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Abstract

Many image retargeting algorithms, despite aestheti-
cally carving images smaller, pay limited attention to im-
age browsing tasks where tiny thumbnails are presented.
When applying traditional retargeting methods for gener-
ating thumbnails, several important issues frequently arise,
including thumbnail scales, object completeness and local
structure smoothness. To address these issues, we propose a
novel image retargeting algorithm, Scale and Object Aware
Retargeting (SOAR), which has four components: (1) a
scale dependent saliency map to integrate size information
of thumbnails, (2) objectness (Alexe et al. 2010) for pre-
serving object completeness, (3) a cyclic seam carving algo-
rithm to guide continuous retarget warping, and (4) a thin-
plate-spline (TPS) retarget warping algorithm that champi-
ons local structure smoothness. The effectiveness of the pro-
posed algorithm is evaluated both quantitatively and qual-
itatively. The quantitative evaluation is conducted through
an image browsing user study to measure the effectiveness
of different thumbnail generating algorithms, followed by
the ANOVA analysis. The qualitative study is performed on
the RetargetMe benchmark dataset. In both studies, SOAR
generates very promising performance, in comparison with
state-of-the-art retargeting algorithms.

1. Introduction
The increasing popularity of digital display devices im-

poses the need of effective ways for presenting image sets.
In this context, browsing a large image set, such as personal
photo albums or scientific image collections, becomes an
important tool in many applications. Such a tool usually
requires casting images into a display device with a fixed
small size. The traditional method, scaling, which shrinks
original images directly into thumbnails, often brings diffi-
culties in searching and recognition [21], especially for tiny
thumbnails shown on small size screens, such as cell phones
or PDAs.

Automatic image retargeting, by reducing image size

while preserving important content, is an important visual
summarization tool and has been attracting a large amount
of research attention recently [17]. Many image retarget-
ing algorithms (Sec. 2) generate aesthetically impressive re-
sults when the target size is comparable to that of the orig-
inal image. However, insufficient attention has been paid
explicitly to image browsing tasks where tiny thumbnails
are widely used. To design effective image retargeting al-
gorithms for thumbnail browsing, several important issues
need to be considered:
Thumbnail scales. In image browsing, thumbnails usually
have much smaller scales/sizes than do the original images.
Studies have shown that scales can have significant effects
on human visual perception [12, 14, 9]. To the best of our
knowledge, none of existing retargeting algorithms explic-
itly takes into account such scale information.
Object completeness. To keep objects in the image as com-
plete as possible is important in image retargeting. One
challenge lies mainly in the difficulty of explicit defini-
tion of object completeness. Consequently, many retar-
geting methods implicitly handle this problem by keeping
low-level gradient-based information as much as possible.
The object-level completeness, in contrast, is seldom con-
sidered.
Structure smoothness. The contamination in structure
smoothness caused by pixel removal methods, e.g. seam
carving, usually results in little visual defect when target
images have reasonably large sizes. This is unfortunately
not always true for targets as tiny as thumbnails, since in-
tense scale change can create serious image structure dis-
continuities that humans are not comfortable with.

In this paper, we propose a new image retargeting al-
gorithm, Scale and Object Aware Retargeting (SOAR), to
address the issues discussed above. SOAR is a continuous
retargeting algorithm but uses discrete retargeting to guide
the warping transformation. In particular, SOAR contains
four key components (Fig. 1): (1) We propose a new scale-
dependent saliency that takes into account the scale infor-
mation of the target thumbnails. Inspired by the study in
visual acuity [12, 14], we compute the saliency response on

1



Figure 1. Flow chart of the proposed method.

the image that is actually perceived by human vision sys-
tem. This image is estimated according to the visual acu-
ity theory, which suggests the visibility of local structures.
(2) We improve object-level object completeness preser-
vation by integrating the objectness measurement recently
proposed by Alexe et al. [1]. The measurement is combined
with the scale-dependent saliency to tune down the saliency
values for regions with less objectness, e.g., backgrounds.
The combination results in scale and object aware saliency.
(3) We extend seam carving [2] by introducing cyclic seams
to allow cross-boundary pixels removal. This Cyclic Seam
Carving (CSC) is combined with the scale and object aware
saliency to conduct a discrete image retargeting. (4) We use
the thin-plate-spline (TPS) as warping function in SOAR.
Specifically, we use CSC to generate landmark points be-
tween input and output image spaces and then fit the TPS
model for image warping. This combination inherits the ef-
fectiveness of seam carving while benefits the smoothness
from TPS.

