pivotal for many personalization
applications. We compare pre-trip �elds and driving �elds. Pre-trip
�elds are a result of �xed actions any driver undertakes before
starting a drive. It is a �nite set, the duration of which lasts only
about 20 seconds or less. Driving �elds on the other hand, could be
collected for minutes or hours to accurately recognize a driver. We
wish to explore the smallest time series of events that can provide
reasonable driver di�erentiation accuracy. From Figure 7, it is
evident that using only the pre-trip events, we can di�erentiate
drivers with a higher than 90% accuracy, under 20 seconds. Note
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Figure 7: Accuracy over trip length. Using only pre-trip
�elds our system can achieve 90% accuracy in less than 20
secs.

the zoomed in version that plots the accuracy achieved by using
the pre-trip events with respect to data length in seconds. �is
di�erentiation occurs before the driver actually starts driving, and
well in time to support personalization applications and modifying
vehicle se�ings based on preferences. Note that a baseline approach
using only driving data requires approximately 10 min to reach the
same accuracy that can be obtained from pre-trip data in 20s. On the
other hand, driving data is useful to further improve the accuracy.
Processing driving data in addition to the pre-trip data drives the
accuracy to 98% within 10 mins. �is strengthens our belief that
pre-trip events are signi�cant in determining driver behavior, and
can be used e�ectively to perform such behavior based distinction
in one-tenth the time proposed by prevalent driver recognition
techniques. �e minimal duration of data required for 90% driver
distinction accuracy, would thus be less than 20 seconds.

5.2.2 E�ect of increasing number of drivers. We take a step fur-
ther in understanding these pre-trip �elds, and their sequence. We
asked 16 drivers to carry out the start-up process 10 times, and to
drive on 3 mile route. �is route was the same for all drivers, and
the vehicle was in the same situation at the start of the drive. Since
all the drivers were driving on the same route under almost similar
tra�c situations, and driving the same test vehicle, it might seem
hard to accurately di�erentiate drivers with driving data alone.

It is noticeable from Figure 8, that most drivers do not have a
clearly separable pa�ern for pre-trip �elds and the time spacing
between them. Even for the same driver, these events possess sig-
ni�cant variance from the time the driver enters the car. With a
large number of drivers, distinction becomes challenging due to
high variance for each driver and apparent similarities in the pre-
trip event timelines. �is is the dataset we used to measure the

performance of our algorithm. �is emphasizes that even with min-
imalistic pre-trip �elds, driver distinction cannot be performed by
basic thresholding, and justi�es the need for a learning component
for understanding driver speci�city. For a multi-class classi�cation
problem, such as ours, a confusion matrix is commonly employed
to demonstrate the classi�er performance. Figure 9(a) shows the
confusion matrix for the mailvan dataset, and Figure 9(b) shows
the confusion matrix for the controlled set. It can be seen from the
�gure that our classi�er a�ains high accuracy levels, and does not
misclassify drivers.

Next, we seek to observe the e�ect of number of drivers in
the dataset, on the classi�er performance. In the mailvan dataset,
we have traces for �ve drivers and in the controlled experiment,
we have traces for 16 drivers. Figures 10 (a) and 10 (b) show how
accuracy improves when we focus on only a subset of drivers, and it
reduces slightly as the number of drivers increases. We observe that,
we can get up to 96% accuracy when di�erentiating four drivers in
controlled experiment, and 98% when di�erentiating two drivers in
the mailvan experiment. Our system accuracy declines by about
4% when the number of total drivers is increased from 4 to 16 in
the controlled experiment, and by about 7% when the number of
drivers increases from two to 4, in a real-world mailvan experiment.
Based on these results, we infer that system accuracy declines as the
number of unique drivers in the dataset increases.

5.2.3 Analyzing individual field importance. �e next question
we want to investigate is which data �elds are most in�uential in
rapidly di�erentiating drivers. In doing so, we �rst focus on the
Door Open event as the origin event because it is the �rst event to
occur, i.e at time=0. We compute the time di�erence between each
individual event and the origin event. In addition to the aforemen-
tioned pre-trip �elds, we add another �eld ACC, which represents
the time taken by the driver to go from a speed of 0 mph to 5 mph.
Figure 11 (a) shows the accuracy obtained using only one event at
a time from each trace, for both the datasets. For the subset of 16
drivers and for the mail van experiment, we notice that Ignition
Switch Usage and Shi� Usage are one of the �rst events captured
by the OBD device. �is is primarily because accessing information
about Door Open and Door Close may not be possible in all vehi-
cles before the ignition is turned on. Considering this limitation of
some vehicles, we also evaluate our system using Ignition Switch
Usage (ISU) as the origin event. Figure 11 (b) shows the accuracy
for all traces with origin event set as ISU. We observe that of all
pre-trip �elds, Release Brake is the most important �eld for rapid
driver di�erentiation.

