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Abstract—This paper conducts a systematic study on the role of visual attention in video object pattern understanding. By elaborately
annotating three popular video segmentation datasets (DAVIS16, Youtube-Objects and SegTrackV2

) with dynamic eye-tracking data in
the unsupervised video object segmentation (UVOS) setting, for the first time, we quantitatively verified the high consistency of visual
attention behavior among human observers, and found strong correlation between human attention and explicit primary object
judgments during dynamic, task-driven viewing. Such novel observations provide an in-depth insight of the underlying rationale behind
video object pattens. Inspired by these findings, we decouple UVOS into two sub-tasks: UVOS-driven Dynamic Visual Attention
Prediction (DVAP) in spatiotemporal domain, and Attention-Guided Object Segmentation (AGOS) in spatial domain. Our UVOS solution
enjoys three major advantages: 1) modular training without using expensive video segmentation annotations, instead, using more
affordable dynamic fixation data to train the initial video attention module and using existing fixation-segmentation paired static/image
data to train the subsequent segmentation module; 2) comprehensive foreground understanding through multi-source learning; and 3)
additional interpretability from the biologically-inspired and assessable attention. Experiments on four popular benchmarks show that,
even without using expensive video object mask annotations, our model achieves compelling performance compared with
state-of-the-arts and enjoys fast processing speed (10 fps on a single GPU). Our collected eye-tracking data and algorithm
implementations have been made publicly available at https://github.com/wenguanwang/AGS.

Index Terms—Video Object Pattern Understanding, Unsupervised Video Object Segmentation, Top-Down Visual Attention, Video
Salient Object Detection.
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1 INTRODUCTION

UNSUPERVISED video object segmentation (UVOS), a
task for segmenting primary object(s) from the back-

ground in videos without any human involvement, has been
a long standing research challenge in computer vision [2]–
[6]. It has shown potential benefits for numerous applica-
tions, e.g., action recognition [7] and object tracking [8].

Due to the lack of user interactions in UVOS, it is
very challenging to automatically determine the primary
foreground objects from the complex background in real-
world scenarios. This calls for an in-depth understanding of
foreground object patterns in videos. Although some efforts
were made along this direction, the rationale behind their
choice of the foreground objects are often inconsistent and
intuitive, lacking a theoretical basis and empirical evidence.
For example, early video object segmentation datasets, like
FBMS59 [9] and SegTrackV2

[10], mainly focus on mov-
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Fig. 1. Our UVOS solution has two key steps: Dynamic Visual Attention
Prediction (DVAP, §5.2), cascaded by Attention-Guided Object Segmen-
tation (AGOS, §5.3). The UVOS-aware attention from DVAP acts as an
intermediate video object representation, freeing our method from the
dependency of expensive video object annotations and bringing better
interpretability with human readable and assessable attention maps.

ing object(s), and most of the pioneering efforts in this
area started with geometry-based motion analysis. Different
from these early motion-based datasets, recent benchmarks
(e.g., DAVIS16 [11] and Youtube-Objects [12]) are saliency-
based, which are more aware of salient, primary video object
segmentation. Similar problems have also been experienced
in a closely related research area, video salient object de-
tection (VSOD) [13], which aims to extract a continuous

https://github.com/wenguanwang/AGS
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saliency map for each frame that highlights the most vi-
sually important area. The results from video salient object
detection can be used as a critical cue in pre-processing steps
for many spatio-temporal vision tasks, such as UVOS [14],
[15], video re-timing [16], and thumbnailing [17]. However,
for the widely used VSOD datasets (e.g., ViSal [13] and
DAVIS16 [11]), a biological and testable interpretation for
the choice of the salient object regions, though essential, is
long-term missing.

In this paper, we emphasize the value of human visual
attention in video object pattern modeling. According to
studies in cognitive psychology [18]–[21], during visual
perception, humans are able to quickly orient attentions
to the most important parts of the visual stimuli, allowing
them to achieve goals efficiently. We therefore argue that
human visual attention should be an underlying mechanism
that drives UVOS and VSOD. The foreground in UVOS
and VSOD should contain the object(s) that attracts human
attention most, as the choice of the object(s) should be
consistent with human attention judgments. This provides
a unified, insightful and verifiable explanation for moving
object patterns. Previous studies [22], [23] of visual attention
mechanism in cognitive psychology and computer vision
have shown empirically that both motion and appearance
stimulus are key factors that direct attention allocation in
dynamic viewing. Therefore, from the visual attention point
of view, previous video segmentation datasets, though col-
lected under different strategies, provide insights into our
problem from different angles.

To validate this novel hypothesis, we extend three pop-
ular video segmentation datasets, DAVIS16 [11], Youtube-
Objects [12] and SegTrackV2

[10], with real human fixation
annotation in the UVOS setting. The gaze data are collected
over a total of 190 video sequences with 25,049 frames
from 20 human observers using professional eye-tracking
instruments (§3). To the best of our knowledge, this is the
first attempt to collect UVOS-aware human attention data.
Such comprehensive datasets facilitate us to perform three
essential experiments, i.e., (1) quantifying the inter-subject
consistency, (2) studying the correlation between human
dynamic attention and explicit object judgment, and (3)
analysing the stability of human fixation patterns in the
presence of challenging video processing factors. Three key
observations are found from our empirical analyses:

• There exist highly consistent attention behaviors among
human observers in the UVOS task, though the no-
tion of ‘primary object(s)’ is sometimes ambiguous for
extremely-diverse dynamic scenes.

• There exists a strong correlation between human fixa-
tion and human explicit judgment of primary object(s).

• Fixation patterns among subjects present significant sta-
bility across different video processing challenges and
the ability of human beings of capturing moving objects
is different in the scenes with different challenges.

These findings offer an insightful glimpse into the ra-
tionale behind UVOS from human attention perspective.
Thus inspired, we decompose UVOS into two sub-tasks:
dynamic visual attention prediction (DVAP) and attention-
guided object segmentation (AGOS). Accordingly, we devise
a novel UVOS model with two tightly coupled components

for DVAP and AGOS (see Fig. 1). One extra advantage of
such task decomposition lies in modular training and data
acquisition. Instead of using expensive video segmentation
annotation, the relatively easily-acquired dynamic fixation
data can be used to train DVAP, and existing large-scale
fixation-segmentation paired annotations (e.g., [24], [25]) can
be used to train the AGOS module.1 This is because AGOS
learns to map an individual input frame and fixation data
to a segmentation mask, thus only needs static image data.
Roughly speaking, visual attention acts as a middle-level
representation that bridges dynamic foreground characteris-
tic modeling and static attention-aware object segmentation.
Such design naturally reflects real-world human behav-
ior [26], i.e., first orienting rough attention to important areas
during dynamic viewing, and then focusing on fine-grained,
pixel-wise object segmentation.

In our UVOS model, the DVAP module is built upon
a CNN-convLSTM architecture, where the convLSTM takes
static CNN feature sequence as input and learns to capture
the dynamic visual attention, and the AGOS module is
based on an FCN architecture. Intuitively, DVAP informs
AGOS where the objects are located in each frame, then
AGOS performs refined object segmentation. Besides, our
model brings several important beneficial characteristics:

• Fully-differentiable and supervised attention mechanism. For
AGOS, the attention from DVAP is used as a neural
attention mechanism, thus the whole model is fully-
differentiable and end-to-end trainable. At high level,
DVAP can be viewed as an attention network, which
provides an explicit spatiotemporal attention mecha-
nism to AGOS and is trained in a supervised manner.

• Comprehensive foreground understanding through multi-
source learning and weight sharing. Our experiments with
dynamic gaze-tracking data confirm a strong correla-
tion between eye movements and primary video objects
perception. Training with both fixation and segmenta-
tion data allows more comprehensive foreground un-
derstanding. Moreover, by sharing several initial con-
volutional layers between DVAP and AGOS, informa-
tion can be exchanged efficiently.

• Learning from large-scale affordable data. Deep learning
models are often hungry for large-scale datasets for
training, but segmentation annotation on such datasets
can be profitably expensive. Our model leverages more
affordable dynamic gaze data and existing large-scale
attention-segmentation paired image data to achieve
the same goal. Our experiments show that our model
yields promising segmentation results without training
on the ground-truth video segmentation data.

• Biologically-inspired and assessable interpretability. The at-
tention learned from DVAP not only enables our model
attend to the important object(s), but also offers an
extra dimension to interpret where our model focuses
on. Such interpretability is meaningful (biologically-
inspired) and assessable (w.r.t. human gaze records).