We evaluate the proposed SOAR algorithm both quanti-
tatively and qualitatively. The quantitative study is very im-
portant since human’s perception of thumbnail quality and
thumbnail browsing can be very subjective. For the pur-
pose, we have conducted an image browsing user study,
in which each user is asked to search a target in a screen
of thumbnails. The time cost and accuracy of the search
procedure are recorded and analyzed statistically (ANOVA
and Tukey’s significance test). The results show the supe-
riority of our approach over several other ones. Regarding
the qualitative study, we apply SOAR to the RetargetMe
dataset [17] on which results from many existing algorithms
have been collected by [17]. The study shows that, our
method, despite emphasizing on the thumbnail browsing ef-
fectiveness rather than aesthetic effects, generates images
that are visually as good as previously reported results.

2. Related work

Image retargeting has been actively studied recently. A
comparative study can be found in [17]. Roughly speak-
ing, existing methods can be divided into two categories:

discrete methods that remove unimportant pixels and con-
tinuous methods that reorganize image content with a con-
tinuous warping function.

A typical example of discrete image retargeting methods
is the well known Seam Carving (SC) proposed by Avidan
and Shamir [2]. The idea is to selectively and iteratively re-
move continuous pixel segments while still preserve the im-
age structures as much as possible. Such segments, termed
seams, usually contain pixels that are less important than
others according to certain importance measure. SC attracts
a lot of research attention due to its elegancy and flexibility.
Several notable works that extend and improve the origi-
nal SC can be found in [6, 13, 18]. There are other dis-
crete retargeting methods such as [20], which uses the bi-
directional similarity to guide the retargeting process.

Continuous warping has been used in many image re-
targeting algorithms [4, 7, 10, 11, 24]. The basic idea is
to deform the original image to the target image through
a continuous transformation, which is estimated by image
content. The framework of warping is very general because
a large variety of transformation models and content mod-
els can be used to address different challenges and to adjust
to different applications. A hybrid approach [19] has also
been proposed that smartly combines several retargeting al-
gorithms for further improvement.

Our method is different than previous studies mainly in
two aspects. First, our task is to generate target images for
thumbnail browsing, which has not been studied in most
previous retargeting methods. This task motivates us to take
the scale information into account while determining pixels
importance. Second, our method combines both continuous
and discrete schemes by using TPS for warping model and
cyclic seam carving for tracing landmark points.

The scale dependent saliency in our method is motivated
by the studies of human visual acuity [12, 14, 15], which
describes how well human can distinguish visual stimuli at
various frequencies. If the frequency is too high/low, human
can hardly distinguish different stimulus. Given the image
size and an observation distance, the theory can be used
to decide the minimum scale at which an image structure
is perceivable. Another important component used in our



saliency computation is the objectness measure proposed
in [1]. Accordingly, the probability that a given bounding
window contains an object is predicted by a model learned
from training sets. Our method also shares some philosophy
with the work on perceptual scale space [23].

3. Overview
Task Formulation. Let I be an input image of size m0 ×
n0 and S(I) be the saliency map of I , such that S(I) is a
matrix of m0 × n0. We formulate the retargeting problem
as to find a retargeting function F :

J = F(I, S(I)) , (1)

where J is the result retargeted image of target sizem1×n1.
In this formulation, a retargeting method is characterized by
retargeting function F(.) and saliency computation S(.)1.

