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A B S T R A C T

This paper introduces A-spiro, a single-point wearable sensing technique to estimate respiratory
flow and volume, in addition to respiratory rate. We show that when coupled with an inertial
measurement unit, our system can accurately measure breathing parameters, even when the user
is ambulatory. A-spiro can model lung hysteresis to separately predict increasing and decreasing
trends of breathing flow. Existing techniques either monitor breathing rate only, or estimate vol-
ume and flow when the user is immobile, for example, sleeping. We validate our system for 20
users of different age, weight, height, and ethnicity, and capture breathing data across 6 differ-
ent activities. For a total of 578 minutes of data, we show that A-spiro’s generalized model for
flow has an accuracy of 93% across 6 activities when compared to a spirometer. The estimated
minute ventilation has an accuracy of 94.4%, while the estimated respiratory rate has a mean ac-
curacy of 96% across all activities when compared to ground truth. We also compare A-spiro to a
state-of-the-art system available commercially.

1. Introduction

Ubiquitous sensing technologies are increasingly being integrated into our daily routines in order to monitor our health and well-being.
Tracking vitals, such as breathing and heart rate, can reveal information regarding a person’s overall health, and plays an important role in health
care. Breathing is a unique physiological phenomenon, both in healthy humans as well as those with respiratory disorders. In contrast to heart rate,
breathing patterns are governed by both voluntary and involuntary input. According to the World Health Organization (WHO), more than 3 million
people die each year from chronic obstructive pulmonary disease (COPD), which is estimated to be 6% of all deaths worldwide (World Health
Organization, a). COPD is a class of diseases that cause limitations in the lung airflow, often diagnosed through a spirometry test. WHO strategies
to curb the growth of preventable COPD include better surveillance and development of inexpensive methodologies for monitoring (World Health
Organization, b).
Unmet Need. While continuous heart rate monitoring has found its way into our fitness trackers and smart watches, the optimal way to measure
real-time variations in breathing is still largely an unsolved problem, albeit with potential for clinically significant impact. Mild perturbations
in breathing patterns can be the first harbinger of early lung disease, often preceding the development of symptoms. Accurate lung function
monitoring can have a significant impact on healthcare. Increased access to spirometry services has been shown to significantly benefit respiratory
health and early diagnoses of respiratory illnesses (Jones et al., 2005). These services can also lower the cost of health care in under-served
communities (Kumar et al., 2013) via tele-spirometry. Many children with chronic respiratory disorders such as cystic fibrosis are unable to
verbalize respiratory symptoms or to cooperate with existing tests such as spirometry. A device which could measure minute ventilation in
such patients, either in the home or during clinic appointments, could allow for earlier detection and treatment of respiratory distress. Such a
system can not only monitor for early signs of pulmonary disorders, but also encourage users to improve their breathing technique under different
circumstances.
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Limitations of Existing Approaches. Despite their merits, the more recently proposed radio-based approaches have severe limitations. They only
work where the required Wi-Fi infrastructure is present (Adib et al., 2015; Nguyen et al., 2016; Abdelnasser et al., 2015), which makes it very
hard to use in outdoor environments. The bulk of the existing work (Adib et al., 2015; Fang et al., 2016; Abdelnasser et al., 2015) focuses on
monitoring breathing rate alone, and does not estimate flow or volume. This is inadequate because voluntary control over the respiratory system
allows significant variation in breathing patterns among individuals. A device that could also take into account the volume of ventilation over time
would be a much more accurate predictor of respiratory function. Additionally, existing monitors only detect breathing parameters when the user
is static - sitting or sleeping. This is a major limitation as they do not address scenarios where a user performs regular movements. Finally, these
systems suffer from occlusion issues, and their performance varies based on the distance from the transmitter.
Challenges. Continuous respiratory monitoring is highly desirable but extremely challenging. Unlike heart rate, breathing signals do not have a
predictable pattern of repetition. Breathing cycle lengths and the size of each breath can vary significantly from one breath to another. This renders
traditional frequency domain measurements ineffective. Moreover, sensor measurements of user’s chest wall movement are corrupted by noise,
such as the user’s body movement. This makes it difficult to extract breathing patterns from ambulatory users. Simple acts such as moving one’s
limbs or transitioning from standing to sitting can affect the sensor measurements.
Proposed Approach. We present A-spiro, which addresses these challenges by introducing a low-cost, unobtrusive sensing system that continu-
ously monitors a user’s respiratory parameters - respiratory flow, minute ventilation, and breathing rate. Our system name is derived from aspiro
which means to breathe, in Latin. The A-spiro prototype consists of a wearable sensor that is integrated into a belt worn around the chest (Figure 2).
What distinguishes A-spiro from existing approaches is that A-spiro works accurately even when the user is in motion (non-static). In summary,
A-spiro makes the following contributions:

• A-spiro is the first wearable system that provides accurate estimates for breathing flow and minute ventilation using single-point sensing

• A-spiro incorporates techniques for motion correction to provide accurate estimates even when the user is non-static. We present the design and
development of algorithms for breathing signal extraction from noisy chest movement data.

• A-spiro is validated for 20 users in 34 individual sessions. Our total breathing data amounts to 190 3-minute traces across 6 activities.