1. According to the statistics offered by the DAVIS committee, it
took around 30 minutes per-frame to annotation with 5 specialists. In
contrast, with eye-tracker equipment, annotating each frame takes only
1∼2 seconds.
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1.1 Our Contributions
Our contributions in this paper are summarized as follows:

1) We complement existing famous dynamic computer
vision annotated datasets (i.e., DAVIS16 [11], Youtube-
Objects [12], and SegTrackV2 [10]) with human eye
movements collected under the ecological constraints
of the UVOS task (§3). To the best of our knowledge,
these are the first large human eye tracking datasets
specifically collected and publicly shared for UVOS.

2) With our collected top-down visual eye tracking data,
for the first time, we systemically conduct studies on
the human attention behaviors in the context of UVOS
task (§4). Our findings underline the remarkable sta-
bility of patterns of visual search among subjects and
verify the strong correlation between human visual
fixation allocation and video object determination, at
least within the class of the datasets we studied. We
also explore human gaze patterns with different video
processing challenges. Our studies shed light on the ra-
tionale behind UVOS (and its related task: VSOD) from
a view of top-down human visual attention mechanism.

3) With our findings that suggest a remarkable degree of
consistency between dynamic fixation and video ob-
ject determination patterns of human subjects, we pro-
pose a powerful, fully differentiable, and biologically-
inspired UVOS model that fully exploits the value of vi-
sual attention (§5). Our model produces state-of-the-art
results on both motion-based dataset (i.e., FBMS59 [9])
and saliency-based benchmarks (i.e., DAVIS16 [11],
DAVIS17 [27] and Youtube-Objects [12]), with the use
of acquired video fixation data (§6). Such results empir-
ically verify that the above datasets, despite of different
definitions of video objects, capture essential character-
istics of moving object patterns.

This paper builds upon our conference paper [1] and
significantly extends it in various aspects. First, we per-
form in-depth analyses on the changes of the stability of
human fixation patterns and the alignment between hu-
man visual attention and video object determination, with
different video processing challenging factors. Second, we
provide more details regarding our eye-tracking data collec-
tion, the formulation and implementation of our proposed
UVOS algorithm. Third, we report much more extensive
experimental results with an additional large-scale dataset,
FBMS59 [9], for further validation. Last but not least, to
further demonstrate the effectiveness of our model, we
examine its performance on DAVIS17 [27] with an instance-
level segmentation setting. We expect this work, together
with our newly collected data, to provide deep insight
into the underlying mechanism behind UVOS and VSOD,
and to inspire more related studies. Our eye-tracking data,
algorithm implementations and all the segmentation results
are made publicly available to the research community at
https://github.com/wenguanwang/AGS.

2 RELATED WORK

2.1 Unsupervised Video Object Segmentation
The problem of automatic binary foreground/background
video segmentation has been widely addressed in the vi-
sion community for more than two decades [2], [3]. Earlier

methods mainly focus on motion analysis, i.e., extracting
information from sequential images to describe movement.
They were typically geometry-based, constrained to specific
families of background-induced motion patterns [5], [28].
Then, trajectory-based methods [9], [29]–[34] were proposed
to capture long-term motion information and segment all
objects which are moving (in 3D) relative to the scene
background. These methods, however, are constrained to
the accuracy of optical flow estimation, thus easily suffer
difficulties in the presence of highly non-rigid motions.
Later, more research efforts were devoted to the task of
video segmentation without human interaction, or more pre-
cisely, UVOS. UVOS addresses segmenting the prominent
foreground objects, rather than all moving objects, in un-
constrained videos. Please note that in UVOS setting, a
training set can still be used for fully supervised learning
methods, but there is no any interaction or annotation used
during the testing phase. Earlier UVOS methods typically
employ saliency cues [13], [15], [35], [36] or objectness
information [37]–[42] for better identifying the main objects,
and rely on certain heuristic priors (e.g., local motion differ-
ence [32], background prior [43]). However, they suffer from
significant feature engineering and meet problems in case of
violation of their underlying assumptions.

More recently, with the renaissance of artificial neural
networks, Fragkiadaki et al. [40] proposed to learn a multi-
layer perceptron based moving objectness detector (MOD)
to assist UVOS. This work represents an early attempt
towards applying deep learning techniques to this area.
However, since the MOD is built upon a fully connected
network (FCN), it cannot model spatial information and suf-
fers from heavy computation burden. Later, many fully con-
volutional networks based models were proposed, which
typically adopt two-stream architecture [44], [45] or CNN
encoder-decoder structure [14], [46]–[48]. More recently, the
Siamese network [49] and graph neural network [50] were
introduced to address the issue of multi-frame information
mining. The above efforts mainly concentrated on object-
level setting, only few recent work [51] addressed instance-
level video object segmentation. These representative deep
UVOS models generally achieve promising performance,
due to the strong learning ability of deep neural networks.

Although UVOS has been extensively studies in several
years, a clear definition of ’primary video objects’ is still
missing. Additionally, many UVOS models [14], [15], [32],
[35], [36], [52], [53] use saliency (or foreground-map, a simi-
lar notion), they are either heuristic methods lacking end-
to-end trainability or based on object-level saliency cues,
instead of an explicit, biologically-inspired visual attention
representation. None of them quantifies the consistency
between visual attention and explicit primary video object
determination. Furthermore, previous deep UVOS models
are limited to the availability of large-scale well-annotated
video data. By contrast, via leveraging dynamic visual at-
tention as an intermediate video object representation, our
approach offers a feasible way to alleviate this problem.

2.2 Video Salient Object Detection

VSOD targets at highlighting the most visually important
object regions from dynamic videos, i.e., giving a saliency

https://github.com/wenguanwang/AGS
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TABLE 1
Statistics of dynamic eye-tracking datasets. Previous datasets are

either collected for bottom-up attention during free-viewing or related to
other tasks. By contrast, we extend existing DAVIS16 [11],

Youtube-Objects [12], and SegTrackV2
[10] datasets with extra

UVOS-aware gaze data.

Dataset Pub. Year #Videos #Viewers Task
CRCNS [70] TIP 2004 50 15 scene unders.

Hollywood-2 [71] TPAMI 2012 1707 19 action recog.
UCF sports [71] TPAMI 2012 150 19 action recog.

SFU [72] TIP 2012 12 15 free-view
DHF1K [73] CVPR 2018 1000 17 free-view

DAVIS16 (Ours)
-

2019 50 20 UVOS
Youtube-Objects (Ours) 2019 126 20 UVOS

SegTrackV2
(Ours) 2019 14 20 UVOS

value for each pixel in the videos sequences. This prob-
lem recently attracted a great deal of research interest
in computer vision since the continuous saliency maps
are valuable for a wide range of object-level applications,
such as content-aware media re-targeting [54], [55], object
tracking [56], and video object segmentation [15]. Being a
relatively new task, VSOD can be traced back to the pioneer
works in [57] and [58], which are inspired by the studies
in visual attention modeling [59]. Early methods [13], [15],
[60]–[62] largely relied on hand-crafted, low-level features
(e.g., color, optical flow, HOG, etc.), theories of visual atten-
tion in cognitive area (e.g., feature integration theory [19],
guided search [20], etc.) and heuristics for the salient ob-
jects or background (e.g., color contrast [63], background
prior [64]). Later, deep learning-based methods become
dominant. Some representative works [14], [65]–[67] are
built upon well-designed network architectures for semantic
segmentation (e.g., FCNs [68], DeepLab [69], etc.).

Though the importance of visual attention patterns is
emphasized in this task, previous VSOD models rarely
explored eye fixation information. In addition, they are
typically benchmarked on existing UVOS datasets [10]–
[12], while lacking support from experimental evidence on
the agreement between video object annotation and visual
attention deployment. In this work, we perform behavioral
studies that investigate how humans select video primary
objects explicitly and how these judgments relate to eye
movements during dynamic task-driven viewing. Our find-
ings give an in-depth glimpse into both UVOS and VSOD
based on visual attention patterns. Moreover, with the in-
tegration of a neural attention mechanism and human eye
fixation data, our model goes one step further towards a
more biologically inspired VSOD solution.

