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Abstract. Denoising of 3D Optical Coherence Tomography Angiogra-
phy (OCTA) for awake brain microvasculature is challenging. An OCTA
volume is scanned slice by slice, with each slice (named B-scan) de-
rived from dynamic changes in successively acquired OCT images. A
B-scan of an awake brain often suffers from complex noise and Bulk Mo-
tion Artifacts (BMA), severely degrading image quality. Also, acquiring
clean B-scans for training is difficult. Fortunately, we observe that, the
slice-wise imaging procedure makes the noises mostly independent across
B-scans, while preserving the continuity of vessel (including capillaries)
signals across B-scans. Thus inspired, we propose a novel blind-slice self-
supervised learning method to denoise 3D brain OCTA volumes slice by
slice. For each B-scan slice, named center B-scan, we mask it entirely
black and train the network to recover the original center B-scan using
its neighboring B-scans. To enhance the BMA removal performance, we
adaptively select only BMA-free center B-scans for model training. We
further propose two novel refinement methods: (1) a non-local block to
enhance vessel continuity and (2) a weighted loss to improve vascular
contrast. To the best of our knowledge, this is the first self-supervised
3D OCTA denoising method that effectively reduces both complex noise
and BMA while preserving capillary signals in brain OCTA volumes.
Code is available at https://github.com/ZhenghLi/SOAD.
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1 Introduction

Background. Optical Coherence Tomography (OCT) is a rapidly developing
tomography imaging technique for biological diagnoses [27]. OCT Angiography
(OCTA) volume is scanned slice by slice, with each slice (B-scan) derived from
dynamic changes in successively acquired cross-sectional OCT images at the
same slow-axis position [9]. Despite an increasing amount of research carried out
in retinal OCT/OCTA [16,8,28,12,20], less focus has been directed towards 3D
OCTA of brain microvasculature, especially in an awake brain. Due to challeng-
ing imaging conditions such as heterogeneous tissue and deeper penetration and
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Fig. 1. (a) Maximum Intensity Projection (MIP) of a raw OCTA volume of the brain
cortex of an awake mouse. The blue slice is a normal B-scan consisting of unknown
true signal, shadow, speckle noise, and background noise. The green slice is a corrupted
B-scan affected by severe bulk motion artifacts, and it is projected as a bright stripe
in the MIP image. (b) The slice-wise imaging process causes a relatively large spatial
and time gap between OCTA B-scans, making the noise independent and discontinuous
across B-scans (yellow circles), while vessel signals remain continuous (red tubes).

possible motions of subjects, an OCTA B-scan of awake brains often suffers from
noise and motion artifacts, severely degrading the imaging quality. In this work,
we employ Maximum Intensity Projection (MIP), a common processing against
shadow effect, to visualize vessels (Fig. 1(a)). Our goal is to enhance MIP images
by denoising and removing bulk motion artifacts (BMA) from the volumes.

Besides the lack of groundtruth, denoising OCTA images of the brain cortex
presents two main challenges. (1) Complex noise, including speckle noise due to
light scattering and motion artifacts caused by the respiration or movement of
awake subjects, can be non-zero mean and correlated within a B-scan. In the
paper, we denote background noise as the noise caused by micro motions or
background tissue scattering (Fig. 1(a) blue) and motion artifacts as the severe
BMA (Fig. 1(a) green) caused by the movement of awake subjects. Also, we call
the B-scans unaffected by BMA as normal B-scans and those affected by BMA
as corrupted ones. (2) Capillaries often have weak signals and consist of only a
few pixels in an OCTA B-scan due to their small size and slow blood flow. Hence,
capillary signals are likely mistaken for noise and removed during denoising.

