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Dynamic Scene Classification Using Redundant
Spatial Scenelets

Liang Du and Haibin Ling, Member, IEEE

Abstract—Dynamic scene classification started drawing an
increasing amount of research efforts recently. While existing
arts mainly rely on low level features, little work addresses
the need of exploring the rich spatial layout information in
dynamic scene. Motivated by the fact that dynamic scenes are
characterized by both dynamic and static parts with spatial
layout priors, we propose to use redundant spatial grouping of
a large number of spatio-temporal patches, named scenelet, to
represent a dynamic scene. Specifically, each scenelet is associated
with a category-dependent scenelet model to encode the likelihood
of a specific scene category. All scenelet models for a scene
category are jointly learned to encode the spatial interactions
and redundancies among them. Subsequently, a dynamic scene
sequence is represented as a collection of category likelihoods
estimated by these scenelet models. Such presentation effectively
encodes the spatial layout prior together with associated semantic
information, and can be used for classifying dynamic scenes in
combination with a standard learning algorithm such as k-nearest
neighbor or linear SVM. The effectiveness of our approach is
clearly demonstrated using two dynamic scene benchmarks and
a related application for violence video classification. In the
nearest neighbor classification framework, for dynamic scene
classification, our method outperforms previous state-of-the-arts
on both the Marryland “in the wild” dataset and the “stabilized”
dynamic scene dataset. For violence video classification on a
benchmark dataset, our method achieves a promising classifi-
cation rate of 87.08%, which significantly improves previous best
result of 81.30%.

Index Terms—Dynamic scene, Redundant spatial grouping

I. INTRODUCTION

AS a fundamental challenge in automated visual under-
standing, natural scene understanding provides basis for

many high level vision tasks, such as object analysis [6],
[36], action recognition [35], activity understanding [5], [28]
and robotic control [11]. Recently, a significant amount of
efforts have been devoted to dynamic scene classification [8],
[14], [35], [44], [49]. Understanding dynamic scenes is very
important for many practical vision applications like robot
navigation and safety systems, e.g., camera monitoring spatio-
temporal events like forest fires or avalanches.

While existing methods typically rely on low level visual
features, we are interested in the rich spatial layout information
revealed by the middle level features, i.e., spatio-temporal
sub-volumes within a video volume. Although higher level
recognition has gained increasing popularity for many vision
tasks [3], [4], [17], [21], [22], [30], [40], [42], [45], [46], [51],
its application to dynamic scene is under-explored.
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(a) Fountain vs. Waterfall (b) Snowing vs. Street
Fig. 1. Features to distinguish dynamic scenes may have different spatial
layout and motion properties. (a) “Fountain” and “waterfall” rely on the static
background to distinguish them. (b) “Snowing” and “street” differ mainly by
the motion patterns.

Fig. 2. Videos from the same dynamic scene class frequently share similar
spatial layout. For example, a “beach” scene can often be partitioned into
upper, middle and bottom parts with coherent appearance and semantic
meaning, i.e., sky, ocean and sand. Similar observations can be found in other
categories such as “fountain”, “rushing river”, and “elevator”.

A property of dynamic scenes is that they can be char-
acterized by either the dynamic part or the static part, or
both. This differs from video-based activity recognition for
which the dynamic parts play the key roles [16], [21], [43],
[48], [50]. For instance, the “fountain” and “waterfall” scenes
(Fig. 1(a)) might be similar in terms of the dynamic parts
but can be distinguished easily by their static backgrounds.
On the other hand, to distinguish the “snowing” scene from
the “street” scene (Fig. 1(b)), the motion related features
are more discriminative. Another property of dynamic scenes
is that scenes from the same category often share similar
spatial layout (e.g., Fig. 2), and some portions of the videos
from the same category and same spatial position are often
similar, in terms either semantics or appearance, or both.
In fact, such property has been exploited for static scene
analysis (e.g., [31]). These properties suggest that middle level
representation for dynamic scene should cover both static and
motion portions and should exploit the spatial layout priors.