2.3 Visual Attention Prediction

Human attention mechanism plays an essential role in
visual information perception and processing. In the past
decade, the computer vision community has made active
research efforts on computationally modeling such selective
attention process [74]. According to the underlying mecha-
nism, attention models can be categorized as either bottom-
up (exogenous) or top-down (endogenous). The former one
is concerned solely with the stimuli and independent of the
state of human mind. In such case, there should be some
intrinsic property that predicts which stimuli will win and

which will lose the competition for attention [75]. In con-
trast, the willed attentional effects are under clear voluntary
control, i.e., the voluntary allocation of attention to certain
features, objects, or regions in space. Early attention mod-
els [76]–[86] are based on biologically-inspired features (e.g.,
color, edge, optical flow, etc.) and cognitive studies about
visual attention (e.g., attention shift [18], feature integration
theory [19], guided search [20], etc.). Recently, deep learning
based attention models [73], [87]–[90] were proposed and
generally yield better performance.

Despite the rapid development in this area, most pre-
vious methods are static, bottom-up attention models and
none of them is specially designed for modeling UVOS-
driven, top-down attention in dynamic scenes. Though
some eye-tracking datasets [70]–[73] were established and
greatly advanced the development of attention model-
ing in dynamic scenes, they are constructed under free-
viewing [72], [73] or other task-driven settings [70], [71]
(see Table 1). Differently, in this work, numerous eye gaze
data on popular video segmentation datasets [10]–[12] are
carefully collected under the ecological constraints of the
UVOS task. Consequently, for the first time, a dynamic, top-
down attention model is learned for guiding UVOS. With
above efforts, we expect to establish a closer link between
UVOS, VSOD and visual attention prediction.

2.4 Trainable Attention in Neural Networks
Recent years have witnessed rapid growth of research to-
wards integrating neural networks with fully-differentiable
attention mechanism. The neural attention stimulates the
human selective attention mechanism and allows the net-
work focus on the most task-relevant parts of the input. It
is built upon weighted average instead of hard selection
and thus is deterministic. It has shown wide successes in
natural language processing and computer vision tasks,
such as machine translation [91], image captioning [92],
visual question answering [93], and image classification [94],
[95], to list a few. Those neural attentions are learned in an
implicit, goal-oriented and end-to-end way.

Our DVAP module can be viewed as a neural attention
mechanism, as it is end-to-end trainable and used for soft-
weighting the feature of AGOS models. It differs from the
others in its UVOS-aware nature, explicitly-training ability
(with the availability of ground-truth data), and spatiotem-
poral application domain.

3 UVOS-AWARE EYE-TRACKING DATA COLLEC-
TION

One objective of our work is to contribute extra eye-
fixation annotations to three public video segmentation
datasets [10]–[12]. Fig. 2 shows some example frames with
our UVOS-aware eye-tracking annotation, along with visual
attention distributions over each dataset.
Stimuli: In our eye tracking study, the dynamic stimuli are
from DAVIS16 [11], Youtube-Objects [12], and SegTrackV2

[10]. DAVIS16 is a popular UVOS benchmark containing 50
video sequences with totally 3455 frames. Youtube-Objects
is a large dataset with 126 videos covering 10 common
object categories, with 20,647 frames in total. SegTrackV2

consists of 14 short videos with totally 947 frames.
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Fig. 2. Example frames from three datasets [10]–[12] with our eye-
tracking annotation (§3). The last column shows the average attention
maps of these datasets. We quantitatively verify (§4) the high consis-
tency between human attention behavior (2nd column) and primary-
object determination (3rd column).

Apparatus: Observer eye movements were recorded us-
ing a table-mounted, video-based SMI RED250 eye tracker
(SensoMotoric Instruments), with observers’ gaze paths at
250Hz as they viewed the series of videos. The dynamic
stimuli were displayed on a 19” computer monitor at a
resolution of 1440× 900px and in their original speeds.
A headrest was used to stabilize the observers’ head and
maintain a viewing distance of about 68 cm, as advised by
the product manual.
Participants: Twenty participants (12 males and 8 females,
age range 21-30 years), who passed the eye tracker cal-
ibration with less than 10% fixation dropping rate, were
qualified for our experiment. All had normal/corrected-to-
normal vision and never seen the stimuli before.
Recording protocol: The subjects were informed that they
would watch a series of unrelated silent video clips. The
stimuli were equally partitioned into 10 non-overlapping
sessions and their original frame rates and aspect ratios
are maintained during gaze-data capturing. The experi-
menters first ran the standard SMI calibration routine with
recommended settings for the best results. The calibration
procedure was repeated until an acceptable calibration was
obtained as determined by means of validation procedure
offered by the product. This procedure expected participants
to look at four small circles near the middle of the screen.
The calibration was considered to be acceptable if a fixation
was shown for each circle and no fixation appeared in
an obvious outlier position. During viewing, the stimulus
videos were displayed in random order and the participants
were instructed to identify the primary object occurring in each
stimulus. Since we aim to explore human attention behavior
in UVOS setting, each stimulus was repeatedly displayed
three times to help the participants better capture the video
content. Such data capturing design is inspired by the pro-
tocol in [72]. To avoid eye fatigue, 5-second black screen was
intercalated between each. Additionally, the stimuli were
split into 5 sessions. After undergoing a session of videos,
the participant can take a rest. Finally, a total of 12 318 862
fixations were recorded from 20 subjects on 190 videos. To
obtain a continuous fixation map from the eye tracking data,
for each frame, we convolve all the fixation locations with a
small Gaussian filter. As suggested by [96], [97], the size of
the Gaussian is chosen as one degree of visual angle (∼ 30
image pixels in our case). The fixation map is normalized to

TABLE 2
Quantitative results of inter-subject consistency (ISC) and

inter-task correlation (ITC), measured by AUC-Juddy. The high
ISC-scores over all the three datasets are significantly higher above

chance (i.e., AUC-Juddy of a random map is 0.5), suggesting the
consistency subjects’ attention behavior. Moreover, the ITC scores,
which are significantly higher than chance, demonstrating the strong
correlation between top-down dynamic visual attention and human’s

determination of primary objects. See §4 for details.

Aspect Metric DAVIS16 [11] Youtube-Object [12] SegTrackV2
[10]

ISC AUC-J 0.899±0.029 0.876±0.056 0.883±0.036(chance=0.5)

ITC AUC-J 0.704±0.078 0.733±0.105 0.747±0.071(chance=0.5)

range between zero and one.

4 IN-DEPTH DATA ANALYSIS

Inter-subject consistency: We first conduct experiments
to analyze eye movement consistency within subjects. To
quantify such inter-subject consistency (ISC), following the
protocols in [25], data from half of the subjects are ran-
domly selected as the test subset, leaving the rest as the
new ground-truth subset. After that, AUC-Juddy [98], a
classic visual attention evaluation metric, is employed to
the test subset to measure ISC. The experimental results are
shown in Table 2. It is interesting to find that there exists
high consistency of top-down attention behaviors among
human subjects, across all the three datasets. The correlation
scores (0.899 on DAVIS16, 0.876 on Youtube-Object, 0.883
on SegTrackV2

) are significantly above chance (0.5). The
chance level is the accuracy of a random map with value
of each pixel drawn uniformly random between 0 and 1.
This novel observation further suggests that, even though
‘unsupervised video object(s)’ is often considered as ill-
defined [99]–[101], there do exist some ‘universally-agreed’
visually important clues that attract human attentions stably
and consistently.
Correlation between visual attention and video object
determination: It is essential to study whether human visual
attention and video primary object judgment agree with
each other, which has never been explored before. Here
we apply the experimental protocol suggested by [102] to
calculate the inter-task correlation (ITC). More specifically,
we use the segmentation mask to explain the fixation map.
During the computation of AUC-Juddy metric, human fix-
ations are considered as the positive set and some points
sampled from other non-fixation positions as the negative
one. The segmentation mask is then used as a binary classi-
fier to separate positive samples from negative samples. The
results are reported in Table 2, showing that visual attention
does not fall on the background significantly higher than
its corresponding chance level. Taking Youtube-Objects as
an example, the correlation score 0.733 (std = 0.105) is
significantly above chance using t-test (p < 0.05). This
observation reveals the strong correlation between human
dynamic visual attention and video object determination. It
is also in alignment with our expectation that foreground
object(s) should be resided in visually important regions
that attract human attention most.
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TABLE 3
Attribute-based aggregate results of inter-subject consistency (ISC) and inter-task correlation (ITC) on DAVIS16 with AUC-Juddy.
Significant performance drops (more than 1% decrease compared with the average score) are denoted by underline. See §4 for details.

AttributeDataset Metric Type AC BC CS DB DEF EA FM HO IO LR MB OCC OV SC SV Avg.