We also choose Analysis of variance (ANOVA) method to inves-
tigate the important �elds. In this method, we calculate the mean
for each �eld (�eld mean). We then calculate the mean for all �elds
combined, the overall mean, followed by the standard deviation
within a �eld, for each �eld. Finally, we calculate the standard
deviation of each �eld mean from overall mean. Figure 12(a) shows
the statistics for each �eld that we get using ANOVA method. From
this Figure, we observe that the highest between-group variations
come from SF and ISU events.

Next we explored the importance of the driving �elds in our
mailvan dataset. �e driving �elds used are BP, AP, RPM, TP, TS,
V and SWA. Figure 12(b) shows the accuracy achieved using each
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Figure 9: Confusion matrix for driver di�erentiation.

driving �eld alone for driver distinction. It must be noted that these
events occur long a�er a person has started driving, and hence
may not be as useful for applications that can use this data early
on before the start of the trip. We observe that BP and SWA are the
most important driving �elds in distinguishing drivers, and provide
the highest accuracy when used alone.

5.2.4 E�ect of training size. For supervised learning using 2-
step driver validation, choosing the portion of data to be used as a
training set is critical since the remaining data is used for testing
the algorithm. If the training set is too small, it may not be enough
to cover all characteristics of dataset and performance results may
not be good as expected. Or if that set is too big, there may not be
enough data to be tested and performance results could be lower
than expected. In our experiments, we choose to train our classi�er
on di�erent number of traces. We select, as our training size, 50%,
60%, 70%, 80% and 90% of the data. �e remaining data is then
used as the test set. Figure 13 shows the accuracy of our classi�er
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Figure 10: Varying number of drivers (a) Controlled experi-
ment, (b) Mailvan experiment

for di�erent training set sizes. As the training size increases, our
algorithm provides be�er results as expected, and by using 90% of
dataset as training set, we can get 91% and 89% accuracy for the
mailvan and controlled experiments, respectively.

5.2.5 Unsupervised driver di�erentiation. While our system per-
forms well under supervised learning, we are also interested in
quantifying its performance when prior driver data is not available
for learning, i.e. unsupervised learning. We use K-means clustering
as our �rst example of an unsupervised learning algorithm, where
we only provide the number of expected drivers, but no advance in-
formation about driver behavior or learning traces. �is algorithm
then assigns each trace to a cluster, based on its distance from the
cluster. Another unsupervised learning algorithm we investigate
is hierarchical clustering algorithm. �is algorithm does not re-
quire the number of drivers (clusters) or the event trace. It builds
clusters iteratively with each input trace. We compare these two
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clustering approaches with the SVM algorithm. Figure 14 shows
the comparison between supervised and unsupervised approaches
for driver classi�cation. It is evident that at an accuracy of 89% in
less than 20 seconds, supervised learning performs only slightly be�er
than the unsupervised learning approach, with 84% accuracy for the
same trace length.

5.2.6 Personal vehicle use se�ing. While sharing of a single vehi-
cle is most common in commercial se�ings, members of a household
may also share a car. In some cases the sharing is somewhat uni-
form, where the drivers spend similar amounts of time driving
the car. In other scenarios, each car may have a primary driver
and an occasional secondary driver. We hypothesize that pre-trip
sequences within members of a household may undergo higher
variation than professional drivers. �ey may encounter more dis-
tractions from the time they approach the car, to the time they
start driving. Moreover, one might think behavioral similarities
are higher among family members, specially when teenagers learn
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Figure 14: Performance of supervised vs unsupervised learn-
ing algorithms.

Figure 15: Similarity measure for 2 di�erent drivers in a
household. Trips IDs for husband: 1 to 15, Trip IDs for wife:
16 to 30

driving from their parents. To this end, we conducted a three-week
user study with two di�erent households, where members share a
car for personal use.

Experiment setting. Household 1 is a married couple, and
Household 2 is a mother-daughter pair. Members of household 1
drove a Chevrolet Impala 2017, while the sensor data was being
logged on a Nexus 4. About 3 days per week the wife drops the
husband at work and uses the car for her daily chores. Most of her
drives are non-routine and di�er from day to day. Her stops are
approximately one hour long. At the end of the day, she picks up the
husband from work, and they go home together. On the other days,
the husband drives himself to work and uses the car for lunch etc.
�ey usually share driving tasks over the weekend. We collected 66
trips over a period of 3 weeks and logged all the pre-trips events and
driving data on the smartphone. Each segment is considered a new
trip if the engine was turned o�. In the mother-daughter scenario,
the mother, who is the primary driver, drives the car to work every
day and back home. She drives a Chevrolet Equinox 2016, and a
Nexus 5X was used for logging data. On some days she even drives
it out for lunch, and other daily chores. �e daughter drives the
car far less, and thus is the secondary driver, o�en only over the
weekends. We use this scenario for new driver detection, wherein
we want to identify when the driver is not the primary driver of
the vehicle. �is entails what is known as one-class learning.
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Figure 16: Confusion matrix for household experiments.