2. Breathing Primer

Mechanics of breathing. The most important muscle during breathing is the diaphragm, which is a dome-shaped muscle near the lower ribs.
Inspiration, or inhalation, occurs when the diaphragm contracts, forcing the abdominal contents down and the chest cavity is increased. Normal
breathing is also known as tidal breathing. The amount of air a person inhales during a normal breath is called tidal volume (VT ). In normal tidal
breathing, the distance moved by the diaphragm is small. In contrast, expiration is passive during tidal breathing. The lungs and chest wall are
elastic and have a natural tendency to return to their initial resting position after an inhale.
Measuring lung volume. Respiratory rate alone is not indicative of lung conditions. Standard lung function tests, such as spirometry, measure
change in lung volume over a small duration as one breathes. In a spirometry test, one breathes into a mouthpiece that is connected to an instrument
called a spirometer (Nuffield Foundation), that measures airflow. It is a valuable investigation in the management of patients with suspected or
previously diagnosed respiratory disease, such as asthma, COPD, or cystic fibrosis.
Spirometry. The most common method for measuring lung function is through the use of a spirometer (Nuffield Foundation; Cleveland Clinic).
There are two categories of spirometers (Parreira et al., 2005). Flow oriented spirometers measure the amount of air passing through a tube over a
certain amount of time. Measurements are typically given in liters/second. Volume oriented spirometers measure displacement in liters. Spirometry
tests are given in a clinic, with the goal of determining healthy lung function during a maximal respiratory effort. Spirometry is an intrusive process,
that requires the users to breathe into a mouth-piece, while their nose is closed with a clip.
Breathing parameters. Spirometry results include respiratory rate (RR), tidal volume (VT ), and minute ventilation (VM), among many others.
RR is typically given in breaths/minute. The measurement is derived from 10 or 15 secs of normal breathing. VT is the average volume inhaled
or exhaled during a single cycle of normal breathing, also called tidal breathing. VM is the total volume of air passed through the lungs within a
minute. Like RR, the VM measurement is derived from 10 to 15 seconds of breathing (Cleveland Clinic).

3. System Design and Overview

Our primary idea is to monitor respiratory parameters for static as well as non-static users. A-spiro considers two primary causes for chest
movement: first is that caused by larger body movements, such as limb movement, sitting, standing, walking, etc; second, the minute chest
wall movement caused by breathing. For the rest of this paper, these motions are referred to as body motion and breathing motion, respectively.
Breathing motion is more notable when the user is static. Past work (Liu et al., 2015; Abdelnasser et al., 2015; Nguyen et al., 2016; Liu et al., 2016;
Fang et al., 2016) has leveraged this fact to detect breathing rate when the user is sitting, standing still, watching TV, or sleeping. A-spiro aims to
eliminate this primary assumption of the user being static for breathing detection.

2



Justin Whitlock et al. Smart Health (2019)

Acceleration

Capacitance De-trending

Motion Intensity 
Analysis

Signal 
Decomposition

Mode Selection

Motion Correction

Data Preprocessing Signal Reconstruction Hysteresis Modeling

Breathing 
Segmentation

Training Data Hysteresis 
Model

Respiratory 
Flow

Minute 
Volume

Respiratory 
Rate

Output Measurements
Sensor 

Measurements

Fig. 1: A-spiro: System Overview.

3.1. Challenges

Real-time accurate monitoring of respiratory parameters is non-trivial, primarily for three reasons. First, despite the overwhelming amount of
breathing monitoring systems, the fundamental bottleneck is user motion. Existing systems are highly susceptible to user motion (Fang et al., 2016;
Nguyen et al., 2016; Abdelnasser et al., 2015). Any breathing signal obtained when the user is moving is corrupted and is often discarded (Adib
et al., 2015). Chest movement caused by breathing is significantly smaller than that caused by body motion. Any breathing signal obtained when
the user is moving is lower than the noise floor, and its extraction is non-trivial. Lack of tools to monitor breathing for a mobile user has significantly
limited its applications to events where a user is quasi-static, such as sleeping. Second, monitoring breathing volume is more complicated than
computing respiratory rate, and often requires intrusive means. This is primarily due to the non-linear relationship between breathing volume and
chest movements. Third, continuous monitoring via wearable systems is limited due to the inconvenience of wearing multiple sensors on different
locations of the body, including but not limited to a chest belt, abdomen belt, and a nasal probe (NOX Medical).

3.2. Design Goals

In lieu of the above challenges and limitations of existing systems, we propose the following design goals:

• Minimal single-point non-intrusive sensing. To address the challenge of multiple point sensing - involving multiple sensors that a user is
required to wear on different body locations- we propose a single-point non-intrusive sensing solution. Our goal is to only gather data from a
single point on the human body to compute the required breathing parameters.

• Monitoring respiratory flow and volume. Past research has focused on monitoring the number of breaths per minute, i.e. the breathing rate.
Although important, the breathing rate is inadequate in determining more critical changes in a person’s breathing - such as the depth of each
breath. This depth is represented by the volume of air that moves through a person’s lungs during inhalation and exhalation. A finer parameter,
the rate of flow of the air into and out of the lungs can aid in deducing difficulties in breathing and obstruction. Thus, in addition to breathing
rate, the system should be able to measure flow and volume.

• Continuous monitoring for non-static users. A major goal of our system is to measure breathing even when the user is ambulatory and
performing activities of daily living. Our sample activities include walking, carrying and setting things down, transitioning between sitting and
standing, sitting, standing, and meditating. Continuous monitoring of breathing will have a significant impact, particularly for those who might
be unable to express difficulty in breathing, such as children and the elderly.

3.3. Overview

Fig. 2: The A-spiro sensing unit is positioned at the
xiphoid, at the bottom of the breast bone. It consists
of a stretch sensor and an IMU. It is worn over regular
shirt, or can be integrated into a close fitting shirt.

The system design for A-spiro is illustrated in Figure 1. It consists of a strain
or stretch measurement sensor that measures expansion and contraction on the sen-
sor. Our goal is to measure two variables: breathing motion and body motion. As
we only use a stretch sensor that measures along a single dimension, the problem is
underconstrained. To address this, we add an inertial measurement unit (IMU) to our
prototype. These sensors are worn around the chest as part of a belt as shown in Fig-
ure 2, and continuously transmit stretch, accelerometer, and gyroscope measurements
over a Bluetooth channel. We use a non-stretchable belt for our prototype as it allows
for easy access and wearability. A-spiro’s sensors do not need to be in contact with the
skin, and thus the belt can be worn over regular clothing. In the future, the combined
sensing system can be integrated in clothing, such as hospital gowns or undershirts.