DAVIS16 AUC-J ISC 0.899 0.893 0.909 0.910 0.902 0.903 0.898 0.901 0.898 0.906 0.899 0.903 0.903 0.896 0.902 0.899
ITC 0.702 0.737 0.709 0.711 0.699 0.702 0.678 0.689 0.682 0.661 0.675 0.690 0.686 0.681 0.688 0.704

Performance change of ISC and ITC with video processing
challenges: In DAVIS16, the videos are categorized accord-
ing to their various attributes, i.e., appearance change (AC),
background clutter (BC), camera shake (CS), dynamic back-
ground (DB), deformation (DEF), edge ambiguity (EA), fast
motion (FM), heterogeneous objects (HO), interesting ob-
jects (IO), low resolution (LR), motion blur (MB), occlusion
(OCC), out-of-view (OV), shape complexity (SC), and scale-
variation (SV). The attributes are major challenges typically
faced in video processing, and allow us to further study the
influence of these challenging factors on ISC and ITC. In
Table 3 we report the AUC-Juddy scores of ISC and ITC on
different subsets of DAVIS16 characterized by a particular
attribute and underline the significant performance drops
with 1% decrease with respective to the average scores.

From the attribute-based analysis, we first observe that
the willed attentional effects among human subjects are still
highly correlated, and the scores of ISC did not change
significantly over different challenges. This implies that
our recorded attention is in a top-down form, i.e., driven
by human endogenous expectations (or values), being in-
dependent of the extrinsic property of stimuli. This also
suggests the importance of expectations in the operation
of top-down attentional biasing. Based on the pre-defined
task instruction, the human beings share similar values
that determine consistent top-down biases [75], ignoring the
challenging factors in external circumstances. We then find
that some challenging factors (i.e., FM, MB) decrease the ITC
score significantly. This demonstrates that, even for human
beings, it is hard to handle some challenges. In addition,
the significant drop of ITC score on the FM subset further
supports the view in cognitive science that human dynamic
attention, as a tracking mechanism, estimates the position
of targets with some uncertainty [103]. As the speed at the
target move increases, the positional uncertainty increases,
leading to inferior ITC score. Another interesting phenom-
ena is that the observers perform very well with the scenes
with BC. This seems to imply that human visual attention
handles BC well or may be just because the scenes with BC
in DAVIS16 happen to be relatively easy. Further, human be-
ings have little difficulty distinguishing foreground objects
from the background when facing some challenges such as
AC, CS, and EA.

5 PROPOSED UVOS METHOD

According to our analyses in §4, human top-down visual
attention and video object determination are highly corre-
lated. We therefore decompose UVOS into two cascaded
sub-tasks (§5.1): predicting UVOS-aware visual attention
in spatiotemporal domain and then performing attention-
guided object segmentation for each individual frame. Ac-
cordingly, our model is devised as a unity of two tightly

coupled sub-networks (see Fig. 3 (a)): dynamic visual attention
prediction (DVAP) module (§5.2), and attention-guided object
segmentation (AGOS) module (§5.3). Specifically, DVAP cap-
tures spatiotemporal foreground characteristics via dynamic
UVOS-aware attention. It provides an explicit attention
mechanism to allow AGOS focus on visually important
areas and produce precise object segments. DVAP benefits
from our collected UVOS-aware gaze-tracking data, while
AGOS can be trained with attention-segmentation paired
groundtruth from existing image (instead of video) segmen-
tation datasets [24], [25]. The two modules share weights
of several initial convolution layers, leading to a unified,
end-to-end trainable UVOS model without using expensive
pixel-wise video segmentation annotation (§5.4).

5.1 Problem Formulation

Denote an input video with T frames as {It ∈RW×H×3}Tt=1,
then the goal of UVOS is to generate the correspond-
ing sequences of binary video object segmentation-masks
{St∈{0, 1}W×H}Tt=1. Many recently proposed UVOS meth-
ods [14], [44], [45], [48] learn a DNN as a mapping function
FUVOS:RW×H×3×T→{0, 1}W×H×T that directly maps the input
into the segmentation masks:

{St}Tt=1 =FUVOS({It}Tt=1). (1)

To learn such direct input-output mapping FUVOS, numer-
ous pixel-wise video segmentation annotations are needed,
which are however very expensive to obtain.

In this work, we instead propose an input-attention-
output mapping strategy for UVOS. Specifically, a DVAP
module FDVAP is first designed to predict dynamic UVOS-
aware visual attentions {At∈ [0, 1]W

′×H′×}Tt=1:

{At}Tt=1 =FDVAP({It}Tt=1). (2)

An AGOS module FAGOS, which takes a single frame image
It and corresponding attention map At as input, is then
used to generate final segmentation result St:

St =FAGOS(It,At), t ∈ {1, 2, . . . , T}. (3)

As shown in Fig. 3 (a), {At}Tt=1 encode both static object
infomation and temporal dynamics, enabling AGOS to fo-
cus on fine-grained segmentation in spatial domain, i.e.,
applying AGOS for each frame individually. Essentially, the
visual attention, as a biologically-inspired visual cue and
intermediate object representation, links DVAP and AGOS
together, and offers an explicit interpretation by telling
where our model is looking at. Next we elaborate our DVAP
and AGOS modules in details.
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Fig. 3. Illustration of the proposed UVOS model. (a) Simplified schematization of our model that solves UVOS in a two-step manner, without the
need of training with expensive precise video object masks. (b) Detailed network architecture, where the DVAP (§5.2) and AGOS (§5.3) modules
share the weights of three bottom convolution blocks. The UVOS-aware attention acts as an intermediate object representation that connects the
two modules densely. Best viewed in color. Zoom in for details.

5.2 DVAP Module

The DVAP module is built on a CNN-convLSTM architec-
ture (see Fig. 3 (b)), where the CNN layers are borrowed
from the first five convolutional blocks of ResNet101 [104].
To preserve more spatial details, we reduce the stride of
the last block to 1. Given the input video sequence {It}Tt=1

with typical 473×473 spatial resolution, the spatial feature
sequence {Xt ∈ R30×30×2048}Tt=1 from the top-layer of the
CNN network is fed into a convLSTM for learning the
dynamic visual attention. ConvLSTM [105], proposed as a
convolutional counterpart of conventional fully connected
LSTM, introduces convolution operation into input-to-state
and state-to-state transitions. ConvLSTM is favored here as
it preserves spatial details as well as modeling temporal
dynamics simultaneously. Our DVAP module FDVAP can be
formulated as follows:

Xt = CNN(It),

Yt = convLSTM(Xt,Yt−1),

At = R(Yt),

(4)

where Yt indicates the 3D-tensor hidden state (with 32
channels) of convLSTM at time step t. R is a readout
function that produces the attention map from the hidden
state, implemented as a 1× 1 convolution layer with the
sigmoid activation function.

In the next section, we employ DVAP as an attention
mechanism to guide AGOS to concentrate more on the vi-
sually important regions. An extra advantage of such design
lies in disentangling spatial and temporal characteristics of
foreground objects, as DVAP captures temporal information
by learning from dynamic-gaze data, and thus allows AGOS
to focus on pixel-wise segmentation only in spatial domain
(benefiting from existing large-scale image datasets with
paired fixation and object segmentation annotation).

5.3 AGOS Module
The attention obtained from DVAP suggests the location of
the primary object(s), offering informative cue to AGOS for
pixel-wise segmentation, as achieved by a neural attention
architecture. Before going deep into our model, we first give
a general formulation of neural attention mechanisms.
General neural attention mechanism: A neural attention
mechanism equips a network with the ability to focus on a
subset of input feature. It computes a soft-mask to enhance
the feature by multiplication operation. Formally, let i∈Rd

be an input vector, z∈Rk a feature vector, a∈ [0, 1]k an at-
tention vector, g∈Rk an attention-enhanced feature and fA
an attention network. The neural attention is implemented
as:

Attention: a = fA(i),

Feature enhancement:
z = fZ(i),

g = a� z,

(5)

where � is element-wise multiplication, and fZ indicates
a feature extraction network. Some neural attention mod-
els [92] equip attention function fA with soft-max to con-
straint the values of attention between 0 and 1. Since the
above attention framework is fully differentiable, it is end-
to-end trainable. However, due to the lack of ‘ground-truth’
of the attention, it is trained in an implicit way.
Explicit, spatiotemporal, and UVOS-aware attention
mechanism: We integrate DVAP into AGOS as an attention
mechanism. Let Zt,Gt denote respectively a segmentation
feature and an attention glimpse with the same dimensions,
our UVOS-aware attention is formulated as:

Spatiotemporal attention: {At}Tt=1 = FDVAP({It}Tt=1),

Spatial feature enhancement:
Zt = FZ(It),

Gc
t = At � Zc

t ,

(6)

where FZ extracts segmentation features from the input
frame It (will be detailed latter). Gc and Zc indicate the
feature slices of G and Z in the c-th channel, respectively. As



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

seen, our UVOS-aware attention encodes spatial foreground
information as well as temporal characteristics, enabling the
AGOS module perform object segmentation over each frame
individually. For the position with an attention value close
to 0, the corresponding feature response will be suppressed
greatly. This may lose some meaningful information. In-
spired by [95], [104], the feature enhancement step in Eq. 6
is improved with a residual form (see Fig. 3 (b)):

Gc
t = (1 + At)� Zc

t . (7)

This strategy retains the original information (even with a
very small attention value), while enhances object-relevant
features efficiently. Besides, due to the availability of the
ground-truth gaze data, our UVOS-aware attention mecha-
nism is trained in an explicit manner (detailed in §5.4).