With the above motivation, we develop a middle level
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dynamic scene representation including two key components.
The first component is the redundant spatial grouping (RSG)
for decomposing a dynamic scene video into a large number
of sub-videos, namely scenelets. The redundancy in RSG
allows the representation to preserve both of motion and
static parts. The second component is the category-scenelet
model (CSM) such that each model estimates the likelihood
of a scenelet belonging to a certain category. To encode the
spatial interactions and constraints among scenelets, CSMs for
the same category are jointly learned with a group-sparsity
constraint that implicitly selects discriminative scenelets for a
category. In this way, categorical specific spatial layout priors
are effectively encoded in the learned models.

Imposing sparsity constraints for scenelet models across
different spatial positions actually performs a discriminative
patch pruning, which is a crucial step for many middle level
representations (e.g., [3], [21], [40], [45]), though previously
not for dynamic scene classification. The information carried
in each scenelet model can be viewed as a model for a
scene part at a specific location, e.g., “upper-left part of a
beach”. Fig. 3 shows the flowchart of the proposed method.
Experimental results show that this strategy outperforms the
baseline methods of independent training or using a generic
model for all scenelets with the same scene label in Section IV.
To evaluate the effectiveness of the proposed method, it is
applied to dynamic scene classification on two benchmark
dynamic scene datasets [8], [44] and to a recently proposed
video analysis task named violence video classification [20].
In all the experiments, the proposed representation produces
significant performance gains over previously proposed solu-
tions.

To summarize, we make the following contributions:
• We propose to use redundant spatial scenelets to exploit

middle level information for dynamic scene recognition.
• We propose to jointly learn category-scenelet models by

exploiting both categorical supervision and spatial priors
and interactions among the scenelets.

• Our approach has registered new better results on two
popular dynamic scene classification benchmarks and a
violence video classification benchmark.

We proceed as follows: In Section II, we give a brief
review of existing studies related to our method. In Section III,
we present the proposed redundant spatial grouping and the
algorithm for training scenelet models. The application of the
proposed method for dynamic scene classification and violence
video classification are presented in Section IV. Finally, we
conclude the paper in Section V.

II. RELATED WORK

A. Static Scene Recognition

Recognizing scenes from static images has been studied
intensively and various methods have been shown to be
successful, such as [1], [2], [13], [22], [27], [29], [37], [38],
[41], [53], [54], to name a few. In [37], a discriminative
holistic scene representation, spatial envelope, was proposed
to represent the “gist” of a natural scene. Besides the holis-
tic scene representation, encoding local features with spatial

layout information has achieved impressive performance [1],
[27]. In [27], dense SIFT features are organized through spatial
pyramid matching for recognizing natural scene categories.
In [1], textons are used as “visual words” to represent local
features. More recently, middle level features have gained
popularity for static scene recognitions [22], [23], [29]. In
[29], a bank of object detectors is trained on extra datasets
and the responses of the detectors are used as features for
scene representation. In [22], distinctive parts are learned to
represent image scenes. Recently, deep learned features have
also shown to be effective in scene recognition [15], [60].

Our work is partly inspired by middle level feature rep-
resentations of static scene recognitions [22], [29]. However,
compared with the research on static scene recognition, study
on dynamic scene recognition is new. One issue is the scarcity
of large dynamic scene datasets. While there are a decent
number of large static scene datasets (e.g., ImageNet [7],
and MIT 67 Indoor [38] ) for training base object detectors
[29] or mining distinctive parts [22] for static scenes, only
a few benchmark datasets are available for dynamic scene
recognition. This constraint makes middle level representation
a challenging problem for dynamic scene recognition.

B. Dynamic Scene Recognition

Recently, dynamic scene recognition has attracted re-
searchers’ attentions [8], [14], [35], [44], [49]. A closely
related topic is dynamic texture classification [9], which
focuses more on temporally repeating patterns. In [35], the
histogram of optical flow (HOF) is used to model scene
dynamics. The results of dynamic scene recognition are used
as priors for action recognition. In [44], the authors propose to
use chaotic system parameters as features for dynamic scene
classification. In order to study the role of orientation features
in dynamic scenes, Derpanis et al. [8] use a set of Gaussian
derivative filters to obtain orientation features. In [8], a video
sequence is partitioned following the canonical spatial pyramid
paradigm. In [19], optical flow features are extracted from
each pair of consecutive frames, and quantized into discrete
visual flow words. In contrast, in our method, spatio-temporal
blocks (scenelets) are obtained by combining any number of
neighboring elementary patches whenever they form a cuboid.
This leads to a more redundant spatial layout division. In
addition, each spatio-temporal patch is treated equally in the
final classification for [8]. In [24], wavelet domain multi-
spectrum fractal analysis is proposed for dynmic texture clas-
sification. In contrast, in our methods, the importance of each
redundant scenelet is learned via a group sparse algorithm.
In [47], slow feature analysis (SFA) is applied to dynamic
scene recognition. In [14], a forest-based classifier is used with
spatio-temporal descriptor for dynamic scene recognition. In
[49], five dimensional motion features are used for dynamic
scene recognition. In [18], a method based on bag of visual
word framework was proposed by using spacetime energies
and color feature to study dynamic scene recognition problem.
Almost all these works on dynamic scene classification are
devoted to exploit low level cues or models. The role of middle
level features is under-explored for dynamic scene recognition.
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Fig. 3. Framework of the proposed dynamic scene classification approach.