Unfortunately, most existing methods cannot effectively solve the above chal-
lenges. Traditional OCT/OCTA denoising methods [3,17,6,28,32] are tailored
to retinal images/volumes. They may struggle with the noise characteristics of
OCTA of awake brains and be confused by capillary signals and noise. Learning-
based methods [24,21,18,10] often require dense scanning and registration for
generating pseudo-ground truth B-scans for supervision, yet OCTA images of
awake brains remain noisy even after this processing. Unsupervised OCT de-
noising [8] or BMA removal methods [25] may require extra regions of interest
(ROI) labeling or prior knowledge for BMA synthesis on MIP images, making
them less practical for brain OCTA volumes. Generic self-supervised methods
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based on blind-spot networks [13,2,14,29,31,34] have shown promise in biomedi-
cal domain [33], but they assume noise to be 2D independently distributed with
zero means, which is not the case in OCTA volumes of awake brains.
Motivation. Although noise is corrected within a B-scan, due to the slice-
wise imaging property of OCTA volumes, it shows inter-B-scan discontinuity
and approximate independence, while vessel signals are still continuous scross
B-scans (Fig. 1 (b)). This property suggests us to model the inter-B-scan 3D
continuity to separate noise and signal.
Contribution. Inspired by above observation, we propose an effective Self-
supervised 3D OCTA Denoising method (SOAD) based on a blind-slice masking
strategy to simultaneously remove speckle noise, background noise, and BMA.
Specifically, SOAD denoises an OCTA volume slice by slice. For each B-scan slice,
we sample its neighboring B-scans to form a sub-volume as the input. The center
B-scan of the sub-volume is the slice to be denoised. We mask it entirely black
and train a network to recover the original center B-scan. Our blind-slice strat-
egy employs the difference in the inter-B-scan continuity to adaptively separate
vessel signal and noise, so it can effectively reduce complex noise while preserv-
ing capillaries. To further enhance the BMA removal performance, we propose
an empirical criterion that utilizes the intensity-increasing effect of BMA to ef-
fectively exclude BMA B-scans from contaminating the training process. In this
way, the network will only learn to restore normal B-scans and thus remove BMA
even for several consecutive corrupted B-scans. It is also noteworthy that our
method does not need additional data synthesis and ROI labeling.

Besides, since most vessel signals share similar representation in a volume,
inspired by the non-local mean technique [4] for image denoising, we further
propose use a non-local block [30] to implicitly realize the non-local mean op-
eration on deep features. Moreover, we introduce a novel weighted loss function
that adaptively assigns higher weights to vessel regions to improve the contrast.
In summary, our main contributions include: (1) the first 3D self-supervised
learning framework for OCTA volume denoising, (2) a novel blind-slice masking
strategy that forces the model to learn 3D features to remove noise and BMA
while preserving capillary signals, (3) a non-local block that leverages the simi-
larity shared by vessel signals to enhance the vascular features and improve the
denoising results, and (4) a novel weighted loss function that adaptively assigns
higher weights to vessel regions to enhance the results. With these contribu-
tions, our method show promising results in the evaluation on real world data
in comparison with state-of-the-arts.

2 Self-supervised OCTA Denoising (SOAD)

2.1 Noise and BMA Model

A 3D OCTA volume of awake brains of N B-scans can be represented by Y =
{y1,y2, . . . ,yN}, where a 2D B-scan yi can be approximately modeled as:

yi ≈ f(s(xi),νi) + bi + µi (1)
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Fig. 2. Illustration of our Self-supervised OCTA Denoising (SOAD). Five input B-scans
are shown for illustration (seven are actually used), and the center B-scan is masked and
to be denoised. The 3D encoder is modified from the V-Net [22] encoder. The encoded
multi-scale 3D feature maps are projected into 2D before inputting to the decoder. The
projection is realized by 3D Convs whose T-dimensions are the same as the encoded
features. Then a 2D decoder, modified from U-Net [26], restores the center B-scan from
the projected features. A non-local block is inserted after the deepest decoder block to
refine the feature. The loss function is the weighted recovery loss defined in the text.

where x is the groundtruth signal unavailable through current OCTA systems,
s(·) is the shadow function caused by light scattering in the blood, ν is the
foreground speckle noise component caused mainly by scattering of red blood
cells and tissues, f(·) is the foreground imaging function, b is the background
noise caused by micro motions or tissue scattering, and µ is the BMA. We model
b as additive noise following [24] and µ also as an additive component due to its
intensity-increasing effect.