The AGOS module is also built upon convolutional
blocks of ResNet101 [104] and modified with the ASPP mod-
ule proposed in DeepLabV 3 [69]. With an input frame image
It ∈R473×473×3, a segmentation feature Zt ∈R60×60×1536 can
be extracted from the ASPP module FASPP. The attention
map At is also ×2 upsampled by bilinear interpolation.
Finally, our AGOS module in Eq. 6 is implemented as:

Spatiotemporal attention: {At}Tt=1 = FDVAP({It}Tt=1),

Spatial feature enhancement:
Zt = FASPP(It),

Gc
t = (1 + At)� Zc

t .

(8)

Knowledge sharing between DVAP and AGOS: DVAP
and AGOS modules share similar underlying network ar-
chitectures (conv1-conv5 of ResNet101), while capturing ob-
ject information from different perspectives. We develop a
technique to encourage knowledge sharing between the two
networks, rather than learning each of them separately. In
particular, we allow the two modules to share the weights of
the first three convolutional blocks (conv1, conv2, and conv3),
and then learn other higher-level layers separately. This is
because the bottom-layers typically capture low-level infor-
mation (edge, corner, etc.), while the top-layers tend to learn
high-level, task-specific knowledge. Moreover, such weight-
sharing strategy improves our computational efficiency and
decreases parameter storage. See §6.6 for more detailed
experiments regarding our knowledge sharing strategy.

5.4 Implementation Details

Training loss: For DAVP, given an input frame I ∈
R473×473×3, it predicts an attention map A∈ [0, 1]30×30. Here
the temporal subscript is omitted for simplicity. Denote by
P∈ [0, 1]30×30 and F∈ {0, 1}30×30 the ground-truth continu-
ous attention map and the binary fixation map, respectively.
F is a discrete map, recording whether a pixel receives
human-eye fixation position, and P is obtained by blurring
F with a small Gaussian filter. Inspired by [87], the loss
function LDVAP for DAVP is designed as:

LDVAP(A,P,F) =LCE(A,P) + α1LNSS(A,F)+

α2LSIM(A,F) + α3LCC(A,P),
(9)

where the LCE indicates the classic cross entropy loss, and
LCC,LNSS, LSIM are derived respectively from three widely-
used visual attention evaluation metrics named Normalized
Scanpath Saliency (NSS), Similarity Metric (SIM) and Linear

Correlation Coefficient (CC). Such combination leads to im-
proved performance due to comprehensive consideration of
different quantification factors as in [87]. We use LCE as the
primary loss, and set α1 = α2 = α3 = 0.1.

For AGOS, given I, it produces the final segmentation
prediction2 S ∈ [0, 1]60×60. Let M ∈ {0, 1}60×60 denote the
ground-truth binary segmentation mask, the loss function
LAGOS of the AGOS module is formulated as:

LAGOS(S,M) = LCE(S,M). (10)

Training protocol: We leverage both video gaze data and
attention-segmentation paired image data to train our whole
UVOS model. The training process is iteratively performed
on a video training batch and an image train batch. Specif-
ically, in the video training batch, we use dynamic gaze
data to train the DVAP module only. Given the training
video sequence {It}Tt=1, let {At,Pt,Ft}Tt=1 denote the cor-
responding attention predictions, ground-truth continuous
attention maps and discrete fixation maps, we train our
model by minimizing the following loss (see Fig. 3 (a)):

Ld =
∑T

t=1
LDVAP(Ad

t ,P
d
t ,F

d
t ), (11)

where the superscript ‘d’ represents dynamic video data.
Note that we do not consider LAGOS loss to save the ex-
pensive pixel-wise segmentation ground-truth.

The image training batch contains several attention-
segmentation paired image masks, which are used to
train both DVAP and AGOS modules simultaneously. Let
{I,S,F,M} denote a training sample in the image training
batch, which includes a static image and corresponding
ground-truth (i.e., continuous attention map, binary fixation
map, and segmentation mask). The overall loss function
combines both LDVAP and LAGOS:

Ls = LDVAP(As,Ps,Fs) + LAGOS(Ss,Ms), (12)

where a superscript ‘s’ is used to emphasize the static nature.
By using static data, the total time span of convLSTM in
DVAP is set to 1. This way, the convLSTM can be viewed
as a convolution layer, and the weights of the dynamic state
transition matrix are skipped. The rationale here is intuitive:
although the DVAP module is a dynamic attention model,
it should also work well for static scenes. Such a design also
improves the generalization ability of the DVAP module.

Our model is implemented in a modified version of
Caffe, and trained using the SGD optimizer. The learning
rate is set to 0.0001 and is decreased by a factor of 10 every
2 epochs. The network is trained for 10 epochs. Each video
training batch uses 2 videos, each with 3 consecutive frames.
Both the videos and the start frames are randomly selected.
Each image training batch contains 6 randomly sampled
images. Data augmentation (e.g., flipping, cropping) is also
performed. The whole training procedure takes around ∼30
hours on a Titan-X GPU.

6 EXPERIMENTS

In this section, we first elaborate our training and testing
protocols in §6.1. Then we investigate the performance of

2. We slightly reuse S for representing the segmentation prediction.
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TABLE 4
Statistics of the training and testing datasets, where ‘Fix.’, ‘O.-Seg.’ and ‘I.-Seg., indicate ‘eye fixation annotation’, ‘object-level segmentation

annotation’, and ‘instance-level segmentation annotation’, respectively. During training, we only employ dynamic fixation video data and
fixation-segmentation paired static image data, saving our method from the labor-expensive video segmentation annotation data.

Video Datasets Image Datasets
DAVIS16 [11] DAVIS17 [27] FBMS59 [9]Datasets

Train Test Train Val Test-dev Train Test
Youtube-

Object [12]
Seg-

TrackV2 [10]
DUT-O [24] PASCAL-S [25]

#Videos 30 20 60 30 30 29 30 126 14 - -
#Images 2,079 1,376 4,209 1,999 2,294 6,554 7,306 20,647 4,447 5,168 850

Annotatation Fix. O.-Seg. Fix. O.-Seg. I.-Seg. I.-Seg. I.-Seg. O.-Seg. O.-Seg. Fix. O.-Seg. Fix. O.-Seg. Fix. O.-Seg. Fix. O.-Seg.
Train Phrase X X X X X X
Test Phrase X X X X X X X

our DVAP module for the dynamic fixation prediction task
(§6.2). We further evaluate the performance of our whole
model for the object-level UVOS task (§6.3). After that, in
§6.4, we conduct experiments on the instance-level UVOS
setting. Latter, in §6.5, we test our model on the VSOD
setting. To gain a deeper insight into our model, we conduct
detailed ablative studies in §6.6. Finally, run time analysis
is presented in §6.7. For fairness, all the experiments are
performed on a workstation with an Intel Core i7-6700
@3.4GHz CPU and a GTX 1080Ti GPU.

6.1 Experimental Setting

Training data: During training, we use the video sequences
and corresponding fixation data from the training split of
DAVIS16 [11] and the whole SegTrackV2

[10], leading to
totally 54 videos with 6,526 frames. Additionally, two image
salient object datasets, DUT-O [24] and PASCAL-S [25], offer
both static gaze data and segmentation annotations, and are
thus also used in our training phase, resulting in totally
6,018 static training examples. More statistics about our
training data can be found in Table 4. As seen, our model
is trained without labor-intensive pixel-wise video segmen-
tation masks, by leveraging easily-acquired dynamic gaze
data and static attention-segmentation annotation pairs.
In §6.3, we quantitatively demonstrate that, even without
training on video segmentation annotations, the suggested
model is still able to achieve state-of-the-art performance.
Testing phase: Given a test video, all the frames are uni-
formly resized to 473× 473 and fed into our model for
the corresponding primary object predictions. Following the
common protocol [14], [46], [106] in video segmentation, the
fully-connected CRF [107] is employed to obtain the final
binary segmentation results. For each frame, the forward
propagation of our network takes about 0.1s, while the CRF-
based post-processing takes about 0.5s.