C. Middle Level Feature Representation

Recently, middle level representation has been proven ef-
fective in many vision tasks, e.g., human detection [3], object
detection [52], [57], [58], static scene classification [29], [45]
and activity recognition [21], [50]. Generally, middle level
features are extracted by models (e.g., e-SVM detectors [34])
trained from discriminative patches. The core component of
these methods is to harvest and prune representative and
discriminative patches [10], [45].

Our work is most related to recent studies in middle level
video representation such as [21], [39], [50], which also
use spatio-temporal patches to represent videos. Besides the
obvious differences in applications, our method differs from
them in the way we sample spatio-temporal patches and train
middle level models. Instead of mining discriminative patches
by ranking methods [21] or using motion saliency cues [50],
scenelets are generated at by redundantly grouping local parts.
Each scenelet in the proposed method is not only associated
with a scene class but also a spatial layout information in the
video volume. In addition, instead of using e-SVM detectors
[34] or patch template [50] to model middle level patches,
scenelet models are jointly modeled by a logistic regression
formulation, in which group sparsity is employed to enforce
sparsity of scenelet models across different spatial positions. In
this way, categorical specific spatial layout priors are encoded
in the learned models.

III. REDUNDANT SPATIAL SCENELETS FOR DYNAMIC
SCENE CLASSIFICATION

A. Overview

A flowchart for the our study, including both model learning
and testing phases, is given in Fig. 3. In particular, given
a dynamic scene video, it is first decomposed into a set
of scenelets through redundant spatial grouping, and then
category-scenelet models are applied on these scenelets to get
a collection of category likelihood estimation per scenelet and
category. Such a representation, named categorical-scenelet

response matrix or CSR, is then used for scene classification.
For each category, the category-scenelet models of all scenelets
are jointly learned to explore the spatial interactions and
constraints among them.

B. Redundant Spatial Grouping

Our goal is to generate a large number of representative
scenelets. The scenelets of the proposed method are gener-
ated by the redundant spatial grouping of elementary spatio-
temporal cells. In this way, the proposed representation can
redundantly cover all spatial positions. It accords with our
observation that dynamic scenes are characterized by both
dynamic foreground and (relatively) static backgrounds.

Specifically, given an input video V , its scenelet represen-
tation is a set of nS spatio-temporal patches, named scenelets,
denoted as

V= {Vi : i = 1, . . . ,nS} . (1)

The decomposition is achieved as following: we first partition
V spatially into a N×N non-overlapping spatio-temporal cells
with equal size. Then, any grouping of neighboring patches,
including the patches by themselves, is treated as a scenelet
as long as it forms a cuboid. This process is similar to the
over-complete repceptive field in [25]. This operation will
lead to a large number of spatially redundant scenelets. Fig. 4
shows an example of redundant spatial partition for N = 3,
producing 36 scenelets in total. Note that different scenelets
can be composed of different numbers of elementary spatio-
temporal cells.

In theory, temporal divided patches may also help in dis-
criminating scene classes, at a cost of increased computation
complexity. In practice, only relatively short videos are avail-
able (e.g.), which renders temporal division unreliable. On
the other hand, since spatio-temporal features (e.g., SOE or
Gabor3D, see Section IV) are included to derive the CSR
calculation, they can compensate the temporal variations in
videos. For these reasons, we only use redundant spatial
grouping and leave the temporal one.
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Fig. 4. Example of scenelets from redundant spatial grouping a 3×3 spatial cells. From left to right and from top to bottom, the numbers of cells in each
group of scenelets are 1,2,3,4,6 and 9.