A-spiro’s sensor data processing pipeline consists of three building blocks. At
the input, the raw sensor measurements are provided to the Data preprocessing mod-
ule. The raw readings are the capacitance measurements from the stretch sensor and
accelerometer data from the IMU. When the stretch sensor expands or contracts, the
output capacitance measurements from the sensor vary linearly. We prove that the capacitance measurements are linear with respect to the stretch
distance, in Section 6.4. These sensor streams are processed to de-trend the capacitance readings by analyzing instantaneous change only. The
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accelerometer data is processed to determine user’s motion intensity and identify periods of motion. The goal of this module is to prepare the data
for the breathing signal to be extracted.

The Breathing signal reconstruction module decomposes the signal across a time-frequency scale. Breathing does not occur at regular inter-
vals, and due to the variation in frequency over time, Fourier analysis proves insufficient. Instead, we employ empirical mode analysis to decompose
the signal into various modes, that are then selectively combined to generate the filtered output. A-spiro then performs motion correction based
on the body motion intensity, as detected by the IMU analysis. Finally, the Hysteresis modeling and flow estimation module segments breathing
data based on lung hysteresis to learn a model that can predict respiratory flow from filtered capacitance, or stretch measurements. We integrate
the model response to obtain the minute ventilation.

4. A-spiro Processing Pipeline

In this section we present the details of A-spiro’s processing pipeline shown in Figure 1.

4.1. Preprocessing

We preprocess the sensor data before extracting breathing signal from it.

4.1.1. Noise Removal
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Fig. 3: Raw signal from the stretch sensor for 3 activities: sit-
ting, transitioning between sitting and standing, and walking on
a treadmill. (a) Higher amplitude sections during sitting denote
deep breaths. Breathing signal is corrupted by body movements
(b) and (c).

The breathing process generating the signal obtained from the stretch
sensor is non-stationary and non-linear. An example of the raw data ob-
tained is shown in Figure 3. Figure 3a shows the capacitance readings ob-
tained from a single participant during sitting. These capacitance readings
are indicative of the chest expansion and contraction. Raw sensor data for
transitioning from sitting to standing and vice versa a few times, is shown
in Figure 3b and that for walking is shown in Figure 3c. We can observe
that the stretch values lie in a different range for each individual and activity
because the sensor value initializes at different capacitance every time it is
worn, depending on the circumference of a person’s chest and the mounting
differences. To remove the offset arising from variations in body size and
mounting, rather than looking at raw stretch values, we consider the instan-
taneous change only by calculating the first order differential of the sensor
data. Taking the differential of the stretch values also has the advantage of
being a similar metric to the breathing flow (measured in L/s) values ob-
tained from the spirometer, which is our target for prediction. The resulting
signal is de-trended but contains a great deal of noise, and is filtered during
signal reconstruction.

4.1.2. Motion intensity detection
During periods of body motion, chest movement corrupts the breathing

signal obtained from the capacitive sensor. Unlike other systems (Nguyen
et al., 2016; Adib et al., 2015; Fang et al., 2016), instead of discarding
breathing traces corrupted by motion, we use feedback from the IMU to
reconstruct the degenerate segment of the signal. The goal of the prepro-
cessing step is to use the accelerometer to determine the level of activity intensity as the variance of the accelerometer data. Sitting, standing, and
meditation exhibit very low variance compared to activities that involve movement of large body parts, such as limbs, or twisting of the upper body.

4.2. Breathing Signal Reconstruction

At the onset, it may seem that body motion and breathing motion can be separated using frequency domain analysis, such as Fourier transform.
We present why Fourier analysis is not ideal for our purpose and the techniques employed thereon.

4.2.1. Limitations of Fourier Analysis
Traditionally, signal separation has been performed by transforming a time-series signal to the frequency domain. However, this is effective

only when the signal is stationary. Breathing signal is non-stationary. Note that this is not a factor when calculating respiratory rate since it only
counts the number of cycles. Fourier analysis assumes stationarity and decomposes a signal into sinusoidal waves. However, breathing waveforms
exhibit time-varying frequencies, thus affecting the density of frequency components in the captured signals. Figure 4 shows the power spectrum
analysis for two different activities: sitting and walking, and the corresponding band pass filtered signal at the frequency component with the
highest power (Figure 4b and 4c). For A-spiro the change in stretch is inversely proportional to the flow. We can see that when the participant
is sitting, the correlation between stretch measurements and breathing flow is somewhat consistent, but the amplitudes are severely suppressed for
deep breaths- those with higher amplitude than regular breathing. For walking, the resultant signal has many frequency components, and using a
single frequency for signal separation yields a somewhat flat trace that does not capture the person’s breathing well. Thus, Fourier analysis is not
ideal when the user is moving and performing tasks that have multiple frequency components.
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4.2.2. Extracting breathing signal
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Fig. 4: (a) Power spectrum analysis for sitting and walking traces.
Note that walking has many more frequency components (peaks).
(b) The corresponding band pass filtered signal for sitting and (c)
walking, compared to the ground truth. Fine grained shifts in
breathing rate and depth are not captured. Deep breaths are not
captured.