6.2 Performance of DVAP Module

Test datasets: We evaluate our DVAP module on the test
set of DAVIS16 [11] and the full Youtube-Objects [12], with
the gaze-tracking ground-truth (see details in Table 4), and
there is no overlap between the training and test data.
Evaluation metrics: Five standard metrics: AUC-Judd
(AUC-J), shuffled AUC (s-AUC), NSS, SIM, and CC, are
used for comprehensive study (see [109] for details).
Quantitative and qualitative results: We compare our
DVAP module with 12 state-of-the-art visual attention mod-
els, including 5 deep models [73], [87], [88], [90], [108] and 6

TABLE 5
Quantitative comparison of visual attention models on the test set

of DAVIS16 [11] (§6.2). (The three best scores are indicated in red,
blue and green, respectively. * indicates deep learning based models.

These notes are the same for Tables 6,7,8,9,10 and 12.)

Dataset Methods AUC-J ↑ SIM ↑ s-AUC ↑ CC ↑ NSS ↑

DAVIS16

*ACL [73] 0.901 0.453 0.617 0.559 2.252
*OMCNN [108] 0.889 0.408 0.621 0.518 2.101

*DVA [90] 0.885 0.382 0.647 0.494 1.906
*DeepNet [88] 0.880 0.318 0.644 0.470 1.866

*ShallowNet [88] 0.874 0.293 0.622 0.471 1.871
*SALICON [87] 0.818 0.276 0.628 0.352 1.432

STUW [83] 0.892 0.363 0.636 0.508 2.019
PQFT [84] 0.685 0.202 0.584 0.191 0.821

Seo et al. [86] 0.724 0.234 0.582 0.222 0.923
Hou et al. [85] 0.782 0.263 0.581 0.273 1.119

GBVS [80] 0.882 0.294 0.617 0.442 1.683
ITTI [74] 0.820 0.249 0.621 0.354 1.332

*Ours 0.909 0.504 0.667 0.620 2.507

TABLE 6
Quantitative comparison of different visual attention models on

Youtube-Objects [12] (§6.2).

Dataset Methods AUC-J ↑ SIM ↑ s-AUC ↑ CC ↑ NSS ↑
*ACL [73] 0.912 0.405 0.711 0.531 2.627

*OMCNN [108] 0.889 0.326 0.698 0.461 2.307
*DVA [90] 0.905 0.372 0.741 0.526 2.294

*DeepNet [88] 0.894 0.268 0.737 0.448 2.182
*ShallowNet [88] 0.890 0.252 0.704 0.436 2.069

Youtube- *SALICON [87] 0.840 0.265 0.692 0.380 1.956
Objects STUW [83] 0.869 0.264 0.666 0.388 1.876

PQFT [84] 0.730 0.170 0.646 0.210 1.061
Hou et al. [85] 0.786 0.221 0.639 0.243 1.223
Seo et al. [86] 0.763 0.210 0.605 0.224 1.118

GBVS [80] 0.881 0.244 0.706 0.395 1.919
ITTI [74] 0.837 0.214 0.709 0.339 1.638

*Ours 0.914 0.419 0.747 0.543 2.700

traditional ones [74], [80], [83]–[86]. The results are obtained
through running their publicly released codes with default
parameters. Quantitative results are summarized in Tables 5
and 6. As seen, our DVAP generally outperforms other
competitors, as none of them is specifically designed for
UVOS-aware attention prediction. Our promising quantita-
tive results, as well as qualitative results in the middle row
in Fig. 4, verify that DVAP can guide our UVOS model to
accurately attend to visually attractive regions in videos.

6.3 Performance of Our Full UVOS Model
Test datasets: Following the common protocol in [14], [44],
[67], the test sets of DAVIS16 [11] and FBMS59 [9], and
the whole Youtube-Objects [12] are used for assessing the
performance of our full UVOS model (see Table 4). Again,
there is no overlap between the training and test data.
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DAVIS16 [11] Youtube-Objects [12] FBMS59 [9]

Fig. 4. Visual results of predicted attention and primary video object mask on three datasets (each with two example videos). For each
video, the dynamic attention results from our DVAP module are shown in the second row, which are biologically-inspired and used to guide our
AGOS module for fine-grained UVOS (see the last row).

TABLE 7
Quantitative UVOS results on the test sequences of DAVIS16 [11].

The results are selected from the public leaderboard
(https://davischallenge.org/davis2016/soa compare.html) maintained

by the DAVIS challenge (until Aug. 2019). See §6.3 for details.

*MOT *LSMO *PDB *ARP *LVO *FSEG *LMP *SFLDataset Metric *Ours [110] [106] [14] [42] [44] [45] [46] [47]

DAVIS16

J
Mean ↑ 79.7 77.2 78.2 77.2 76.2 75.9 70.7 70.0 67.4
Recall ↑ 91.1 87.8 89.1 90.1 91.1 89.1 83.5 85.0 81.4
Decay ↓ 1.9 5.0 4.1 0.9 7.0 0.0 1.5 1.3 6.2

F
Mean ↑ 77.4 77.4 75.9 74.5 70.6 72.1 65.3 65.9 66.7
Recall ↑ 85.8 84.4 84.7 84.4 83.5 83.4 73.8 79.2 77.1
Decay ↓ 0.0 3.3 3.5 -0.2 7.9 1.3 1.8 2.5 5.1
T Mean ↓ 26.7 27.9 21.2 29.1 39.3 26.5 32.8 57.2 28.2

FST CUT NLC MSG KEY CVOS TRC SAGDataset Metric *Ours [32] [34] [35] [30] [37] [111] [31] [15]

DAVIS16

J
Mean ↑ 79.7 55.8 55.2 55.1 53.3 49.8 48.2 47.3 42.6
Recall ↑ 91.1 64.9 57.5 55.8 61.6 59.1 54.0 49.3 38.6
Decay ↓ 1.9 0.0 2.2 12.6 2.4 14.1 10.5 8.3 8.4

F
Mean ↑ 77.4 51.1 55.2 52.3 50.8 42.7 44.7 44.1 38.3
Recall ↑ 85.8 51.6 61.0 51.9 60.0 37.5 52.6 43.6 26.4
Decay ↓ 0.0 2.9 3.4 11.4 5.1 10.6 11.7 12.9 7.2
T Mean ↓ 26.7 36.6 27.7 42.5 30.2 26.9 25.0 39.1 60.0

Evaluation metrics: For the UVOS task, we use three stan-
dard metrics suggested by [11], i.e., region similarity J ,
boundary accuracy F , and time stability T . In addition, in
FBMS59, we report F-measure [9], F̄ = 2×precision×recall

precision+recall .
Quantitative and qualitative results: For DAVIS16, we
compare our model with 16 state-of-the-art UVOS meth-
ods [14], [15], [30]–[32], [34], [35], [37], [42], [44]–[47], [106],
[110], [111], which are selected from the public leaderboard
maintained by the DAVIS challenge. For Youtube-Objects
and FBMS59, the competitors include [9], [14], [32], [42],
[44], [45], [47], [106], [110], [112] and [14], [32], [35], [36],
[39], [42], [45], [47], [48], [106], [110], [113], respectively. The
results are obtained from their literatures or by running
their implementations with default parameter settings. The
quantitative comparison results over above three datasets

are reported in Tables 7, 8 and 9, respectively. We can
observe that our model outperforms other contenders over
most metrics across all the datasets. This is significant and
distinguishes our model from previous deep UVOS models
since our model is trained without precise segmentation
mask ground-truths.

It is worth noticing that some methods, such as
MOT [110], LSMO [106] and ARP [42], though showing
promising results on DAVIS16, suffer from performance
drops on Youtube-Objects and FBMS59. This observation
suggests that current promising methods may suffer from an
overfitting issue on DAVIS16. In contrast, our method con-
sistently achieves state-of-the-art over all the three datasets,
which demonstrating our strong generalization capability.