C. Joint Learning of Category-Scenelet Models

The scenelets from the c-th dynamic scene category and i-
th spatial grouping are treated as the same class of scenelets
which is indexed by (c, i). The category-scenelet model (CSM)
of scenelet class (c, i) can be jointly trained with group sparsity
constraints with other scenelet models.

We denote the CSM model of the c-th scene category and
i-th scenelet by fc,i(xi), which estimates the likelihood of the i-
th scenelet belonging to the c-th category. The function fc,i(xi)
is modeled as a logistic function of input feature vector xi, i.e.,

fc,i(x) =
1

1+ exp(−`c,i(x))
, (2)

where `c,i(x) = w>c,ix + bc,i, and wc,i ∈ Rd ,bc,i ∈ R are the
model coefficients. Our CSM representation is determined by
the two groups of parameters denoted by

W = [W1W2 . . .WnC ] ∈ Rd×nCnS

where B = (bc,i) ∈ RnC×nS , Wc = [wc,1wc,2 . . .wc,nS ] ∈ Rd×nS

collects all weight vectors of all scenelets classifiers for c-th
category.

Given a training set of nV sample videos with extracted
features and annotated labels {(X(s),y(s)) : s = 1,2, . . . ,nV},
where y(s) ∈ {1, . . . ,nC} are the categorical labels. The model
for each category of scenelets are learned in a one-vs-all
fashion. For the c-th scene category, by taking the negative
logarithm on the loss of sum of likelihood and adding a
mix-norm regularizer, we reach the following optimization
problem:

min
Wc,bc

nV

∑
s=1

nS

∑
i=1

ln
(

1+ exp
(
−δ (c,y(s))`c,i(x

(s)
i )

))
+ γ‖Wc‖2,1, (3)

where δ (c,y) =
{

1, y = c
−1, y 6= c is the indicator function that

converts labels into binary; bc ∈ RnS is the vector whose
elements are bias terms for the corresponding models; γ

is weight parameter balancing between regularization term
and the loss term. Learning middle level features with weak
supervision (i.e., only categorical level information but not
patch level supervision) has been proven to be beneficial [17],
[45].

The `2,1 norm in (3) is defined by ‖Wc‖2,1 = ∑
nS
i=1 ‖wc,i‖2.

It enforces column-wise sparisty, i.e., sparsity over scenelets

across different spatial positions. This regularization implicitly
performs a scenelet pruning during the joint model learning.

The problem in (3) is an `1/`q regularized multi-task
learning problem, which could be formally defined as follows:

min
W∈R p

f (W ) = l(W )+λω(W ). (4)

where l(·) is convex loss dependent on training samples and

ω(W ) =
s

∑
i=1
||wi||q. (5)

is the `1/`q norm.
Though not convex, efficient solutions have been proposed

recently. We follow the algorithm in [32] in our solution.
An accelerated gradient using `1/`q Euclidean projection is

used to solve the `1/`q regularized problem efficiently.
More details can be referred to [12], [32], [59].
Now that we have a dynamic scene video V decomposed

into scenelets V, and a set of learned CSMs { fc,i(.) : 1≤ c≤
nC,1≤ i≤ nS}, we can represent V by applying all CSMs to
the scenelets in V. We call such representation categorical-
scenelet response matrix (CSR). In particular, CSR for V is a
matrix denoted by A = (ac,i)∈RnC×nS , such that ac,i = fc,i(xi)
is an estimated category likelihood.

Each scenelet model may correspond to a partial dynamic
scene (e.g.,“concrete pavement” for scene “street”), a dynamic
scene per se (e.g., scene “sky clouds”), or perhaps a random
but informative spatio-temporal patch in a video. The impurity
of each type of scenelets might cause some ambiguities in
the detection. This implies that the corresponding scenelet
model is not an exact category detector. It is a noisy model
for spatial specific component of a dynamic scene category.
The model does not perform classification tasks by itself.
The discriminative ability of individual scenelet is boosted
by aggregating all scenelet responses into a CSR descriptor,
which is used as the final feature. Actually, allowing certain
level of ambiguity and avoiding hard decisions before the very
final step are favored in many semantic modeling approaches.
It is a manifestation of the data processing theorem which
advocates to postpone hard decisions until the very last stage
of processing [33].