Note that the function F(.) can be either continuous or
discrete. For example, the seam carving (SC) algorithm [2],
when carving a vertical seam seam(i), can be defined as

Fsc
i,j =

{
I(i, j), if j < seam(i)

I(i, j + 1), if j ≥ seam(i)
, (2)

where i ∈ [1,m0] and j ∈ [1, n0] are row and column in-
dices respectively; seam(i) indicates the seam position at
row i calculated by the seam searching strategy to mini-
mize the carving energy defined over saliency S(I). Hori-
zontal seam removal is defined similarly. SC employs a dis-
crete assignment because the pixels along the path of seams,
i.e. {I(i, seam(i))}m0

i=0, are eliminated and the information
they carried is discarded.

Our goal is to design an image retargeting algorithm in
the context of image browsing, where tiny image thumb-
nails are the final results. A naive solution is to first set
the target size as thumbnail size and then apply retargeting
algorithms directly. This is however too aggressive since
thumbnails are usually much smaller than the original im-
ages. Instead, through out this study, we use retargeting
methods to first get retargeted images to a target size that is
comparable to the original image size, and then shrink the
retargeted images to get the final thumbnails.

Framework Overview. For the goal mentioned above,
we propose a new image retargeting algorithm, which we
call scale and object aware image retargeting (SOAR), de-
noted as Fso. To reduce the contamination of semantic
structures in input images, SOAR uses the thin-plate-spline
(TPS) model as the warping function, which is well known
for modeling real world smooth deformations. Fitting a TPS
model requires a set of landmark points, which are obtained
using an improved seam carving algorithm.

1We use saliency to indicate the importance measurement used in gen-
eral, which is not limited to the visual attention-based saliency.

Figure 2. Demonstration of image sizes in different stages.

An important issue we address is the thumbnail scale. In-
spired by the study of visual acuity in human vision, we pro-
pose using scale dependent saliency, denoted as Sscale(I),
to reflect the relative scale variation from the original im-
age to the image thumbnail. The saliency is further aug-
mented by combining with object awareness, measured by
objectness map O(I), which is derived by the recently pro-
posed objectness measurement [1]. The resulting scale and
object aware saliency Sso(I) is then integrated in the carv-
ing energy and fed into our improved seam carving algo-
rithm, named cyclic seam carving (CSC). The result of CSC
is used to extract landmark points for estimating the TPS
warping. In short, for the input image I , SOAR creates the
target image J through the following process

J = Fso(I, Sso(I)) . (3)

A summary of the algorithm flow is given in Fig. 1.

4. Scale and Object Aware Image Retargeting
4.1. Scale-dependent Saliency

When a subject is observing an image thumbnail on a
screen, sizes of three different images are involved: the
original image size so in pixels, the display size sd in inches,
and projection size sp on the retina. These sizes are related
by two distances: distance D between the observer’s eye to
the display device and distance Drp between human retina
and pupil. Fig. 2 illustrates the relations between the these
variables, which is summarized below:

sd =
so

DPI
, sp =

sd ·Drp

D
, (4)

where DPI (Dots Per Inch) is the screen resolution.
Since a thumbnail is eventually presented to and per-

ceived by human visual system, it is critical to explore
how well such a system preserves the image informa-
tion. In particular, we want to make the foreground ob-
ject/content/theme of the image as “clear” as possible. This
has been studied in psychology and ophthalmology in terms
of visual acuity [12, 14, 15]. According to the study, not all
patterns in an image are recognizable by human. In fact, un-
der the above configuration, the perceived image, denoted
as Ip, can be derived as



Ip(I(i, j)) =

{
I(i, j), if sd/D ∈ [κ, ρ] ,
IN (i, j), otherwise ,

(5)

where IN (i, j) is the mean value ofN -connected neighbors
of pixel I(i, j); N is determined by display device specifi-
cations; κ and ρ are the lower and upper bounds (in cycles
per degree) respectively of human visual acuity. κ and ρ
define the limits at which the visual stimuli frequency be-
comes too low or too high to be recognized by human. We
use κ = 0.0175 and ρ = 0.83 according to [14].