To overcome the challenges posed by Fourier analysis and similar
techniques, we use part of the Hilbert-Huang Transform (HHT) (Huang
et al., 1998), which aids in analyzing non-linear non-stationary signals.
This crucial processing part of the HHT is Empirical Mode Decomposi-
tion (EMD). EMD is a data-driven approach that performs adaptive time-
space analysis for signals, and does not make any assumptions about the
underlying nature of the signal. Using EMD, we decompose our signal
into finite and small number of single oscillatory modes called intrinsic
mode functions (IMF). EMD considers a signal at the level of local oscil-
lations. A given stretch signal s(t) is decomposed as:

s(t) = r(t) +

K∑
k=1

dk(t) (1)

where r(t) is the residual trend and dk(t), k = 1, 2, ...K denote the modes.
The modes and the trend are both constrained to be zero-mean amplitude-
modulated frequency-modulated (AM-FM) waveforms. EMD identifies
these modes through a sifting process. Our implementation of EMD fol-
lows the HHT. In each iteration, we determine the local maxima s(t)max

and local minima s(t)min of the signal s(t). Its upper and lower envelopes
are determined from a cubic-spline interpolation of local maxima and
minima. If µ1(t) is the mean of its upper and lower envelopes, the first
component of s(t) is given by:

d1(t) = s(t) − µ1(t) (2)

In the second iteration of the sifting process, µ1(t) is treated as the data and
the process is repeated to obtain µ11(t), which is the mean of d1(t)’s upper
and lower envelopes. The second iteration yields the second component
d2(t) = h1(t) − µ11(t). The sifting process is repeated k times, resulting
in a set of finite functions, the number of which depends on the original
signal.

0 20 40 60 80 100 120 140

Time(s)

-0.5

0

0.5

IM
F

5

0 20 40 60 80 100 120 140

Time(s)

-0.5

0

0.5

IM
F

6

Fig. 5: Mode mixing: The signal has been separated into IMF 6, but
a single breathing cycle has been pulled into the previous IMF.
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Fig. 6: The top figure shows the signal before EEMD filtering. The
filtered signal below is obtained after mode selection.

However, EMD suffers from mode mixing for our data. The ratio of the amplitudes and of the frequencies of the individual components of the
signal, determine whether EMD will be able to separate them in two different IMFs or whether they will be interpreted as one single IMF. When
a mode cannot clearly contribute with extremas, the EMD will not be able to separate the mode in a single IMF and the mode will remain mixed
in another IMF. An example of mode mixing from our data is shown in Figure 5. This mode mixing is more prominent when noise due to motion
or other factors temporarily impact the signal or drop out of the signal, resulting in part of the signal appearing in a different IMF than expected.
To address the challenge of mode mixing, we implement an advanced version of EMD, known as Ensemble Empirical Mode Decomposition
(EEMD) (Colominas et al., 2014).

EEMD is a noise-assisted analysis technique. Instead of sifting through the raw signal as EMD does, EEMD sifts through an ensemble of
white noise-added signal. We add a gaussian white noise signal to our input data, with a standard deviation that is one-fifth that of the input signal.
The addition of white noise ensures that the ensemble exhausts all possible solutions in the sifting process. Due to the time-space analysis, the
added finite white noise is averaged out with sufficient number of trials. EEMD is built upon EMD. It utilizes the scale separation capability of
EMD and enables it to be a dyadic filter bank. By construction, each IMF is a zero-mean waveform whose number of zero-crossings differs at most
by one from the number of its extrema. The number of these zero-crossings is a rough indication of the mean frequency of each mode, and the way
this number varies from mode to mode is an indication of the hierarchical structure of a filter bank.

4.2.3. Mode selection
From the results of the signal decomposition, the IMFs are evaluated for trend-stationarity. It has been shown that stationarity can be an

important metric for evaluating individual IMFs (Terrien et al., 2011). In general, a signal is said to be stationary only if its statistical moments
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are constant over time. However, a weak-stationarity can be established for some biological signals using a Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test (El-Tatar & Fokapu, 2011). The KPSS algorithm assumes a time signal is composed of its deterministic trend, random walk, and
the stationary error.

s(t) = βt + µt + εt (3)

Where β is the deterministic trend, µt is the random walk, and εt is the stationary error. Under the null hypothesis, the variance σµ = 0, implying
the random walk acts as a constant. When the deterministic trend β = 0, as it is for our signal, KPSS can be used to establish weak stationarity of
a signal (El-Tatar & Fokapu, 2011). For our purposes, the first 2 IMFs in the series were observed to be high-frequency noise and were skipped.
IMFs 3 to K were evaluated consecutively using KPSS. The first positive result, I, indicates the beginning of the breathing signal. The reconstructed
signal in Figure 6 is then obtained by adding I to K IMFs, including the residual.

f (t) = r(t) +

K∑
k=I

dk(t) (4)

An example for an input signal and the corresponding filtered output is shown in Figure 6.

4.2.4. Motion correction
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Fig. 8: Breathing signal captured by using the proposed motion cor-
rection technique versus baseline approach of discarding motion seg-
ments.

To maintain an estimate of the user’s breathing parameters even
during body motion, we propose a motion correction technique that
utilizes feedback control. A-spiro uses this feature to create a motion
cover, m. m is set to high when the motion intensity detection indi-
cates body motion. The inherent property of a breathing signal is the
occurrence of cycles. Although the frequency and duration of individ-
ual breaths may vary over time and across activities, a breathing signal
always has alternate polarity - positive or negative - signifying the in-
hales and exhales. A-spiro’s motion correction is triggered when the
state of m is high, and the breathing signal obtained during that inter-
val is considered to be corrupted. For low-impact low-intensity body
motion, we observed that only a single breathing cycle was corrupted
by each body motion event. One of two phenomena can be observed
when body motion occurs. On a negative-going cycle, for example, a
sudden motion could either reverse the polarity of the observed signal
or slightly modify the amplitude of that cycle. This is usually followed
by high frequency-noise. The breathing signal extraction explained in
Section 4.2.2 takes care of the high frequency noise, which leaves the
corrupted cycles to be corrected for motion. A-spiro analyzes the po-
larity of the breathing cycles immediately preceding and following the
time period tm, where m = 1. Based on the polarity of these cycles, A-
spiro predicts the polarity for the waveform during tm. If the observed
polarity matches the predicted polarity, A-spiro retains it. If the ob-
served polarity does not match the predicted polarity, A-spiro reverses
the captured signal, as depicted via a sample in Figure 7. A positive polarity cycle was flipped when motion started. A-spiro identifies the negative
cycles before and after the motion affected cycle, and reversed it around the x-axis. This trace was collected during transitions from sitting to
standing, and all motion-based corrections were verified against the ground truth. We compare our breathing signal capture efficiency with the
baseline approach of discarding segments with motion. Figure 8 plots the amount of signal captured by A-spiro after motion correction and the
signal captured if the segments with motion were discarded. These numbers were computed across all the participants for all activities. We can
see that even during simple activities, such as sitting and standing, up to 15% of breathing signal can be lost due to motion. A-spiro corrects these
segments to increase the amount of captured breathing signal up to 100%. For activities with small aperiodic body movements, A-spiro captures
more than 95% of the breathing signal, compared to 80% capture by the baseline approach. For activities involving repetitive periodic movement,
such as walking, the baseline approach only captures 30% of the breathing signal, while the rest is lost due to body motion. A-spiro , on the other
hand, captured 100% of the breathing signal despite large body movements.