For OCTA volumes of awake brains, a key observation is the rough inde-
pendence and discontinuity of the noise across B-scans. Due to the slice-wise
OCTA imaging process, the νi and bi are independent and discontinuous w.r.t
νj|j ̸=i and bj|j ̸=i. Therefore, instead of exactly mathematically model the noise
in 2D, which is still an open question, we propose to utilize the difference in
inter-B-scan 3D continuity between noise and vessel signal to separate them.

For motion artifact, since BMA µi appears only in a few yi and drastically
increases the overall intensity of yi, we can easily detect such B-scans and then
prevent them from participating the self-supervised learning. Thus, although
µ may emerge continuously, such corruption only spans up to only a few B-
scans due to the time gap between B-scans. Intuitively, such BMA effects can
be eliminated by exploring neighbor B-scans as will be described later.

Note that our final purpose is to suppress the noise of the MIP visualization
of OCTA volumes. For this purpose, we do not need to specifically deal with s,
since it will be suppressed by x during MIP, i.e., MIP(s(x)) ≈ MIP(x).
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2.2 Blind-slice Self-supervised OCTA Denoising and BMA Removal

The pipeline of our blind-slice self-supervised method SOAD is shown in Fig. 2.
The OCTA volume is denoised slice by slice. For each B-scan yi, i.e., the center
B-scan of the input sub-volume composed of yi and its neighboring B-scans, the
proposed system can be formulated as ŷi = Fθ(Ỹi), where Fθ(·) denotes the
network with parameters in θ, Ỹi = {yi−t, . . . ,yi−1,M(yi),yi+1, . . . ,yi+t}, and
T = 2t+ 1 is the window size. M(yi) denotes the center B-scan yi of the input
that is masked black, meaning that Ỹi contains no direct information of yi.

Because using corrupted B-scans for supervision will introduce bias, to en-
hance BMA removal, we aim to only use normal B-scans yi′ for supervision, i.e.,
yi′ = ν(xi′ +si′)+bi′ , where i′ denotes the index of normal B-scans and Ỹi′ de-
notes the input for training whose center B-scan is yi′ . Note that µi appears only
in several yi and it can drastically increase the mean intensity of yi (denoted as
ȳi). Thus, we exclude the sub-volumes whose center B-scans’ mean intensities
are significantly above the average over the B-scan sequences. To avoid manual
annotations for training, we empirically treat ȳi < mean(ȳ) + 1.5 ∗ std(ȳ) as
normal B-scans yi′ , where ȳ is a sequence of all ȳi in a volume.

Since background noise bi′ is independent of yj|j ̸=i′ , bi′ is independent of Ỹi′ .
Because bi′ is sparse and discontinuous across different B-scans, we assume that
ŷi′ cannot fit bi′ given the input Ỹi′ , and ŷi′ will converge to 0 in the background
regions, which is a local minimum of the squared ℓ2 loss function. Similarly, for
the foreground speckle noise νi′ , we also assume that ŷi′ cannot fit νi′ but learns
to smooth the foreground to approach a local minimum of the squared ℓ2 loss
function. Since vessels are continuous, ŷi′ will finally only converge to s(xi′).

