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ABSTRACT 

Segmentation of tree-like structure within medical imaging 

modalities, such as x-ray, MRI, ultrasound, etc., is an 

important step for analyzing branching patterns involved in 

many anatomic structures. However, images acquired using 

these different acquisition techniques frequently have 

features of poor contrast, blurring and noise, and therefore 

the segmentation result of traditional image segmentation 

methods may not be satisfactory. In this paper, we propose a 

framework for accurate segmentation of the ductal network 

in x-ray galactograms. Our approach is based on the graph 

cut algorithm and texture analysis to extract features of 

skewness, coarseness, contrast, energy and fractal 

dimension. The features are chosen to capture not only 

architectural variability of the enhanced ductal tree, but also 

spatial variations among pixels. The proposed approach was 

applied to a dataset of 20 galactographic images. We 

performed receiver operating characteristic (ROC) curve 

analysis to assess the accuracy. The area under the ROC 

curve observed was 0.76, indicating that our approach may 

potentially assist clinicians in the interpretation of breast 

images and facilitate the investigation of relationships 

among structure and texture of the branching patterns.  

 
Index Terms— Branching Structure, Breast Imaging, 

Graph cut, Texture features. 

1. INTRODUCTION 

Studies have previously associated the morphological 

variability of the breast ductal network with subsequent 

development of breast cancer, suggesting that analysis of 

branching structures within the human breast can assist in 

diagnosing malignancy or estimating cancer risk [1,7,13]. 

Locating branching patterns encountered not only in ductal 

network analysis, but also in analysis of bronchial, vascular 

and neuronal networks is a very important first step towards 

understanding the relationships between morphology and 

function of tree-like structures in the human body. 

However, fully automatic segmentation in the medical 

imaging domain can be challenging due to the complexity of 

anatomical structures and obstacles introduced by the 

imaging process [7,8]. Such obstacles include blurring, 

noise and the vessel occlusion and intersection caused by 

3D to 2D projection. Furthermore, there is variability within 

the manually segmented ductal network skeletons and vessel 

structures provided by the different experts. 

Motivated by these challenges, in this study we 

developed an interactive semi-automatic framework for 

accurate segmentation of the ductal network in x-ray 

galactograms.  We extended the graph cut algorithm [4] 

using texture analysis to incoporate features of skewness, 

coarseness, contrast, energy and fractal dimension, 

strengthening the segmentation results of the original 

method, and further illustrating the importance of texture in 

branching structure segmentation. 

2. BACKGROUND  

 Many effective methods have been developed to detect 

and analyze the branching anatomic structures. For example, 

machine learning techniques have played an important role 

in studying branching anatomy. In [10], Adaboost learning 

has been applied on features for classification of lung 

bronchovascular anatomy. In [2] the authors have used 

support vector machines (SVM) as a probabilistic inference 

framework for branching node detection, which is an 

important step towards complete branching pattern 

segmentation.  

Unfortunately, standard learning algorithms, such as 

SVM and logistic regression, combined with simple local 

image features, such as intensity and gradient, treat image 

pixels as independent. Hence, due to the complexity 

frequently encountered in medical images, such algorithms 

may have limited accuracy for automatic segmentation. 

Early on, researchers realized that human input could be 

valuable in the segmentation process, and can aid in 

obtaining more reliable and accurate results. This has led to 

the development of interactive methods like snake [5], 



deformable templates [6] and more recent interactive graph 

cuts [4]. For example, in [11], a new graph cut-based 

segmentation algorithm is used for precise identification of 

breast tumor regions.  

Breast images are often highly textural and several 

studies suggest that computer-extracted texture features 

could provide objective and reproducible methods to 

identify parenchymal patterns [12]. For example, the 

segmentation of ultrasound images based on texture features, 

obtained according to gray level co-occurrence matrix and 

graph cuts, was proposed in [3]. In our study we propose to 

extend the set of texture features used in the graph cut 

framework by including the fractal dimension in order to 

capture more accurate spatial relations between pixels in the 

image. 

3. METHODOLOGY 

3.1. Problem formulation 

We perform image segmentation in the framework of 

graph cuts introduced by Boykov and Jolly in [4]. In this 

section, we describe only the basic ideas of the graph cut 

algorithm due to space limitations. The reader should refer 

to [4] for more detailed explanation. 