4.2.5. Isolating breathing cycles
Breathing cycles are isolated by first finding the zero-crossings of the zero-mean filtered signal obtained after reconstruction and motion

correction. The zero-crossings are then evaluated to determine a transition between inhale-exhale (negative polarity) or exhale-inhale (positive
polarity), based on three criteria. The thresholds for various criteria are guided by general practices in spirometry and our own observations. The
first measures the interval between the current zero-crossing, and the next zero-crossing in time. If the interval is too short, less than 0.5 s, the
second crossing is discarded, and the new interval is considered to be part of the current cycle. The second criterion determines whether the polarity
for the current interval is opposite in sign to that of the next interval, indicating that the next zero-crossing defines a change from inhale or exhale.
If not, the next zero-crossing is discarded, and the cycles are considered the same. The third criterion takes the integral of the interval data. The
integral for a cycle denotes the volume in that cycle. If the integral is below a threshold of 0.2 pF2, the zero-crossing is discarded. In the resulting
set of zero-crossings, every alternate crossing represents the start of a new breathing cycle.
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4.3. Breathing Parameter Estimation

Data: FilteredData
Result: Predicted_Flow, RR, VM
(+veModel,−veModel)← initialize
for window in FilteredData do

RR← calcRR(window)
(+veTrend,−veTrend)← split(window)
incr_Predict ← + veModel(+veTrend)
decr_Predict ← − veModel(−veTrend)
Predicted_Flow←

reconstructWindow(incr_Predict, decr_Predict)
V M ← calcV M(Predicted_Flow)

end
Algorithm 1: Breathing parameter estimation from stretch signal.

In the final stage of A-spiro, we model the stretch mea-
surements to predict breathing flow.

4.3.1. Hysteresis Modeling.

One of the critical characteristics we address in our sys-
tem design is that of lung hysteresis. The lung is an imper-
fect elastic body and hence dissipates energy. The energy
consumed by the lung in inspiration is not recovered in ex-
piration. This causes a delay in response to changes in chest
wall movement by the lungs, and vice versa. Simply put, this
implies that the distribution of chest wall motion will not be
identical during inhalation and exhalation, or the ascending
and descending directions of chest expansion, showing hys-
teresis. Figure 9 annotates the inhales and exhales on a fil-
tered stretch signal. The inhales are the positive cycles, and
exhales are the negative cycles. A positive trend denotes transition from exhale to inhale, while a negative trend denotes the opposite direction.
Hysteresis states that the positive and negative trends will be unlike. Therefore, contrary to existing approaches where breathing signal is split
into inhales and exhales, we split them by trend: positive and negative. This impresses the need for segmenting the sensor output in real-time and
monitoring trends in rate of change separately. As outlined in Algorithm 1, we train separate models for each trend using a fourth-order Fourier
series. Depending on the trend, the relationship with the ground truth flow follows different paths, as seen in Figure 10. This fine-grained signal
segmentation and targeted data modeling allows us to account for hysteresis more accurately. Figure 11 shows the output from the hysteresis model
compared to the flow from the spirometer. We can see that the estimated flow closely matches the actual flow trace obtained from the spirometer.
We perform a quantitative evaluation in Section 6.
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Fig. 10: Hysteresis: The rate of change in chest circumference shows
a non-linear correlation with air flow, and follows a different path
depending on the direction of change.

4.3.2. Estimating Breathing Rate, Flow, and Volume.
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Fig. 11: The predicted values from the hysteresis model compared to the ground
truth from the spirometer while the volunteer was standing.

The respiratory rate is calculated after isolating the
breathing cycles (Section 4.2.5). Once small spurious cy-
cles have been consolidated into larger inhale and exhale cy-
cles, we count the number of breaths per minute to obtain the
respiratory rate, RR. The model described in Section 4.3.1
predicts the flow when provided stretch measurements as in-
put. Breathing flow denotes the rate of change of volume ex-
pired or inspired. According to our ground truth spirometer,
positive flow indicates exhales and negative flow indicates
inhales. Minute ventilation, VM is the amount of air inspired
(or expired) during normal breathing in one minute. Minute
ventilation increases with activity to accommodate increased
need for gas exchange. We calculate VM from flow by integrating the inhales and computing the volume for one-minute duration.

VM =

∫
in

Fdt (5)

We evaluate A-spiro’s accuracy in estimating RR and VM across all subjects and activities.

7



Justin Whitlock et al. Smart Health (2019)

5. Experiment Description

Fig. 12: A-spiro prototype. Stretch sensor and IMU attached to
Velcro strap.