According to Eqn.5, for a small display size (thumb-
nail size in our case), a pixel may become indistinguishable
from its neighbors to a human observer. Consequently, an
image patch that was salient in the original image may not
appear salient to a human observer when the patch is dis-
played as a small thumbnail. Inspired by this observation,
we propose using scale dependent saliency to encode the
scale information of the final thumbnails.

The procedure of computing the scale-dependent
saliency goes as follows:

First, the original image is scaled in homogeneous into
the final thumbnail size, i.e. the display size, 60× 60 pixels
in our experiment.

Then, the minimum recognizable pattern, denoted by s′d,
is determined by Eqn.4. Specifically, in our experiment
where a monitor of 1680×1050@65hz and 120DPI is used,
we find the value s′d is in average 0.009 inches under normal
indoor illumination. The size is approximately the distance
between two pixel lines on the screen, i.e. N = 4 in Eqn.5.
As a result, in the final thumbnail four adjacent neighbors of
one image pixel patch with value differences in color space
within certain threshold will be assigned their mean value,
which means those pixels are unable to be distinguished by
human. This threshold, intensity differences of 50 in our
experiment, is determined according to the gray scale set-
tings in contrast sensitive study [14] and our preliminary
experiments.

Finally, the scale dependent saliency Sscale(I) is defined
as

Sscale(I) = S(Ip) , (6)

where S(.) is the standard saliency, by which we mean the
visual saliency defined in [8]. Some examples of scale de-
pendent saliency are shown in Fig. 3.

4.2. Scale and Object Aware Saliency

Preserving object completeness as much as possible is
commonly desired in retargeting algorithms. One bottle-
neck lies in the difficulty of the explicit definition of such
completeness. Recently, Alexe et al. [1] proposed a novel
objectness measure, which is trained to distinguish object
windows from background ones. The objectness measure
combines several image cues, such as multi-scale saliency,
color contrast, edge density and superpixel straddling, to

Figure 3. Saliency computations, from left to right: input images,
standard saliency [8], scale dependent saliency, objectness map,
scale and object aware saliency.

predict the likelihood of a given window containing an ob-
ject. Specifically, for a rectangular window w = (i, j, w, h)
with a top-left corner at (i, j), width w and height h, its ob-
jectness is defined as the probability pobj(w) that w contains
an object.

To get the objectness distribution over pixels, we first
sample nw windows W = {wi}nw

i=1 for an input image and
then calculate the objectness map O as the average object-
ness response at each pixel,

O(i, j) =
1

Γ

∑
w∈W∧(i,j)∈w

pobj(w) , (7)

where Γ = maxi,j O(i, j) is used for normalization;
(i, j) ∈ w means pixel (i, j) falls in w; and nw = 10000 is
used in our experiments.

The map O(I) is then combined with the scale-
dependent saliency Sscale(I) to inhibit regions with small
objectness values:

Sso(i, j) = Sscale(i, j) · O(i, j) . (8)

We name the augmented saliency Sso as scale and object
aware saliency. Fig. 3 illustrates some examples.

4.3. Cyclic Seam Carving

To guide the TPS warping in our model, we use seam
carving (SC) [2] with two extensions, including using cyclic
seams and encoding the scale and object aware saliency.

First, we have observed that in many cases a seam has no
choice but to cross objects due to the original definition of
seam: a continuous polyline from one boundary of the im-
age to its opposite boundary. The results sometimes suffer
from damaging the well-structured object in the scene. One
solution is to generalize the original seams to discontinuous
ones. While this strategy might work in some cases, it intro-
duces new kind of object-structure damage, e.g. pixel shift
problem, even when the seam is far away from the object.

To reduce the chance of a seam to trespass objects, we
introduce the cyclic seams as following: we first warp the
image to make it a cylinder shape by sticking its left and
right (or top and bottom) margins together. Then a cyclic
seam is defined still as the standard continuous seam but on
this virtual “cylinder” image. An illustration is shown in



Figure 4. Cyclic seam carving (CSC). Left: the imaginary image
in a cylinder shape; right: a cyclic seam on the real image.