In short, for a given image I that has to be segmented 

into object and background, one can construct an undirected 

graph           where V is a set of vertices and   a set 

of edges. Each graph is assigned two terminal nodes, source 

S and sink T, corresponding to the object and background 

respectively. Other nodes in the graph  represent the pixels 

of the image p. The edges (links) characterize spatial 

relations between nodes in the graph. There are two types of 

links: n-links (neighborhood links denoted as {p,q}) and t-

links (edges from terminals to the pixels, {p,S} and {p,T}). 

All edges   are assigned the nonnegative weights   , which 

are used to construct a meaningful energy function. The 

calculation of the weights is based on pixel intensities and 

texture features of coarseness, skewness, contrast, energy 

and fractal dimension. After the computation of the energy 

function, the next step is to compute the graph cut 

corresponding to the optimal segmentation result. In order to 

obtain the minimum cut, one should solve the energy 

function minimization problem. Finally, the segmentation of 

the images is computed using (2).  

The rest of this paper is organized as follows.  Section 

3.2 introduces image texture features used for computation 

of the weights needed for the energy function computation. 

Section 3.3 introduces more details of the graph cuts 

segmentation algorithm. Our experimental results on a set of 

x-ray galactograms are shown in Section 4. In Section 5 we 

give our conclusions. 

3.2. Texture feature extraction 

Texture features were extracted from a region of interest 

(ROI) containing part of the ductal network that was 

manually segmented for each of the x-ray galactograms. To 

characterize the parenchymal pattern, texture features of 

skewness, coarseness, contrast, energy, and fractal 

dimension (FD), were estimated from all the ROIs. These 

texture features were originally defined for 2D image 

analysis and have been previously used for breast cancer 

risk assessment in studies with digital mammograms [8, 12]. 

Skewness is the third statistical moment and is computed as 

          
  

  

 
 

     
        

 

 
     

    
        

   

 
 

    
    

    
     

where ni represents the number of times that gray-level 

value i occurs in the image region, gmax is the maximum 

gray-level value, and N is the total number of image pixels. 

Coarseness computation is based on the Neighborhood 

Gray Tone Difference Matrix(NGTDM) [12] of the gray-

level values within the image region; this matrix is derived 

by estimating the difference between the gray-level value of 

each pixel and the average gray-level value of the pixels 

around a neighborhood window:  

                   
    
    

  
         

              

                  
      

where v(i) is the NGTDM, pi is the probability that gray 

level i occurs, {ni} is the set of pixels having gray-level 

values equal to i, and Li is given by 

    
 

   
              

    
 
         

where j(x,y) is the pixel located at (x,y) with gray-level value 

i, (k,l)   (0,0), and  =        , with t = 1 specifying the 

neighborhood size around the pixel located at (x,y). 

Contrast and energy, as proposed originally by Haralick 

et al [19], require the computation of second-order statistics 

derived from the gray-level co-occurrence matrix; the 

spatial dependence of gray levels is estimated by calculating 

the frequency of the spatial co-occurrence of gray levels in 

the image:     

                        
    
   

    
    

                 
    
   

    
    

where Q is the normalized co-occurrence matrix. 

The FD was estimated on the basis of the power 

spectrum of the Fourier transform of the image. The 2D 

discrete Fourier transform was performed using the fast-

Fourier transform (FFT) algorithm as: 

                
   

  
 

   
 
   

  
 

   

   

   

   

   

   

where I is the region of size (M,N), and u and v are the 

spatial frequencies in the x and y directions, u={1..M-1}, 

v={1..N-1}. The power spectral density, P, was estimated 

from F(u,v) as 

                  

To compute the FD, P was averaged over radial slices 

spanning the FFT frequency domain.  



Since the texture features of a single pixel cannot be 

computed, we calculated the texture features of a region 

known as the texture window. A 3 × 3 texture window or an 

8-neigborhood was used in our study. 

3.3. Graph cuts segmentation 

We manually label sets of pixels as object and 

background. Let Ob and Bk denote the subsets of pixels 

labeled as “object” and “background” respectively. For the 

set P of all pixels p of image I, the subsets      and 

     are labeled so that        .  

Let A = (A1, . . . ,Ap, . . . ,A|P|) be a binary vector whose 

components Ap specify assignments to pixels p in P. Each 

Ap     or Ap      Vector A defines a segmentation.  

The constraints imposed on boundary and region 

properties of A are described by the energy function E(A): 

               ,                      (1) 

where,  denotes the relative importance of the region 

properties term R(A) versus the boundary properties term 

B(A). The details are explained in [4]. In our study, regions 

are represented by the 8-neighborhoods of the image pixels. 