Prototype. We chose a capacitive strain sensor from Stretch
Sense (Stretch Sense)). The sensor is Bluetooth ready, with a stretch-
able fabric sensing surface as shown in Figure 12. The sensor was sewn
to a velcro strap to allow an adjustable fit. For the strap, materials with
any elasticity were avoided to ensure all motion of the chest wall is cap-
tured by the sensor and not lost due to stretching of the strap. The velcro
backing on the strap also clings to the fabric of the users clothing, pre-
venting the sensor from slipping during body movement. The sensor is 10
cm long and can stretch comfortably to 18 cm. An inertial measurement
unit (IMU) was attached to the belt, next to the stretch sensor. We logged
the accelerometer data from the IMU over Bluetooth. Both, the capaci-
tance sensor and the IMU were sampled at 30Hz. While the sensors are
attached to a belt for the prototype, in the future they can be integrated into clothing, particularly due to the fabric construction of the stretch sensor.

Position. We tested the sensor in several positions; the abdomen, the back, the side, upper chest, and the xiphoid, which is the center of the chest
over the lower part of the breast bone, as seen in Figure 2. The xiphoid was chosen since the breast bone is easy to locate. This ensures that the
sensor was positioned consistently between subjects and tests. It would also be easier to implement in a real life context such as self-care, compared
to a position like the center of the back.

Participants. We recruited 20 volunteers for our study, of which 11 were male and 9 female. Lung volume is affected by demographics and
personal information, such as age, weight, height, and ethnicity. To account for the diversity we recruited participants from a large variety of age
and ethnic groups. Of the 20 participants, 2 were undergraduate students, 5 graduate students, and the rest were working professionals. Details on
our study population are provided in Table 1. To validate the feasibility of our system, we recruited healthy adults for our study, those that do not
exhibit any breathing disorder.

Ethnicity # subjects
Caucasian 12

African 2
Hispanic 2

Asian 2
Other 2

Age Group # subjects
18-20 2
20-30 4
30-40 7
40-50 5
50-60 1
60-70 1

Table 1: Participant Demographics

(a) Sitting in lab. (b) Walking on treadmill.

Fig. 13: Data collection setup. The participants wore the A-spiro wear-
able while breathing into a spirometer (used for ground truth).

Data Collection. We collected data for 6 different activities. 3 of
these activities involved the user being stationary, while the other
three engaged them in Activities of Daily Living (ADL). The ex-
periments were conducted in 2 sessions on separate days, where the
participant performed all six activities in each session. Our goal in
the selection of these activities is to mimic real-world scenarios as
far as possible. Each activity lasts up to 3 minutes. Among the sta-
tionary, or static, activities, the first was sitting, wherein users sat
on a chair as shown in Figure 13a. Volunteers were asked to read
from a screen, so that they were distracted from consciously affect-
ing their breathing, capturing the range of flow for tidal breathing.
The second activity was guided meditation. During this activity, we
played a guided meditation video (Chopra, 2018) allowing the users
to be mindful of their breathing and taking slow deep breaths. The
third activity was standing.

To understand how performing an activity affects the data, we
had volunteers perform a number of tasks to reflect daily life activ-
ities. In this set of activities, the first was transitioning from sitting
to standing and back to sitting (referred to as Sit/stand). During this activity, we asked the user to start either in the seated or standing position, and
transition to standing (or sitting). They were asked to do this a few times during three minutes, where they were free to choose when to perform
the transition. The second activity involving motion, required volunteers to pick up a book from one table, turn around and set it on another table
(referred to as Carrying). This introduced a twisting motion to the torso. Finally, our volunteers were asked to walk on a treadmill, shown in
Figure 13b, at a self determined comfortable pace, no faster than 3 mph.
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6. Evaluation

A-spiro measures three key breathing parameters: respiratory rate (RR), tidal flow, and minute ventilation (VM). We evaluate A-spiro with
respect to the flow data output from the NDD spirometer (New Diagnostic Design).

6.1. Respiratory rate
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Fig. 14: Respiratory rate accuracy across all traces for different ac-
tivities.

The respiratory rate is measured in breaths per minute (bpm). Fig-
ure 14 shows the median accuracy across all participants for each activ-
ity. We can see that for all the activities, our median accuracy is higher
than 90%. While the accuracy is higher than 95% for static scenarios,
A-spiro achieves greater than 90% activity even when the subjects were
walking, transitioning between sitting and standing, and carrying a book.

6.2. Breathing flow estimation

To evaluate the time-series flow estimates predicted by our model,
we use the flow measurements from the Spirometer as ground truth. We
measure the normalized root mean square error, given by:

NRMS E =

√
mean( f̂t − ft

2
)

fmax − fmin
(6)

where f̂t is the predicted flow measurement and ft is the observed measurement (from the spirometer). We also define the accuracy of our system
as Acc = 1 − NRMS E.
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Fig. 15: Leave-one-out cross-validation for a generalizable model for flow estimation. Models were trained on N-1 volunteers, and tested on the
remaining volunteer.

We report the results of flow measurement across all participants using leave-one-out (LOO) cross-validation technique. Our goal here is to
analyze how generalizable capacitance-flow models are. For each run, we use N − 1 participants for training the hysteresis model and test it on the
one participant left out. Thus, at each time, our training data comprises of data from 19 participants. We compute the NRMS E 20 times for each
activity and plot the CDF. Figure 15a shows the normalized RMSE for the three static activities where the user is not moving: sitting, standing,
and meditating. We see that the performance for all these activities are quite similar, due to the absence of motion in all cases. The median error is
approximately 7%. This translates to a significant improvement over the state-of-the-art that requires separate learning models for each participant
and added infrastructure, with similar performance, adding to overall time and cost of the system.