2.3 Refinement

Non-local Block. Vessel signals in OCTA volumes share similar appearances
and continuities, indicating that applying non-local mean [4] could refine denois-
ing. However, directly applying this as a post-processing step is computationally
expensive. Instead, we use a non-local block (NL) [30] in the decoder. NL is orig-
inally inspired by non-local mean [4] and can adaptively assign higher weights
to similar features to enhance vessel features and improve the results.
Weighted Loss Function. Because the vessels are sparse in the volumes, if we
directly use the common squared ℓ2 loss as the recovery loss, the outputs of the
network will be dim and low in contrast. To improve the contrast of the output
volume, we propose a weighted loss (WL) function:

Lrec =
1

N ′

∑
i′

∥wi′ ∗ (ŷi′ − yi′)∥22 (2)

where N ′ is the number of normal B-scans yi′ in a batch, wi′ = α ·sg(ŷγ
i′)+yγ

i′ +
0.5, α is the weight parameter, γ the curve parameter, and sg(·) means stop-
gradient. The bias term 0.5 is to prevent the background weights from zero. This
WL function adaptively assigns higher weights to vessel regions that are usually
bright in denoised B-scans ŷi′ . We include raw B-scans yi′ in wi′ to help the
convergence because ŷi′ is not stable at the beginning of the training.
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3 Experiment

3.1 Experiment Details

OCTA Dataset of Awake Mouse Cortex. Seven OCTA volumes in the brain
cortex of awake mice are collected. Five of them are originally of 500×H×1000
(T ×H ×W ) voxels, and two are of 625×H × 1000, where H ranges from 400
– 512. The physical sizes of the cropped volumes are around 2 × 0.7 × 2.4mm3

for T = 500 B-scans or 2.5 × 0.7 × 2.4mm3 for T = 625 B-scans. About 3.6%
B-scans in the dataset are corrupted B-scans.
Implementation Details. Our encoder and decoder follow that in [1]. We
downsample the T-dimension of the features at the 1st and 3rd stages. The
input sub-volume is of size 7 × 128 × 128, and we sample the original volume
by a stride of 1 × 64 × 64. The model is trained by Adam [11] for 15 epochs
with 128 batch size. The initial learning rate is 1e− 3, and decays by 0.1 at the
4th, 8th, and 12th epochs. For WL, we set α = 100 and γ = 1/3. We first train
and evaluate SOAD based on leave-one-out validation and denote it as SOAD
(L). Then, inspired by [23,15] that self-supervised denoising method can also be
trained on the validation or test dataset to get better result, we also directly
train and evaluate SOAD on all seven volumes denoted as SOAD (S).

We compare SOAD with two classical denoisers (BM3D [5] and BM4D [19]),
three OCT/OCTA volume denoisers (Median-TVD [28], Shearlet3D [32] and
Pipeline [10]), and two 3D self-supervised methods (Noise2Self [2] and UDVD [29]).
The deep learning methods [10,2,29] are evaluated in the leave-one-out protocol.
Evaluation Metrics We separately evaluate the results on normal and cor-
rupted B-scans. Since there is no groundtruth, we employ two no-reference ROI-
based metrics [7,6]. The first one, contrast-to-noise ratio (CNR), evaluates the
contrast between foreground ROIs and background. The second one, mean-to-
standard-deviation ratio (MSR), evaluates the homogeneity of foreground ROIs.
Specifically, we randomly sample 30 normal B-scans from each volume and label
9 ROIs for each normal B-scan. For corrupted B-scans, we sample 8 corrupted
B-scans from each volume and label 6 ROIs for each. We select 5 large noisy back-
ground regions for each B-scan and concatenate them as a whole background.

Since ROI-based metrics can be biased in small regions, we further use vessel
segmentation on MIP images for evaluation. Specifically, we use the MIP image
of each result volume to train a standard U-Net [26], supervised by manually
labeled vessel masks. We use leave-one-out validation and Dice scores to evaluate
the result. To further evaluate results on capillaries, we pick the masks of small
vessels (capillaries and some small arterioles and venules) and report additional
Dice scores over them, denoted as Dices.