In the rest of the paper, we call the proposed dynamic
scene classification algorithm again as CSR. By contrast, in
our experiments we also include two baseline variations: one
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trains all categorical-spatial likelihood functions independently
by replacing the `2,1 norm with the `2 norm and the other trains
a generic scene classifier using the whole video for estimating
category likelihood of all scenelets. These two variations are
referred as CSR`2 and CSRb (‘b’ for baseline) respectively.

D. Implementation Details

To describe a scenelet, we use two spatio-temporal features,
Gabor3D and SOE [8], as the low level features in all
experiments. Note that other features are also possible for our
framework, and some of them are actually tested with our
framework. We choose Gabor3D and SOE for their popularity
in dynamic scene classification.

Gabor3D (G3D). The extraction of video structures in dif-
ferent orientations is done by filtering the video using a bank
of 3D Gabor filters with different orientations: G3(σ ,θ)⊗Vi,
where Vi is a subsequence and G3(σ ,θ) is the 3D Gabor filter
with scale σ and orientation θ . In practical implementation,
the convolution is firstly performed on the whole sequence and
then, features are extracted from each filtered subsequences.
The concatenation of the histogram of the magnitudes of the
filtered videos in different orientations and scales are used
as feature. In experiments, the scale is set to be fixed and 8
orientations (θ = {πn/8}7

n=0) is used. The size of Gabor filter
is 27×27×27. The magnitudes of the filtered video in each
channel are binned into a 300 dimension histogram. Therefore,
this amount to a final feature vector of 2,400 dimensional.

Spatiotemporal oriented energy features (SOE) [8]. This
feature is defined as the normalized response of Gaussian
filtered video volumes. i.e.

E
θ̂i,σ j

=
E

θ̂i,σ j

ε +∑θ̂×σ
E

θ̂ ,σ

, (6)

where E
θ̂ ,σ is the local energy measurement defined as

E
θ̂ ,σ = ∑

x
Ω(x)[GK

θ̂ ,σ
(x)∗ I(x)]2 , (7)

Ω(x) is a mask for the aggregation region and GK
θ̂ ,σ

the K-th
derivative of the Gaussian with scale σ , and θ̂ is the direction
of the filter’s axis of symmetry.

For redundant spatial grouping, we fix N to 5 which results
in 5× 5 basic spatio-temporal cells and 225 scenelets in
total (i.e., nS = 225). In practice, we find the 5× 5 basic
spatio-temporal cells provide sufficiently fine granularity for
dynamic scene classification while effectively balancing the
computational cost. The influence of parameter N in our
method is shown in Table III.

IV. EXPERIMENTS

We evaluate the proposed representation on three bench-
mark datasets. For two dynamic scene datasets, both nearest
neighbor classifier and linear SVM classifier are tested for
comparison following the protocols of the state-of-the-art
dynamic scene methods [8], [18], [44], [47]. In particular, for
nearest neighbor classification, let A(1),A(2) be CSRs from two
scene videos, we use the Frobenius form of their difference,

i.e., |A(1)−A(2)|F , as the metric. For experiment on violence
video classification, SVM classifier with RBF kernel is used
as in the state of the art [20].

A. Evaluation on Public Dynamic Scene Datasets

Datasets. We evaluate our proposed CSR on two bench-
marking datasets, i.e., the Maryland “in-the-wild” scenes
dataset [44] and the “Stabilized” dynamic scenes dataset [8].
Maryland “in-the-wild” scenes dataset [44]. This dataset
contains thirteen dynamic scene classes with ten color videos
each class. The videos were collected from Internet video
sharing sites, e.g., Youtube (www.youtube.com). This dataset
is very challenging that the videos therein are less constraint
with large variation in illumination, frame rate, viewpoint, im-
age scale and various degrees of camera-introduced motions.
Fig. 5 shows some example scene frames of the dataset.