Figure 15b plots the error for non-static activities: carrying a book and setting it down, transition between sitting and standing, and walking.
Despite varying intensities of motion, we see that the median for all three non-static activities is approximately 8%, indicating the accuracy of the
motion correction algorithm. This shows that our hysteresis model accurately models changes in chest expansion to changes in lung flow for both
static and non-static scenarios. In a different validation, we build personal models for each participant and test them against all other participants,
one at a time. Figure 16a shows the confusion matrix for static activities and Figure 16b shows the confusion matrix for non-static activities.
The participants are sorted in the order of Body-Mass Index (BMI). It is known that lung flow and volume depend on many characteristics,
including age, weight, height, and ethnicity. We choose BMI as a parameter to validate how well a model trained on one person tests against other
participants with similar or different BMIs. It is expected that people with similar BMI will exhibit higher correlation, and the confusion matrix
will be a diagonal matrix with a certain deviation. On careful examination we can see that to be true. However, we also witness other examples
where models trained on certain participants are more generalizable against a large population of the participants.
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Fig. 16: Confusion matrix for personal flow estimation models across participants. Y-axis represents data used for training; X-axis represents data
used for testing. Models are validated on (a) static activities (sitting, standing, and meditation), and (b) non-static activities (sit/stand, carrying, and
walking).
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Fig. 17: Minute ventilation accuracy across different activities.

6.3. Minute Ventilation Estimation

We integrate the flow measurements for inhale and exhale cycles to compute the volume during each phase. We then compute the minute
ventilation by analyzing the exhale volumes for separate dis-joint one-minutes windows, and compute the VM for each trace by taking a mean.
Minute ventilation accuracy for all participants across different activities is shown in Figure 17. This accuracy was calculated using leave-one-out
validation, as described for tidal flow estimation. We can see that the median accuracy for all activities is higher than 90%. We observed that sitting
exhibits large deviation due to small shifting movements, leaning backward/forward, and sometimes slouching during the sitting duration. Of all
our activities, sit/stand transitions show the most variance, due to the sudden large body movements.

6.4. Sensor repeatability and accuracy
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Fig. 18: The relationship between distance of stretch and capac-
itance output by the sensor is linear.

Continuous monitoring of breathing is fundamentally dependent on the
accuracy and precision of the sensor being used. The output capacitance of
the stretch sensor changes as the sensor is stretched. Repeatability requires
that, for the same stretch, the sensor should undergo the same change in
capacitance. To validate this we performed a test where we stretched the
sensor through distances of 10 cm - 16 cm in steps of 2 cm, and recorded
the capacitance each time. Figure 18 displays the change in capacitance
with change in stretch distance. We can see that over 20 trials, the variation
of capacitance is extremely small. Our mean coefficient of variation was
0.0032. These tests were conducted on separate non-consecutive days. In
fact, capacitance and stretch measurements are seen to have a positive linear
correlation, with a Pearson correlation coefficient of 0.998. We use these
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readings to build a linear regression model which yields the stretch given a capacitance measure. The root mean squared error for this model was
0.09. This demonstrates that the stretch sensor provides repeatable measurements. We also validated the sensor measurements when it was worn
by the user. To record the ground truth for chest expansion measurements, we attached a measuring tape to the chest strap, that moved as the sensor
stretched. When a person sits and breathes, we recorded a video and manually observed the change in the measuring tape readings, which served
as the ground truth. We use the linear model discussed above to compute stretch measurements corresponding to capacitance values. We observed
a variation of only ±0.3cm from the ground truth. This demonstrates that the stretch sensor provides accurate and repeatable measurements, when
mounted on the chest.

6.5. Comparison with HexoSkin Smart Garment
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Fig. 19: Relative accuracy in RR, and VM measurements from A-spiro and
Hexoskin against estimations based on flow data from the spirometer us-
ing equation 5.

We compare A-spiro with a commercially available state-of-
the-art health tracking system, HexoSkin (Phillips et al., 2017).
Hexoskin is designed to continuously track RR, VM , and VT , as well
as other non-breathing related metrics like heart rate. It captures the
breathing signal using two inductance bands where the sensor en-
tirely encircles the torso at the chest and abdomen for men, and the
abdomen only for women. The sensors are embedded within a smart
garment, and users are asked to input age, height and weight in or-
der to accurately estimate health metrics. It has also been shown
that movement can disturb the vest’s ability to accurately measure
breathing (van Leuteren et al., 2017). We used raw data from a flow
based spirometer as the gold standard for respiration monitoring, to
perform a side by side comparison with A-spiro and Hexoskin. For
each device, we computed the relative error of the estimated respi-
ratory rate with respect to the value obtained from the spirometer.
VM is estimated from flow by calculating the exhaled volume using
equation 5 during each non-overlapping period of one minute and
taking the mean over all one-minute intervals. We compared the two
systems for sitting and walking for 3 participants. The participants
were male, and of similar height and weight. For each participant,
we recorded 4 traces, amounting to a total of 36 minutes of data. As
shown in Figure 19, A-spiro significantly improves upon the perfor-
mance of Hexoskin for both activities. While A-spiro is impacted
by motion, the impact is considerably lessened as compared to Hexoskin, particularly for VM .