3.2 Experimental Results

Quantitative Results. The normal B-scan denoising results are presented in
Table 1 (left). Our method SOAD (L) clearly outperforms others, and can be
further improved via self-supervised training on the validation set, i.e., SOAD
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Table 1. Comparison of denoising and BMA removal results

Normal B-scans Corrupted B-scans
CNR MSR Dice Dices CNR MSR Dice Dices

Raw 3.76 3.32 76.96 45.81 2.39 3.60 70.56 36.15
BM3D [5] 12.81 10.87 76.74 41.22 7.05 14.51 72.36 33.89
BM4D [19] 12.02 9.99 82.19 54.60 5.63 11.92 76.21 42.58

Median-TVD [28] 12.62 10.54 74.30 34.35 8.21 14.17 71.10 29.96
Shearlet3D [32] 9.59 8.62 77.63 44.46 8.16 9.75 75.21 39.20
Pipeline [10] 6.41 6.27 77.14 45.63 5.73 5.97 76.74 38.82
Noise2Self [2] 4.12 3.60 77.67 47.08 2.61 3.91 71.30 37.17
UDVD [29] 4.02 3.52 77.54 46.60 2.54 3.82 71.66 37.37
SOAD (L) 14.01 14.69 87.71 69.69 14.50 16.84 86.93 64.65
SOAD (S) 14.50 15.28 88.18 70.52 14.92 17.63 87.64 65.91

Table 2. Ablation study on the Non-local Block and the Weighted Loss

Normal B-scans Corrupted B-scans
NL WL CNR MSR Dice Dices CNR MSR Dice Dices

13.37 12.80 87.42 68.96 14.37 15.01 87.38 64.67
✓ 13.96 14.11 87.95 70.06 14.45 16.32 87.22 65.39

✓ 14.21 14.11 87.71 69.67 14.92 16.03 87.48 65.25
✓ ✓ 14.50 15.28 88.18 70.52 14.92 17.63 87.64 65.91

(S). SOAD produces not only good ROI-background contrast but also good
capillary signal preservation. Among other methods, only BM4D can have both
effective denoising and segmentation results. Note that the blind-spot strategy-
based denoising methods, Noise2Self and UDVD, do not work well as they may
restore the noise using neighboring noisy pixels in the same B-scan.

The corrupted B-scan denoising and BMA removal results are presented in
Table 1 (right). Again, SOAD consistently outperforms other methods, which
shows the effectiveness of SOAD on both denoising and BMA removal.
Qualitative Results. Fig. 3 compares the MIP images of different methods.
For normal B-scan denoising, the raw image is noisy with low contrast, making
vessels unclear or even invisible in the MIP image. Results show that our SOAD
can effectively remove the noise, with large vessels smoothed and capillaries
recovered. Other methods, e.g., BM3D and Median-TVD, remove background
noise but deteriorate capillary signals as well. BM4D preserves some capillary
signals, but suffers from relatively low smoothness and continuity.

For corrupted B-scan denoising, our SOAD removes most BMA and elim-
inates stripes in the resultant MIP images. Shearlet3D also removes BMA, but
its result is low in contrast and smoothness. Pipeline does not effectively recover
the information in the corrupted B-scans because there can be big misalignment
across the corresponding raw OCT B-scans. The other methods do not work for
BMA removal because BMA can be densely spread in corrupted OCTA B-scans.
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Fig. 3. Comparison of MIP results. Regions of interest are zoomed in. Stripes are
marked by green arrows, and removed stripes are marked by yellow arrows.

Ablation Study. Table 2 compares SOAD with different refinement options. It
shows that both refinement methods effectively improve the performance. Specif-
ically, NL mainly improves the vessel structures by aggregating more non-local
information to enhance vessel features, and WL mainly improves the contrast
by making the model pay more attention to the foreground in the supervision.
It is worth mentioning that, in rare cases, there can be consecutive corrupted
B-scans. NL sometimes aggregates the neighbor BMA information for the infer-
ence, and the BMA in the center B-scan may not be perfectly removed. Such
situation can be improved when incorporating WL in training.

Besides the refinement methods, we also present ablation study of normal
B-scan selection threshold in the supplementary. The result shows that without
normal B-scan selection, the overall performance on corrupted B-scans will drop.