Evaluation. Fig 16(a) shows the confusionmatrix for Household
1, where we use our adaptive outlier rejection algorithm with 5-fold
cross validation, for distinguishing between husband and wife. �e
detection accuracy of this classi�er was 85.6%. �e data collected
for the couple was signi�cantly di�erent from that observed during
the commercial se�ing of the mailvan experiments. �e start up
sequences were longer by a factor of 10. During the exit interview,
the couple informed that several times theymade calls a�er entering
the car, before starting to drive. Additionally, the order of pre-trip
events was observed to be more irregular for personal use scenario,
as compared to the professional use case.

Figure 15 depicts a dendrogram to visualize the similarity be-
tween drivers inHousehold 1. �e vertical axis indicates the average
distance between clusters, using correlation as the distance metric.
�us, lower distance implies higher correlation. �e height of a
node represents the distance of the two clusters that the node joins.
We randomly select 15 trips from each driver. Trips IDs 1-15 are
obtained from the husband, and Trip IDs 16-30 are obtained from
the wife. �e yellow dashed boxes mark trips from di�erent drivers
with very high correlation. Green boxes mark trips from the same
driver.

For Household 2, where one of the driver is driving the car far
less, we use clustering for one-class learning. We collected 34 trips
from the primary driver and 3 trips from the secondary driver. �e
cluster is created using 31 random trips from the primary driver,
and the remaining trips are used to calculate the distance from the
centroid of the cluster. If the distance is above an empirical pre-
calculated threshold, then that trip is registered as a new driver trip.
Since each trip from the primary driver could have some outliers,
we tried to cover all cases by using randomly selected trips to create
the cluster. Averaging over 10 iterations, we obtain 73.3% accuracy
in classifying test trips, as shown in Fig 16(b). We observe that the
correlation between drivers from a household who use a vehicle is
higher compared to professional drivers, and the day to day variation
much higher.

6 RELATEDWORK
In the realm of driver distinction, Choi et. al [1] show that driver
behavior can be modeled using steering angle, brake status, accel-
eration status and vehicle’s speed that are collected from vehicle’s
CAN bus. �e driver identi�cation part resembles our methodology
however since they are only using longitudinal data collection, the
accuracy of driver identi�cation is less than 35% with their system.
In another driver distinction work, Enev et. al [5] could manage

to identify 15 drivers with 100% accuracy using their longitudi-
nal behaviors. �eir system needs at least 15 minutes of training
dataset for each user, that includes braking pa�erns, vehicle speed,
acceleration, thro�le position etc.

In another work, Miyajama et. al [14] show that up to 276 dri-
vers could be identi�ed with 76.8% accuracy using gas/brake pedal
usage, engine speed, steering wheel angle and car following dis-
tances. �eir system works reasonably well for 276 drivers using
longitudinal behaviors but their system also needs 5 minutes of
training dataset for each user. With our proposed design, we can
a�ain up to 95% accuracy in under 30 seconds.

Driver identi�cation is also investigated by Riener et. al [18]. �e
authors used si�ing postures to distinguish drivers using a pressure
pad. However, privacy of the collected data is of utmost importance.
And while a fair amount of related work proposes to use speed and
location coordinates for privacy preservation, Krumm et.al [13]
have proved that location traces can be used to successfully identify
individuals. Gao et. al [6] have also demonstrated that speed is not
a privacy preserving parameter and is enough to track a driver.

Researchers have been exploring ways to maintain driver privacy
and anonymity, by masking identifying data [10]. Hoh et. al [8]
have proposed using virtual trip lines to maintain driver privacy. In
another work, Zan et.al [25] guarantee a high degree of anonymity
by using a zone-aware path cloaking scheme. Another approach has
been investigated by researchers in [2], [3], [19] and [20] with the
usage of a Trusted�ird Party to perform cryptographic operations.

Modeling and predicting human behavior has been investigated
in another work by Pentland et.al [17]. �e authors achieved 95%
accuracy at predicting automobile driver’s actions from their initial
preparatory movements. However, the algorithm can only deter-
mine when a car will be passing another, turning or following the
previous cars in next couple of seconds. �ere has been much
work on systems for tra�c monitoring, rather than driver moni-
toring both in commercial companies and research facilities. Many
of them leverage GPS units on cars(OnStar[16] system) to track
the vehicle’s movements and analysis can be done at the server.
�e Nericell[15] project concentrates on the road topology and
shows that potholes, bumps and braking can be detected by using
accelerometer and GPS sensors of the mobile phones. In another
work [21], the authors show how driver’s behavior under critical
circumstances(sudden breaks, extreme steering angle rotations)
varies compared to regular times, using smartphones. In contrast
to smartphone sensor based techniques, we use vehicle sensors for
more reliable measurements.