“Stabilized” dynamic scenes dataset [8]. This is a new
dataset introduced by Derpanis et al. for the purpose of evalu-
ating their video orientation descriptor by excluding influences
from camera motions. There are in total fourteen dynamic
scene classes with thirty color videos each. Fig.6 shows some
example scene frames of the dataset.
Classification results. We follow the same leave-one-video-
out setting in [8]. Results of both nearest neighbor classifier
and linear SVM are reported for comparison. The proposed
CSR representation can achieve better performance than the
state of the arts, demonstrating the discriminative ability of
the proposed representation.

Table I shows the details comparison of the proposed
method with the state of the art. For fair comparison, the left
thirteen columns show results using nearest neighbor classifier
and the right four columns show results using stronger classi-
fiers (i.e., random forest and linear SVM). The results of the
first five columns are quoted from [44]. We can see that G3D
and SOE features perform poorly when using the low level
feature themselves for classification. By using the proposed
representation, performances for both features improve by a
large margin. The accuracy for CSR with G3D increases from
21% to 65% and CSR with SOE from 41% to 71%. 71% and
86% are the best published performances on this dataset using
nearest neighbor classifier and linear SVM respectively, even
though it only uses a single feature channel.

In [47], the SFA-based method achieves an accuracy of
60%, by using stronger classifier (i.e., a linear SVM)1. In [14],
they proposed to use random forest in classification of dynamic
scenes and achieved an accuracy of 68% on this dataset. In
[18], by using a combination of spate-time energy feature
and color feature, along with a linear SVM classifier, they
obtained an accuracy of 69.23%. However, by using linear
SVM classifier, we achieve 86%. Fig. 7 presents the confusion
matrix for the proposed CSR on this dataset.

Table II shows the comparison results on the “stabilized”
dynamic scene dataset. Applying the proposed CSR rep-
resentation to the SOE feature, our approach outperforms

1An erratum on the results of the original paper: http://webia.lip6.fr/
∼theriaultc/sfa.html
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Fig. 5. Sample frames of the Maryland “in-the-wild” scenes dataset [44]. The classes are: avalanche, boiling water, chaotic traffic, forest fire, fountain, iceberg
collapse, landslide, smooth traffic, tornado, volcano eruption, waterfall, waves, and whirlpool.

Fig. 6. Examples from the “Stabilized” scenes dataset [8]. The classes are: beach, elevator, forest fire, fountain, highway, lightning storm, ocean, railway,
rushing river, sky-clouds, snowing, street, waterfall, and windmill farm.

TABLE I
CLASSIFICATION RATES (%) ON THE MARYLAND “IN THE WILD” DYNAMIC SCENE DATASET. RESULTS OF THE FIRST FIVE COLUMNS ARE FROM [44].

THE LEFT COLUMNS ARE USING NEAREST NEIGHBOR CLASSIFIERS AND THE RIGHT FOUR COLUMNS ARE USING LINEAR SVM, EXCEPT [14] WHICH IS
USING RANDOM FOREST. METHODS WITH CSRARE OUR PROPOSED METHODS. THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED.

Class LDS Bag of Mean Dyn. Static G3D SOE CSR`2 CSR`2 CSRb CSRb CSR CSR SFA STRF BoSE CSR
GIST Words GIST Chaos +Dynamics [8] G3D SOE G3D SOE G3D SOE [47] [14] [18] SOE

Avalanche 70 30 50 30 40 10 40 40 90 10 40 60 80 60 60 60 80
Boiling water 70 0 30 30 40 30 60 80 80 20 20 100 90 70 80 70 100
Chaotic traffic 10 20 30 50 70 10 80 60 90 20 90 100 90 80 90 90 90

Forest fire 0 30 40 30 40 0 40 50 70 20 60 40 40 10 80 90 90
Fountain 0 10 50 20 70 10 10 90 40 40 10 10 50 50 80 70 80

Iceberg collapse 20 30 40 10 50 0 20 60 40 40 40 40 90 60 60 60 90
Landslide 20 40 20 20 50 10 50 50 50 40 20 30 30 60 30 60 80

Smooth traffic 10 0 40 20 50 20 60 50 40 40 80 80 60 50 50 70 90
Tornado 70 10 70 60 90 20 60 60 40 60 90 90 90 70 80 90 90

Volcano eruption 0 30 30 70 50 20 10 70 90 50 50 80 100 80 70 80 100
Waterfall 0 30 10 30 10 30 10 70 70 40 50 60 60 50 50 100 80