Some qualitative results on the three datasets are shown
in the last row in Fig. 4, validating our model yields high-
quality UVOS results with interpretable dynamic attentions.
Attribute-based study: Table 10 lists the per-attribute based
evaluation on the test set of DAVIS16 [11]. Among all the
15 video attribute categories, our method gets best scores
on 10, the second best on 5, and the best average perfor-
mance. It attains significantly increased robustness against
background clutter (BC), camera shake (CS), fast motion
(FM), heterogeneous objects (HO), low resolution (LR), mo-
tion blur (MB), and out-of-view (OV). Overall, our method
handles well various challenges present in videos.

6.4 Performance on Instance-Level UVOS

Test datasets: To completely examine the performance of
our model, we modify and test our model on the instance-
level UVOS object setting (also referred as “multi-object
unsupervised video segmentation” [27]). Different from pre-
vious general UVOS setting, which focus on object-level
foreground/background binary separation, instance-level
UVOS further concerns the extraction of each individual

https://davischallenge.org/davis2016/soa_compare.html
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TABLE 8
Quantitative UVOS results on Youtube-Objects [12] with the region similarity J . Performance over each category and the average score are

reported. See §6.3 for details.

Dataset Metric Category *Ours *MOT [110] *LSMO [106] *PDB [14] *ARP [42] *LVO [44] *SFL [47] *FSEG [45] FST [32] CSEG [112] LTV [9]
Airplane 87.7 77.2 60.5 78.0 73.6 86.2 65.6 81.7 70.9 69.3 13.7

Bird 76.7 42.2 59.3 80.0 56.1 81.0 65.4 63.8 70.6 76.0 12.2
Boat 72.2 49.3 62.1 58.9 57.8 68.5 59.9 72.3 42.5 53.5 10.8
Car 78.6 68.6 72.3 76.5 33.9 69.3 64.0 74.9 65.2 70.4 23.7
Cat 69.2 46.3 66.3 63.0 30.5 58.8 58.9 68.4 52.1 66.8 18.6

Youtube- J Mean ↑ Cow 64.6 64.2 67.9 64.1 41.8 68.5 51.2 68.0 44.5 49.0 16.3
Object Dog 73.3 66.1 70.0 70.1 36.8 61.7 54.1 69.4 65.3 47.5 18.2

Horse 64.4 64.8 65.4 67.6 44.3 53.9 64.8 60.4 53.5 55.7 11.5
Moto. 62.1 44.6 55.5 58.4 48.9 60.8 52.6 62.7 44.2 39.5 10.6
Train 48.2 42.3 38.0 35.3 39.2 66.3 34.0 62.2 29.6 53.4 19.6
Avg. 69.7 58.1 64.3 65.5 46.2 67.5 57.1 68.4 53.8 58.1 15.5

TABLE 9
Quantitative UVOS results on the test sequences of FBMS59 [9] with the region similarity J and F-measure F̄ . See §6.3 for details.

*MOT *LSMO *PDB *ARP *LVO *OBN *IET *SFL *FSEG ACO FST STO NLCDataset Metric *Ours [110] [106] [14] [42] [44] [48] [113] [47] [45] [36] [32] [39] [35]

FBMS59
J Mean ↑ 76.0 67.1 72.4 72.3 59.8 64.7 73.9 71.9 56.0 68.4 54.2 55.5 47.3 44.5
F̄ Mean ↑ 87.4 79.0 83.5 84.5 71.3 77.4 83.2 82.8 63.4 - - 69.2 - -

TABLE 10
Attribute-based aggregate UVOS performance on the test set of DAVIS16 [11] with the region similarity J . See §6.3 for details.

AttributeDataset Metric Method AC BC CS DB DEF EA FM HO IO LR MB OCC OV SC SV Avg.

DAVIS16 J Mean ↑

SAG [15] 36.6 37.9 34.8 28.6 41.4 34.7 32.9 38.0 38.5 31.4 33.6 38.4 35.5 38.5 30.1 42.6
TRC [31] 39.3 48.9 59.3 44.6 44.6 48.5 43.3 40.7 47.2 44.6 36.3 40.7 36.4 36.6 42.2 47.3

CVOS [111] 43.0 45.7 45.1 28.5 44.7 40.9 31.6 42.2 54.7 35.1 38.8 37.2 32.9 39.8 39.3 48.2
KEY [37] 44.8 53.2 44.0 44.1 49.5 49.6 42.0 45.1 49.0 40.3 50.9 47.8 45.1 47.9 44.0 49.8
MSG [30] 56.9 60.8 53.6 47.1 48.4 51.4 44.1 48.8 56.1 53.7 39.8 43.0 46.4 42.7 51.4 53.3
NLC [35] 60.8 34.4 50.0 48.3 58.3 45.6 56.5 55.2 55.0 57.2 53.6 68.5 52.4 52.9 47.6 55.1
CUT [34] 58.0 52.1 67.1 35.4 55.9 49.3 52.3 51.2 59.6 54.1 51.0 40.8 58.0 46.8 48.1 55.2
FST [32] 56.4 56.0 56.2 46.9 52.1 55.3 56.2 52.2 51.0 57.0 50.1 50.3 58.7 47.9 50.3 55.8

*SFL [47] 59.9 76.3 73.3 27.0 66.6 67.5 61.6 61.2 66.5 66.8 65.6 67.9 65.4 63.8 63.8 67.4
*LMP [46] 71.5 72.8 71.8 58.3 70.7 67.4 65.5 66.7 67.7 67.2 63.4 66.6 60.9 62.3 65.9 70.0

*FSEG [45] 70.0 76.7 76.7 50.0 69.5 69.0 69.9 65.2 66.9 71.8 65.4 64.3 72.3 61.5 65.5 70.7
*LVO [44] 74.0 78.2 80.7 55.2 75.2 73.7 70.5 71.9 75.1 75.0 71.1 73.6 71.5 70.5 72.9 75.9
*ARP [42] 78.1 70.7 76.0 71.7 76.6 71.1 75.3 75.2 76.7 74.3 72.9 74.3 79.6 71.1 74.7 76.2
*PDB [14] 77.0 76.9 78.4 62.4 76.3 75.9 76.4 73.9 74.6 77.7 74.0 77.9 77.6 72.2 74.4 77.2

*LSMO [106] 77.3 77.1 81.8 55.3 78.7 75.4 75.7 74.9 77.0 78.7 74.6 76.8 77.3 73.3 75.1 78.2
*MOT [110] 76.5 76.1 80.5 60.6 76.2 78.0 76.4 73.9 74.0 81.4 73.5 80.4 74.3 74.3 75.1 77.2

*Ours 79.9 80.7 82.4 66.5 77.7 77.6 79.1 76.2 77.4 81.4 76.2 78.3 81.2 73.6 77.6 79.7

TABLE 11
Quantitative instance-level UVOS results on DAVIS17 (DAVIS19

challenge [27]) val and test-dev sets. The best scores are marked
in red. See §6.4 for details.

J F
Dataset Methods J&F ↑

Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓

DAVIS17

val

*RVOS [51] 41.2 36.8 40.2 0.5 45.7 46.4 1.7
*PDB [14] 55.1 53.2 58.9 4.9 57.0 60.2 6.8

*Ours 57.5 55.5 61.6 7.0 59.5 62.8 9.0

DAVIS17

test-dev

*RVOS [51] 22.5 17.7 16.2 1.6 27.3 24.8 1.8
*PDB [14] 40.4 37.7 42.6 4.0 43.0 44.6 3.7

*Ours 45.6 42.1 48.5 2.6 49.0 51.5 2.6

foreground objects from the background. We conduct ex-
periments on the DAVIS17 dataset, which has three subsets:
train, val, and test-dev, containing 60, 30, and 30 video
sequences, respectively (see Table 4). We test our method on
the val and test-dev sets. As the original annotations
of DAVIS17 dataset are biased towards the semi-supervised
scenario, DAVIS19 challenge [27] re-annotates DAVIS17 for
facilitating the unsupervised setting. Therefore, we adopt
these new annotations as the groundtruth.