7. Related Work

It has been established that there is a correlation between chest circumference and lung volume as a person inhales and exhales (Shobo &
Kakizaki, 2014; Fisher et al., 1990; Sano et al., 2016; Wade, 1954). This correlation has led to a number of different methods for determining
respiratory rate and volume indirectly.
Contactless Vital Sign Monitoring. A bulk of recent breathing related work relies on radio frequency for breathing detection. WiSpiro (Nguyen
et al., 2016) uses several WiFi emitters mounted on a rail above a patient’s bed to track their respiration rate and minute volume. VitalRadio (Adib
et al., 2015) leverages off the shelf WiFi emitters, as do several other works (Liu et al., 2016, 2015; Wang et al., 2017). mmVital (Yang et al., 2017)
uses a 60GHz mmWave signal, while DoppleSleep (Rahman et al., 2015) uses radar. VitalRadio, mmVital, and DoppleSleep track the respiration
rate of individuals within a home or building, but they do not estimate breathing volume. New methods of photoplethysmography for detecting RR
and VT have also been proposed using a camera (Schoun et al., 2018), as well as a method of using thermal imaging for respiratory monitoring,
requiring a patient to blow onto a thin flat material (Patil et al., 2018). Despite their convenience, the main drawback of these contactless sensing
techniques is that they require the user to be stationary for the system to perform well. Another limitation is that they are infrastructure dependent,
and thus constrained to in-building monitoring, limited to their bed, home, or medical facility. Moreover, these technique are severely impacted by
occlusion and human motion. To fill this gap, there has long been an interest in wearable sensors that are able to monitor vital signs continuously
without limiting user mobility.
Wearables Systems. There are many methods for measuring expansion and contraction of the chest wall using a sensor band. A common form
is the inductance band, which uses a coiled wire embedded in a stretchable fabric that fully encircles the torso. The inductance band allows a
precise measurement of the circumference of a user’s chest as they inhale and exhale (Liu et al., 2017, 2013; Fedotov et al., 2017; Wu et al., 2009).
It has been evaluated for both RR and VT with fairly accurate estimations reported for static activities (Cohen et al., 1997; Lanata et al., 2010).
Available systems typically track RR, with the exception of the Hexoskin Vest (Villar et al., 2015) which estimates VM using two sensing units
(chest and abdomen) on the vest. Some research, including results presented in this manuscript, indicates the volume estimation is not always
reliable (Banerjee et al., 2018; van Leuteren et al., 2017). This is likely due to the added noise of body motion. Another system (Teichmann
et al., 2015) uses a sensor that can be placed in a shirt pocket. It also uses inductance, but instead of measuring the stretch of the coil, the sensor
measures the interference with an inductive coil caused by changes in impedance in the wearer’s skin. This system does not estimate lung volume
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or flow. Similar to Hexoskin, a recent paper suggested a smart shirt that uses a series of 12 fiber optic sensors and reports a bias of 0.9L for
VT estimation (Massaroni et al., 2018).
Mobile Spirometry. Due to the need for spirometry as a tool for diagnosing certain pulmonary diseases (Wolfenden et al., 2006), there have
been a number of novel approaches for making spirometry more broadly available. Systems such as TeleSpiro (Carspecken et al., 2013) and
MobileSpiro (Gupta et al., 2011) both offer lightweight portable spirometers that can be used with mobile devices. SpiroSmart (Larson et al.,
2012), and mCOPD (Xiao, 2013) take it a step further by leveraging the mobile phone itself to measure lung function. The user blows across the
microphone of the mobile phone, and the flow rate is calculated based on the sound levels. These approaches require the user to hold something up
to their mouth while the test is performed, and is not suitable for continuous monitoring. Due to the nature of the technique, spirometry tests result
in a single measurement of a person’s health at a single point in time. To remove the need for measuring at the mouth, it is possible to derive the
volume or flow indirectly by measuring the chest. This would then allow for a more comfortable sensor placement and continuous monitoring.

8. Discussion

We discuss a few limitations of A-spiro and ideas for potential applications.
Sensor Mounting. Measurements from wearable sensors are affected by body motion and position. While we have addressed the interference
cause by body motion, our system is still affected by its mounting. For example, if the sensor is worn loosely, it will generate a large amount a
noise.
Non vigorous motion. The current implementation is designed to address daily activities that are non vigorous by nature. It is a feasibility study
in accurate estimation of respiratory flow and volume in ambulatory conditions. We have not validated the system for intense or vigorous motion.
We believe that the current system can be extended to handle vigorous body movements.
Abdominal motion. A-spiro measures the movement of the chest wall. While our results show that this is suitable for many individuals, users
with reduced or impaired chest movement due to open heart surgery (Westerdahl et al., 2003), or other factors, may have inaccurate results. This
could be resolved by changing the position of the band to capture abdominal motion associated with lung function.
Energy. To truly allow continuous monitoring, power consumption plays an important role. We have not focused on energy consumption of A-
spiro in this paper. However, based on our practical experience, we believe that A-spiro is not likely to be power hungry. We intend to characterize
the energy profile of A-spiro in the future. Moreover, with the advancements in battery technology, we anticipate that a wearable system like
A-spiro will be able to harvest energy from breathing/body motion.
Future Work. Keeping up with the trend of mobile health (Prasanna et al., 2013), we aim to expand A-spiro to measure other pulmonary measures,
such as those involving forced maneuvers. These parameters are critical in measuring lung capacity and are indicative of the existence of serious
lung ailments. In a future study, we will recruit participants with breathing disorders for a robust validation of A-spiro. Moreover, A-spiro can be
elaborated on to determine the impact of breathing on activities and vice versa. For example, one can monitor their breathing during athletic events,
such as weight lifting or playing a sport, to determine their performance and how changes in breathing affect performance. Moreover, real-time
fine-grained breathing estimates can provide an insight into psychological experiences, including but not limited to stress and user experience.

9. Conclusion

Human motion has conventionally been looked at as a hindrance to breathing measurement. Even parameters such as breathing rate have been
shown to be affected by minor motion, thus limiting continuous breathing monitoring. This paper introduces A-spiro, which breaks away from
this assumption and demonstrates that a wearable sensor can be used to accurately measure breathing parameters even during everyday activities,
such as transitioning from sitting to standing, lifting-carrying-setting things down, and even walking. We evaluate A-spiro for 20 participants from
various ethnicities and age groups to show that it can provide accurate estimates for respiratory rate, tidal flow, and minute ventilation. A-spiro can
potentially aid in monitoring breathing for patients with pulmonary disorders, such as COPD and Cystic Fibrosis, specially those that are unable
to observe or describe irregular breathing patterns, such as children and older adults with impairments and memory deficiencies. Given the low-
cost and untethered nature of the prototype, it can be used to understand the relationship between breathing and body motion at a granular level,
particularly useful for athletes and patients with anxiety or aggression.
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