The penalties are assigned according to discontinuities 

between pixels of similar intensities and texture.  

The histogram distributions          and           

where Ip are the intensities of the pixels are used to compute 

a set of regional penalties      as follows:  

                                        .     

The boundary penalties between pixels p and q are 

computed based on the texture features, described in Section 

3.2, as well as intensity of the pixels as follows:  
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This function penalizes a lot for discontinuities between 

pixels with similar features when           . If the 

difference between the features is large, then the penalty is 

small.    is the standard deviation of the feature F on the 

whole image I. The weights are computed according to 

Table 1, where                           . 

edge weight case 

{p,q} B{p,q} {p,q}             

{p,S} 0 p    

K p    

  Rp(Bk) p   

{p,T} 0 p    

 K p    

   Rp(Ob) p   

Table 1. Computation of the edge weights. 

After the weights are computed, the energy function is 

calculated by (1). The graph cut is defined as a subset of 

edges    . The cost of the cut is |C| =       , where e 

are the edges in the cut and    are their weights. [4] 

provides a proof that the minimum graph cut can be found 

by minimizing the energy function. As a final step, a unique 

segmentation corresponding to the cut is computed as 

Ap(C) =  
             

              
 .                        (2) 

The details of the procedure are described in [4]. 

4. EXPERIMENTAL RESULTS 

To test the proposed approach, we used a dataset 

containing 20 X-ray galactograms. The ROI containing the 

ductal network was manually segmented from the central 

breast region behind the nipple (i.e., the retroareolar region) 

in each of the 20 breast images. All the branching structures 

had been manually segmented and skeletons annotated by 

the experts. An example of an X-ray galactogram and an 

annotated skeleton of the ductal network and background 

seeds is shown in Figure 1.  

In the original image (Figure 1(a)), the boundaries of the 

ducts are unclear; therefore, it is difficult to segment the 

tree-like structure using edge detection based on grey-level 

intensity. Figure 2(a) shows the segmentation of the ducts 

performed by the expert. It is used as a ground truth to 

compare different segmentation results. Note that the results 

of manual segmentation provided by the different experts 

may vary. A segmentation of the network by the original 

graph cut with gray-level intensity is shown in Figure 2(b). 

Finally, in Figure 2(c) we present the segmentation result 

obtained by our method. 

From the segmentation results, it is easy to see that the 

graph cut algorithm can obtain better results when combined 

with various texture features. The method becomes more 

effective when including texture features that provide more 

spatial information than gray-level intensity alone. 

 

(a) 

 

(b) 

Fig. 1: (a) An original X-ray galactogram, (b) expert annotated 

ductal network and 3 background seeds.  

Figure 3 presents an average ROC curve after the first 

run of the graph cuts algorithm, with three initial 

background seeds. The true positive rate measures the 

proportion of pixels that were identified by the algorithm as 

a part of ductal network and which are manually segmented 

by the expert as such. The false positive rate reflects the 



percentage of the pixels that are classified as a part of 

background and which are manually identified as a 

surrounding tissue by the medical expert. The average area 

under the ROC curve over all experiments was 0.76; 

demonstrating promising preliminary results that can 

potentially speed up and improve the accuracy of the tedious 

manual segmentation task.  

 

(a) 

 

(b) 

 

(c) 

Fig. 2: (a) manual expert segmentation of the vessels, (b) 

segmentation based on the original graph cut method, (c) 

segmentation based on the proposed graph cut algorithm with 

skewness, coarseness, contrast, energy and fractal dimension 

features.  

 

Fig. 3: The average ROC curve after the first run of the graph cuts 

algorithm using three background seeds. 

5. CONCLUSION 

In this paper, we presented a framework for the semi-

automatic segmentation of the breast ductal network from x-

ray galactograms. We focused on characterizing the actual 

topology of the ductal network using the texture features of 

skewness, coarseness, contrast, energy and fractal 

dimension. The well-known graph cut algorithm was used 

as a segmentation tool. Our experimental results show that 

the performance of the algorithm is significantly improved 

with the use of texture features. ROC curve analysis was 

performed to assess the accuracy of the segmentation 

algorithm in discriminating between the ductal network and 

its’ surrounding tissue. The average ROC performance 

obtained on a dataset containing 20 breast images was 0.76, 

demonstrating promising preliminary results and indicate 

that with further improvements our method can potentially 

aid the tedious manual segmentation task. In our future work 

we plan to study the effect of each individual feature on the 

improvement of segmentation and perform more objective 

comparisons using Dice scores.  
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