Modification of our model: To adapt our model to the
instance-level (multi-object) setting, we made the following
modifications. First, for each testing video frame, we apply
mask-RCNN [121] to generate a set of category agnostic
object proposals. Then we run our model over the whole
video sequence and generate a binary mask for the primary
object(s) in each frame. By combining the object bounding-
box proposals and binary object-level segmentation masks,
we produce pixel-wise, instance-level video segmentation
results for each frame. Finally, we use [122] to link the object
instances across different frames. Please note that we do not
use any data in the train set to fine-tune our model.
Evaluation metrics: Following the standard evaluation set-
ting, we reports the performance in terms of region similar-
ity J , boundary accuracy F , and the mixed metric J&F .
The evaluation scores on the test-dev set are obtained
from the evaluation server of DAVIS19 challenge, as the
annotations of test-dev set are preserved.
Quantitative results: Since instance-level UVOS is a new
topic, currently there is only one method, RVOS [51], that
reports the performance on DAVIS17 val and test-dev
sets. For completeness, we involve a recent top-performing
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TABLE 12
Quantitative VSOD results on the test sequences of DAVIS16 [11] and FBMS [9], and whole Youtube-Objects [12] with max F-measure and

MAE. Our method consistently improves over previous salient object detection results. See §6.5 for details.

Video SOD Image SOD
*PDB *FGRNE *FCNS SGSP GAFL SAG STUW SP *ASNet *Amulet *SRM *UCF *DSS *NLDF *DCLDataset Metric *Ours [14] [67] [65] [62] [13] [15] [60] [61] [114] [115] [116] [117] [118] [119] [120]

DAVIS16
Fmax ↑ 0.870 0.849 0.786 0.729 0.677 0.578 0.479 0.692 0.601 0.750 0.699 0.779 0.716 0.717 0.723 0.631
MAE ↓ 0.026 0.030 0.043 0.053 0.128 0.091 0.105 0.098 0.130 0.054 0.082 0.039 0.107 0.062 0.056 0.070

Youtube-Object Fmax ↑ 0.805 0.788 - 0.711 - 0.555 0.536 - - 0.772 0.698 0.752 0.686 0.721 0.743 0.683
MAE ↓ 0.053 0.056 - 0.087 - 0.164 0.156 - - 0.064 0.092 0.063 0.135 0.083 0.071 0.086

FBMS59
Fmax ↑ 0.844 0.815 0.779 0.735 0.571 0.551 0.581 0.528 0.538 0.786 0.725 0.776 0.679 0.764 0.736 0.726
MAE ↓ 0.049 0.069 0.083 0.100 0.171 0.163 0.155 0.143 0.161 0.087 0.110 0.071 0.147 0.083 0.086 0.089

TABLE 13
Ablation study on the test sequences of DAVIS16 [11] and

FBMS [9], and whole Youtube-Objects [12] with the region similarity
J . See §6.6 for details.

DatasetAspect Variant DAVIS16 Youtube-Object FBMS59

Full model DVAP+AGOS+CRF 79.7 69.7 76.0

Component DVAP+CRF 26.0 24.0 25.6
DVAP+FCN+CRF 39.2 37.9 40.7

Variant w/o weight sharing 79.5 69.7 75.8
Post-process DVAP+AGOS 78.4 69.5 75.6

object-level UVOS method, PDB [14], which is modified
for instance-level UVOS in a similar way. We compare
the performance of our methods with RVOS and PDB in
Table 11. The results clearly demonstrate that our model
outperforms both RVOS and PDB by a large margin. For
instance, in terms of J&F , mean J , and mean F , our
method dramatically surpasses RVOS by 23.1%, 24.4% and
21.7%, respectively, on the test-dev set.

6.5 Performance on the Setting of VSOD
Test datasets: We further test the performance of our model
in the setting of VSOD, i.e., generating continuous saliency
maps that highlight the salient video objects. We reproduce
the results of our model by omitting the CRF binarization.
Following [13]–[15], [65], [67], the test sets of DAVIS16 [11]
and FBMS59 [9], and the whole Youtube-Objects [12] are
used for evaluation.
Evaluation metrics: Standard F-measure and MAE metrics
are used for quantitative evaluation [114].
Quantitative results: We compare our model with six well
known VSOD models [13]–[15], [60]–[62], [65], [67]. For com-
pleteness, nine state-of-the-art image salient object detection
models [114]–[120] are also included in our experiment.
The results of these methods are obtained by running their
publicly available codes with default settings or directly
obtained from the authors. As shown in Table 12, our
model outperforms all the previous VSOD models [13]–[15],
[60]–[62], [65], [113] with interpretable attention maps. This
verifies the strong correlation between VSOD and UVOS
from a view of top-down attention mechanism.

6.6 Ablation Study
We investigate the effectiveness of essential components
of our model (§5) by presenting an ablation study in Ta-
ble 13. First, to validate the contribution of our AGOS

TABLE 14
Runtime comparison (seconds/frame) on the test sequences of

DAVIS16 [11]. Note that our method is faster that other competitors.
OA, OF, and OP indicate Online Adaption, Optical Flow, and Object

Proposal, respectively. See §6.7 for details.

Method *Ours *Ours+CRF *MOT [110] *LSMO [106] *PDB [14] ARP [42]
Pre-process - - OA, OF OF - OF, OP
Time(s) 0.1 0.1+0.5 1.0 >2.5 0.7 124.7

Method *Ours *FSEG [45] *LMP [46] *SFL [47] FST [32] SAG [15]
Pre-process - OF OF OF OF OF
Time(s) 0.1 7.2 18.3 7.9 51.4 54.0

module (§5.3), we provide two variants: DVAP+CRF and
DVAP+FCN+CRF, where the first baseline interprets the at-
tention generated by the DVAP module (§5.2) as prediction
maps of the primary video objects, while the latter one
replaces the AGOS module by a small FCN that has 3
convolutional layers: Conv(3×3, 128)→ReLU→Conv(3×
3, 64) → ReLU → Conv(1× 1, 1) → sigmoid. As seen, di-
rectly removing the AGOS module brings significant per-
formance drops (e.g., 79.7→26.0 on DAVIS16 test), which
clearly shows the AGOS module is indeed useful. We also
observe a non-trivial performance degradation when em-
ploying DVAP+FCN+CRF (e.g., 40.5 mIoU point decrease on
DAVIS16 test), suggesting the effectiveness of the network
design of the AGOS module.

Then, we study the effect of sharing the first three con-
volutional blocks (conv1, conv2, and conv3) between DVAP
and AGOS modules (see §5.3). To do this, we train DVAP
and AGOS modules separately and observe stable (or even
slightly worse) performance of the resulting baseline w/o
weight sharing. This shows the weight-sharing strategy in-
spires more representative feature learning. Such design is
more favored when considering the extra advantages of
reducing the computation time and model size. This exper-
iment also evidences the close correlation between human
visual attention and explicit object judgement from another
point of view.

Finally, we examine the performance gain brought by
the CRF post-processing. We find that CRF provides 0.2∼1.3
mIoU boost over the three datasets. Overall, all components
introduced in our approach lead to the state-of-the-art re-
sults on DAVIS16 [11], FBMS59 [9], and Youtube-Objects [12].

6.7 Runtime Comparison

It is clear that run time efficiency has great impact on the
usability of UVOS algorithms. We conduct running-time
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comparisons on the test set of DAVIS16 [11] with 480p reso-
lution. We include several representative UVOS models [14],
[15], [32], [42], [45]–[47], [106], [110] for providing a com-
prehensive comparison of execution time costs of existing
approaches. The time cost comparison results summarized
in Table 14 show that our model achieves a fast processing
speed of 10 fps (without using CRF), which is faster than
the other methods. This advantage of time efficiency is
mainly because (i) our DVAP and AGOS modules share
multi-layer weights; and (ii) our model does not need any
other time-consuming pre-processing step, such as online
adaption [110], optical flow computation [15], [32], [42],
[45]–[47], [106], [110] and object proposal generation [42].

7 CONCLUSION

In this work we systematically studied the role of visual
attention in UVOS and its related task, VSOD. We extended
three popular video object segmentation datasets with real
human eye-tacking records. Through in-depth analysis, for
the first time, we quantitatively validated that human visual
attention mechanism plays an essential role in UVOS and
VSOD tasks. With this novel insight, we proposed a visual
attention-driven UVOS model, where the DVAP module,
mimicking human attention behavior in the dynamic UVOS
setting, is used as a supervised neural attention to guide
the subsequent AGOS module for fine-grained video object
segmentation. With the visual attention as an intermedi-
ate representation, our model is able to produce promis-
ing results without training on expensive pixel-wise video
segmentation ground-truths, and it gains better post-hoc,
biologically-consistent interpretability. Experimental results
demonstrated that the proposed model outperforms other
state-of-the-art UVOS competitors on popular benchmarks.
The suggested model also gains the best performance in the
VSOD setting. Therefore, it closely connects the top-down,
segmentation-aware visual attention mechanism, UVOS and
VSOD tasks, and offers a new glimpse into the rationale
behind them.
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