4 Conclusion

We propose an effective blind-slice self-supervised learning method, named SOAD,
for denoising and BMA removal of OCTA volumes of awake brains. SOAD de-
noises an OCTA volume slice by slice, by masking the center B-scans of input
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sub-volumes and training the network to recover them. The network uses a
3D-to-2D encoder-decoder architecture to aggregate 3D information to recover
the center B-scan. A non-local block and a weighted loss function are further
designed to enhance the performance. Experiments on an awake brain OCTA
dataset show that SOAD effectively removes speckle noise, background noise,
and bulk motion artifacts while restoring capillaries. Despite the good perfor-
mance, because noise distribution in awake brain OCTA is very complex without
a closed-form mathematical model, this work does not present rigorous proof of
the self-supervised learning procedure. Future work will be carried out on this.

Acknowledgments. This work was partially supported by NIH grants 1R21DA057699
(HL/YP/CD), 1RF1DA048808 (YP/CD) and 2R01DA029718 (CD/YP), and partially
supported by NSF grants 2006665 (HL) and 2128350 (HL).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. https://github.com/Hsuxu/Magic-VNet
2. Batson, J., Royer, L.: Noise2self: Blind denoising by self-supervision. In: Interna-

tional Conference on Machine Learning. pp. 524–533. PMLR (2019)
3. Bian, L., Suo, J., Chen, F., Dai, Q.: Multiframe denoising of high-speed optical

coherence tomography data using interframe and intraframe priors. Journal of
biomedical optics 20(3), 036006 (2015)

4. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In:
2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05). vol. 2, pp. 60–65. Ieee (2005)

5. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d
transform-domain collaborative filtering. TIP 16(8), 2080–2095 (2007)

6. Daneshmand, P.G., Mehridehnavi, A., Rabbani, H.: Reconstruction of optical co-
herence tomography images using mixed low rank approximation and second order
tensor based total variation method. TMI 40(3), 865–878 (2020)

7. Fang, L., Li, S., Nie, Q., Izatt, J.A., Toth, C.A., Farsiu, S.: Sparsity based denoising
of spectral domain optical coherence tomography images. Biomedical optics express
3(5), 927–942 (2012)

8. Guo, A., Fang, L., Qi, M., Li, S.: Unsupervised denoising of optical coherence to-
mography images with nonlocal-generative adversarial network. IEEE Transactions
on Instrumentation and Measurement (2020)

9. Hossbach, J., Husvogt, L., Kraus, M.F., Fujimoto, J.G., Maier, A.K.: Deep oct
angiography image generation for motion artifact suppression. In: Bildverarbeitung
für die Medizin 2020, pp. 248–253. Springer (2020)

10. Jiang, Z., Huang, Z., Qiu, B., Meng, X., You, Y., Liu, X., Liu, G., Zhou, C.,
Yang, K., Maier, A., et al.: Comparative study of deep learning models for optical
coherence tomography angiography. Biomedical optics express 11(3), 1580–1597
(2020)

11. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(Poster) (2015)

https://github.com/Hsuxu/Magic-VNet


10 Z. Li et al.

12. Koch, V., Holmberg, O., Spitzer, H., Schiefelbein, J., Asani, B., Hafner, M., Theis,
F.J.: Noise transfer for unsupervised domain adaptation of retinal oct images. In:
International Conference on Medical Image Computing and Computer-Assisted
Intervention. pp. 699–708. Springer (2022)

13. Krull, A., Buchholz, T.O., Jug, F.: Noise2void-learning denoising from single noisy
images. In: Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition. pp. 2129–2137 (2019)

14. Laine, S., Karras, T., Lehtinen, J., Aila, T.: High-quality self-supervised deep image
denoising. Advances in Neural Information Processing Systems 32 (2019)

15. Lee, W., Son, S., Lee, K.M.: Ap-bsn: Self-supervised denoising for real-world images
via asymmetric pd and blind-spot network. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 17725–17734 (2022)