Fig. 4. We name this extended SC algorithm Cyclic Seam
Carving (CSC). Intuitively, CSC allows a seam to cross im-
age boundaries to stay away from highly salient regions. On
the other hand, a cyclic seam is still continuous in most of
its segments. In addition, the pixel shift problem caused
by cross-boundary seams can be moderated by adjusting
proper penalty values at boundary pixels.

Our second extension to the original SC is to augment the
energy function with the proposed scale and object aware
saliency. Denote Esc as the original energy used in SC that
captures the distribution of histogram of gradients, our scale
and object aware energy Escale is defined as

Escale = ρ · Esc + (1− ρ) · Sso , (9)

where ρ is the weight and set to 0.3 through out our ex-
periments. The improved energy is then combined with the
CSC algorithm to provide landmark point pairs needed for
estimating TPS warping (Sec. 4.4).

Fig. 5 shows some results comparing CSC with different
saliency definitions. From the figure we can see how differ-
ent components help improving the retargeting qualities.

4.4. Image Warping Function

As pointed out in previous sections and also observed
in [20], many discrete retargeting methods generate excel-
lent results in general but they sometimes create serious ar-
tifacts when the target has a size much smaller than the in-
put. In [20] a bidirectional similarity is used to alleviate
the problem. We study this problem differently by combin-
ing a continuous warping model with a discrete retargeting
guidance.

First, we use the thin-plate-spline (TPS) [3] for our con-
tinuous warping model. TPS has been widely used in
many vision tasks, such as registration and matching, due to
its attractive property in balancing local warping accuracy
and smoothness. Specifically, given nl landmark points
P = {pi ∈ R2, i = 1, 2, · · · , nl} and Q = {qi ∈ R2, i =

Figure 5. From left to right: original image, SC with standard
Saliency, CSC with standard Saliency; CSC with scale dependent
saliency; CSC with scale and object aware saliency, SOAR result.

1, 2, · · · , nl}, where pi is mapped to qi, the TPS transfor-
mation T is defined as the transformation from P to Q that
minimizes the regularized bending energy E(f) defined as

E(f) =
∑
i

‖ qi − f(pi) ‖
2
+

λ

∫∫
(
∂2f

∂x2
)2 + 2(

∂2f

∂x∂y
)2 + (

∂2f

∂y2
)2dxdy ,

(10)

where x, y are the coordinates and λ is the weight pa-
rameter. The TPS warping is then defined as T =
arg minf E(f). In our image warping problem, f is the dis-
placement mapping from the input image to the target im-
age. Intuitively, f achieves a balance between local warping
accuracy and smoothness.

To estimate the TPS warping function, we need to pro-
vide the landmark point pairs P and Q. This is derived
from the CSC retargeting algorithm. A natural way is to
define a point set in the input image and find the corre-
sponding point set in the target image by tracing the CSC
process. However, the point set achieved this way can be
unstable due to the singularity caused by the seam carving
iterations. Instead, we design a two-way solution described
in the following: We first sample randomly a landmark set
P̂ (Fig. 6(a)) from original image and then trace their shift-
ing in the CSC process. During the process, if a landmark
point was eliminated, its direct neighbor will be assigned as
a landmark point. After the CSC iterations, we get the cor-
responding set Q̂ (Fig. 6(b)). Then, point set Q (Fig. 6(c))
is re-sampled uniformly on the target image, which is gen-
erated by CSC. Finally, a sample set P (Fig. 6(d)) is gen-
erated by mapping Q to the original image using warping
estimated by Q̂ and P̂ . The landmark sets P and Q are then
used to estimate the warping used in the final retargeting.

5. Experiments
5.1. Quantitative Experiments

Experiment Setup. We design an image browsing task
for user study using a carefully prepared dataset. For each



(a) (b)

(c) (d)
Figure 6. (a) Landmarks in original image; (b) Landmarks traced
in seam carved image; (c) New landmarks sampled from seam
carved image; (d) Landmarks traced in original image.