7 DISCUSSION
We have presented the design, implementation and evaluation of a
driver di�erentiation technique using only pre-trip events. Unlike
previous work, that focuses on parameters collected during driv-
ing, such as speed, most visited locations, etc., our work aims at
sensing pre-trip events, that occur before the driver starts driving.
Parameters monitored during the drive are a re�ection of the driv-
ing style, but are greatly in�uenced by external driving conditions,
such as tra�c. Moreover, collection of values such as speed and
most visited locations is detrimental to user privacy, as has been
shown in previous work [6, 13]. Our proposed system focuses on
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sensing events that happen before a person starts driving. All these
events are common acts that any driver conducts before a drive,
such as closing the door, fastening the seatbelt, turning the ignition
on etc. It is, however, the sequence and interval of these simple
events that presents some inherent habits that di�er widely from
person to person.

While this study has focused primarily on professional drivers,
it is also an interesting question whether the results hold in family
se�ings with multiple drivers. It is possible that random events of
daily life lead to more variability in startup routines, which would
make identi�cation more challenging. It is also possible, however,
that startup routines are more diverse across drivers within a family,
because of greater di�erences in driving experience and trip purpose
than in our professional drivers who all drove to deliver mail. �e
la�er could lead to improved di�erentiation results.

In sensing these events, we employ the innocuous sensors that
are already present on most vehicles these days. One might claim
that adjusting mirrors, seat se�ings can also be used to di�erentiate
drivers. Unfortunately, in our test vehicles, mirror positions are
adjusted manually and seat positions could not be retrieved from
the dongle. �e dongle is customized and can work with most of
the GM brand vehicles. �erefore, these se�ings cannot be used to
distinguish the drivers. With the grant of accessing more sensors by
vehicle companies, a be�er performance at distinguishing drivers
could be achieved.

Depending on the application scenario, having an accuracy less
than 100% may not be enough. But it must be noted that this 90%
accuracy is achieved by using pre-trip data. For higher accuracy,
we could always include additional driving and telemetric data such
as vehicle speed, engine’s RPM and steering wheel angle.

Onemight argue that the described system could be implemented
as an app executing on the phone. Vehicular platforms, with their
rising capabilities as cyber-physical systems, and large amounts
of real-time data are uniquely positioned to measure, process, con-
�gure, and manage in-vehicle sensor data for applications such as
driver di�erentiation. Vehicles are not as resource-constrained as
smartphones, that are also projected as mobile edge nodes. With
more and more connected vehicles, in-vehicle sensor data can be
collected anonymously over a diverse range of drivers, and pro-
cessed in remote cloud servers to generate large-scale analytics on
driving behaviors and practices.

�ere are several potential privacy implications of this result. In
one scenario, the result suggests that pre-trip data is potentially
useful in re-identifying drivers in anonymous in-vehicle datasets.
Storing pre-trip data together with anonymous streams of privacy
sensitive data is therefore undesirable. It is worth noting, how-
ever, that re-identifying a driver in an anonymous dataset would
require pre-trip pro�les labeled with driver names, which are not
always straightfoward to obtain. In another scenario, pre-trip data
such as the timing of door closing events will likely be considered
less privacy sensitive than driving data, which can be linked to
visited locations, driving speeds, or aggressive driving styles. If the
choice is between collecting driving data or pre-trip data for driver
di�erentiation, pre-trip data therefore presents an opportunity to
di�erentiate drivers using a less sensitive source of data.

8 CONCLUSION
We have shown that pre-trip in-vehicle data are particularly dis-
tinctive and represent a minimal set of in-vehicle data for driver dif-
ferentiation. Driver di�erentiation based on pre-trip data requires
only 20 seconds of data, while driving telemetry data approaches
require about 10 minutes of data to reach a comparable accuracy.
Speci�cally, we have shown that drivers can be distinguished us-
ing only pre-trip vehicle sensor data from the CAN bus with an
accuracy of 91% in a real-world dataset of 480 trips collected over
�ve mail vans with �ve drivers. In a controlled experiment, where
all drivers steer the same vehicle along the same route, we have
also shown that up to 16 drivers can be distinguished with similar
accuracy. �is accuracy can be further increased by combining
it with driving telemetry data. It is also worth noting that the
real-world mail van experiment was performed with mass-market
vehicles that are close to 10 years old. With a larger number of
sensors and electronic control systems in newer vehicles and luxury
vehicles, one can expect even higher accuracy. We also validate our
results for members of a household. �e study has been focused
on distinguishing drivers from the same vehicle. Whether a driver
pro�le also holds across multiple vehicle models remains an open
question.
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