16. Li, M., Zhang, Y., Ji, Z., Xie, K., Yuan, S., Liu, Q., Chen, Q.: Ipn-v2 and octa-
500: Methodology and dataset for retinal image segmentation. arXiv preprint
arXiv:2012.07261 (2020)

17. Li, M., Idoughi, R., Choudhury, B., Heidrich, W.: Statistical model for oct image
denoising. Biomedical optics express 8(9), 3903–3917 (2017)

18. Liu, X., Huang, Z., Wang, Z., Wen, C., Jiang, Z., Yu, Z., Liu, J., Liu, G., Huang, X.,
Maier, A., et al.: A deep learning based pipeline for optical coherence tomography
angiography. Journal of Biophotonics 12(10), e201900008 (2019)

19. Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain
filter for volumetric data denoising and reconstruction. TIP 22(1), 119–133 (2012)

20. Mahapatra, D., Bozorgtabar, B., Shao, L.: Pathological retinal region segmentation
from oct images using geometric relation based augmentation. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
9611–9620 (2020)

21. Mehdizadeh, M., MacNish, C., Xiao, D., Alonso-Caneiro, D., Kugelman, J., Ben-
namoun, M.: Deep feature loss to denoise oct images using deep neural networks.
Journal of Biomedical Optics 26(4), 046003 (2021)

22. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks
for volumetric medical image segmentation. In: Fourth international conference on
3D vision (3DV) (2016)

23. Neshatavar, R., Yavartanoo, M., Son, S., Lee, K.M.: Cvf-sid: Cyclic multi-variate
function for self-supervised image denoising by disentangling noise from image.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 17583–17591 (2022)

24. Qiu, B., Huang, Z., Liu, X., Meng, X., You, Y., Liu, G., Yang, K., Maier, A.,
Ren, Q., Lu, Y.: Noise reduction in optical coherence tomography images using a
deep neural network with perceptually-sensitive loss function. Biomedical Optics
Express 11(2), 817–830 (2020)

25. Ren, J., Park, K., Pan, Y., Ling, H.: Self-supervised bulk motion artifact removal
in optical coherence tomography angiography. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 20617–20625 (2022)

26. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)

27. Schmitt, J.M.: Optical coherence tomography (oct): a review. IEEE Journal of
selected topics in quantum electronics 5(4), 1205–1215 (1999)

28. Shamouilian, M., Selesnick, I.: Total variation denoising for optical coherence
tomography. In: IEEE Signal Processing in Medicine and Biology Symposium
(SPMB) (2019)



Self-supervised Denoising and BMA Removal of 3D OCTA of Awake Brain 11

29. Sheth, D.Y., Mohan, S., Vincent, J.L., Manzorro, R., Crozier, P.A., Khapra, M.M.,
Simoncelli, E.P., Fernandez-Granda, C.: Unsupervised deep video denoising. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
1759–1768 (2021)

30. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. pp.
7794–7803 (2018)

31. Wang, Z., Liu, J., Li, G., Han, H.: Blind2unblind: Self-supervised image denoising
with visible blind spots. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. pp. 2027–2036 (2022)

32. Yang, J., Hu, Y., Fang, L., Cheng, J., Liu, J.: Universal digital filtering for denoising
volumetric retinal oct and oct angiography in 3d shearlet domain. Optics Letters
45(3), 694–697 (2020)

33. Yu, X., Ge, C., Li, M., Yuan, M., Liu, L., Mo, J., Shum, P.P., Chen, J.: Self-
supervised blind2unblind deep learning scheme for oct speckle reductions. Biomed-
ical Optics Express 14(6), 2773–2795 (2023)

34. Zhang, D., Zhou, F.: Self-supervised image denoising for real-world images with
context-aware transformer. IEEE Access 11, 14340–14349 (2023)


	Self-supervised Denoising and Bulk Motion Artifact Removal of 3D Optical Coherence Tomography Angiography of Awake Brain