Figure 7. Thumbnails used in the quantitative study. From left to
right: SL, SC, ISC, and SOAR (proposed).

subject, the task requires him/her to browse and select a
target, described verbally, from a set of image thumbnails
randomly placed in a page. In each test page, we ask the
user to choose one particular image, say “cat”, from various
types of images: “bike”, “train”, “bird”, and etc. An exam-
ple page is shown in Fig. 8, where the subject is asked to
find a thumbnail of a “motorbike” from the 10×10 thumb-
nails. There exists only one correct thumbnail in each page
to avoid ambiguity.

For images used in the task, we randomly selected 210
images from the PASCAL VOC 2008 database [5]. These
images are divided to 14 classes and each class has 15 im-
ages. The classes are: aeroplane, bicycle, bird, boat, bus,
car, cat, cow, dining table, dog, horse, motorbike, sheep and
train. Each subject is requested to browsing in total 210
pages. In each page, the subject will see a word describ-

Figure 8. The user interface used in the user study.

ing the class of the target and 10 × 10 image thumbnails
aligned in 10 × 10 grid. Only one thumbnail that matches
the description will be put randomly in one of the 100 po-
sitions. Other 99 “filler” images are chosen randomly from
the rest classes. The potential image class conflict is taken
into consideration while choosing the filler images: for ex-
ample, motorbike images and bicycle images should not ap-
pear in the same page since they are similar in appearance
especially in image thumbnails.

For every image in the dataset, four thumbnails are gen-
erated using different methods including scaling(SL), seam
carving(SC) [2], improved seam carving(ISC) [18], and the
proposed SOAR algorithm. For every thumbnail demon-
strated on the screen, one of four thumbnails is randomly
picked to be presented in the page. The time a user spend to
find the result and the selection are recorded for evaluation.
The records of the first 10 pages are discarded to allow the
subjects get familiar with the system. Example thumbnails
from different methods are shown in Fig. 7.

We recruited twenty college student volunteers to par-
ticipate the experiments. None of the students has re-
search experience in the topics related to image retarget-
ing. The display device is a monitor with specification of
1680 × 1050@65 hz and 120 DPI. Participants sit 0.5 me-
ters away from the monitor with normal indoor illumina-
tion. The test takes about one hour per subject.

Results and Analysis. After conducting the experiments,
the average time cost per page and recognition accuracy
for each retargeting methods are calculated. The results are
summarized in Tables 1 and 2.

The study on recognition accuracy is to ensure that the



Method SL SC ISC SOAR
Accuracy (%) 94.76±5.6 94.25±4.1 94.95±4.1 96.15±3.8

Table 1. Average searching accuracies. SL, SC, ISC stand for Scal-
ing, Seam Carving, Improved Seam Carving, respectively.

Method SL SC ISC SOAR
Time Cost (sec.) 13.53±3.0 14.26±3.1 13.05±3.0 10.98±2.7

Table 2. Average time costs per page of the user study. SL, SC,
ISC are the same as in Table 1.

thumbnail generated by our method does not bring ad-
ditional difficulty to image understanding compared with
other methods. Intuitively, given enough time, a user can
eventually find a given target accurately. Consequently, we
are more interested in the time cost, while emphasize less on
the recognition accuracy. By checking Table 1, we can see
that all methods have achieved high accuracies (94% and
up) in the experiment, which confirms our intuition. Fur-
thermore, the proposed SOAR algorithm outperforms other
methods by a small margin.

The average time cost reflects the effectiveness of differ-
ent retargeting methods in the context of thumbnail brows-
ing. The results shown in Table 2 strongly support the pro-
posed SOAR algorithm. To study the significance of the
conclusion, we also give the box plot in Fig. 9. For a rigor-
ous evaluation, we have conducted one-way ANOVA anal-
ysis on the time cost data of four methods. The F -value
is 4.06 and p-value is 0.0101, which indicates that the four
methods are significantly different. Furthermore, multiple
comparison test using the information from ANOVA has
been performed to distinguish if our method is significant
in pairwise comparison to other methods. Results are given
in Table 3. The 95% confidence intervals for all the differ-
ences ([0.58,4.51], [1.31,5.24], [0.13,4.04]) have rejected
the hypothesis that the true differences are zero. In other
words, the differences between our method and other three
methods are significant at 0.05 level.

In summary, the analysis shows clearly the superiority
of the proposed SOAR algorithm in the thumbnail brows-
ing task. This promising result shall be attributed to all
the ingredients we integrated in the algorithm, especially
the scale and object aware saliency, and the combination
of the elegant seam carving scheme and the smoothness-
preservation TPS warping. In addition, it shows that the
other three methods performs similarly.

5.2. Qualitative Experiments

Although quantitative evaluation is critical in our study,
where the focus is thumbnail browsing, qualitative study
provides important information toward additional under-
standing of the proposed algorithm. Fig. 7 has some exam-
ples generated by different approaches used in our quantita-

Figure 9. Box plots of time cost (in seconds). From left to right:
SL, SC, ISC, SOAR.

Comparison Lower Difference in means Upper
SL and SOAR 0.58 2.55 4.51
SC and SOAR 1.31 3.28 5.24
ISC and SOAR 0.13 2.07 4.04

Table 3. Tukey’s least significant difference(LSD) test result for
multiple comparison. 95% confidence intervals are [Lower, Up-
per]. Details are in Sec. 5.1.

tive study, and more examples can be found in the supple-
mentary material. It is hard to draw a firm conclusion from
visual inspection. That said, from the results, we can see
that in general our method performs the best regarding the
(foreground) object size in the thumbnails. Intuitively, this
advantage highlights the target object and therefore helps
the user in the visual searching task. The quantitative anal-
ysis in Section 5.1 has confirmed this intuition.

While we are interested mainly in tiny thumbnails, it is
also worth investigating how well the proposed method per-
forms when the size change is less drastic. Recently, Rubin-
stein et al. [17] released a benchmark dataset, RetargetMe,
together with the results from many state-of-the-art image
retargeting methods [10, 16, 18, 19, 22, 24]. Taking benefit
of their work, we run the proposed SOAR algorithm on the
dataset for qualitative inspection. For a fair comparison, our
method is tuned to output in the scales used by those meth-
ods, which is about 75% of the original image sizes. Some
example results are shown in Fig. 10 and more can be found
in the supplementary material.

By checking the results, we feel it is hard to visually pick
out a method that is better than all others. In particular, the
results from our SOAR algorithm look in general similar to
the results from other methods. The best and worst results
for different input images often come from different retar-
geting methods. In fact, according to the user study in [17],
manually cropping generates results in which users like the
most. We conjecture that, as far as the targeting size is com-
parable to the original image size, (manually) cropping and
scaling would be the best choices since they tend to keep
the image structure untouched and smooth. However, this
may not be true for extremely small targeting sizes, such as



Figure 10. Example results on the RetargetMe dataset. From left to
right: input image, multi-operator media retargeting, non-uniform
scaling with bi-cubic interpolation, optimized scale-and-stretch,
non-homogeneous content-driven video-retargeting, SOAR (pro-
posed). All results except SOAR are from [17].

Figure 11. Failure examples of the proposed method.

those used for thumbnails.

5.3. Limitations

There are still limitations in our work. In some images,
regions in our result images are bend: Fig. 11 shows the
examples. One scenario is when the saliency distribution
is scattered such that the main theme of the image is not
so clear. Another scenario is when the object is too big
that seam carving (no matter which version) will definitely
break the structures hence affect our final results.

An interesting fact is that the human observer can still
correctly recognize and select those images due to the pow-
erful human visual system. It is worth exploring in the fu-
ture study when such image distortion significantly hurt the
recognition rate or searching time costs.

6. Conclusion

In this work, we proposed a scale and object aware image
retargeting (SOAR) method. The method aims at generat-
ing effective retargeted images for using in the context of
thumbnail browsing. For this purpose, we integrate several

new techniques, including scale dependent saliency, object-
ness and cyclic seam carving, into a TPS-based continu-
ous warping model. The proposed method is evaluated both
quantitatively and qualitatively. Our method demonstrates
promising performances in comparison with state-of-the-art
image retargeting algorithms.
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