Waves 40 50 70 80 90 10 80 70 70 70 60 80 90 60 80 90 90
Whirlpool 20 30 40 30 40 70 40 50 50 30 60 70 50 80 70 80 60
Average 25 24 40 36 52 21 41 61 63 37 52 65 71 60 68 78 86

the state of the art (84% vs. 82%) using nearest neighbor
classifier. Moreover, by using the same low level features,
the performance gain by using CSR is obvious: for G3D,
the performance increases from 40% to 78%, for SOE, the
performance increases from 74% to 84%. In [49] and [14],
accuracies of 85.61% and 86% are reported. By using linear
SVM classifier, our performance is 94%. In [18], by using a
combination of spate-time energy feature and color feature,
along with a linear SVM classifier, they obtained an accuracy
of 96%. Fig. 8 presents the confusion matrix for the proposed
CSR on this dataset.

Moreover, we can see that it is advantageous to train our

TABLE III
INFLUENCE OF PARTITION PARAMETER N ON PERFORMANCES (%).

N 3 4 5 6
Maryland “in-the-wild” scene dataset 33 56 86 79

“Stablized” dynamic scene dataset 44 79 94 93

categorical-spatial likelihood functions jointly using `2,1 reg-
ularizer, compared with training the generic scene classifiers
(CSRb) or independently training (CSR`2 ).

To investigate the influence of the spatial partition parameter
N on the performance of CSR, we test our algorithm with
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Fig. 7. Confusion matrix of our method on the Maryland “in the wild” dataset.

Fig. 8. Confusion matrix of our method on the “stabilized” dynamic scene dataset.

different values of N. The results are shown as Table III.
From the table, we can see that the performance increases
with the number of scenelets until N reaches 5. Moreover,
we notice that the performance on the Maryland “in-the-
wild” scene dataset decreases more dramatically than that on
the “stabilized” scene dataset. This can be explained by the

fact that N actually determines the degree of granularity for
redundant spatial grouping. A larger N will lead to smaller
granularity, which is more susceptible to spatial misalignment
within the same dynamic scene. Since the Maryland “in-the-
wild” scene dataset has more camera-introduced motions, its
performance decreases more (from 86% to 79%) for larger N



8

TABLE II
CLASSIFICATION RATES (%) ON THE “STABILIZED” DYNAMIC SCENE DATASET. RESULTS OF THE FIRST FIVE COLUMNS EXCEPT G3D ARE FROM [8]. FOR

SFA [47], THE ORIGINAL PAPER DOES NOT PROVIDE THE PER CLASS PERFORMANCES BUT THE OVERALL ONE. THE LEFT COLUMNS ARE USING
NEAREST NEIGHBOR CLASSIFIERS AND THE RIGHT FOUR COLUMNS ARE USING LINEAR SVM, EXCEPT [14] WHICH IS USING RANDOM FOREST.

METHODS WITH CSR ARE OUR PROPOSED METHODS. THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED.

Class MSOE Chaos HOF+ G3D SOE SFA CSR`2 CSR`2 CSRb CSRb CSR CSR STRF BoSE 5DMFV CSR
+GIST GIST [8] [47] G3D SOE G3D SOE G3D SOE [14] [18] [49] SOE

Beach 83 30 76 50 87 - 70 77 77 100 100 100 100 100 98 100
Elevator 60 40 90 16 67 - 83 93 90 100 83 100 100 97 90 100

Forest fire 60 17 63 3 83 - 50 70 60 40 50 73 83 93 80 93
Fountain 40 3 37 73 47 - 73 77 13 43 67 77 47 87 60 97
Highway 60 23 53 23 77 - 50 70 37 67 67 80 73 100 81 100

Lighting storm 87 40 70 93 90 - 90 100 73 87 93 83 93 97 67 90
Ocean 97 43 93 20 77 - 100 100 93 100 100 97 100 90 100 90 97

Railway 60 7 87 27 87 - 87 83 63 97 93 97 93 100 87 100
Rushing river 90 10 73 23 47 - 83 73 70 87 93 93 97 97 95 100

Sky 80 43 87 30 90 - 100 73 67 87 90 93 100 97 92 90
Snowing 17 10 40 33 33 - 80 77 40 73 70 73 57 97 90 87

Street 63 17 80 20 83 - 57 87 77 100 100 100 97 100 97 100
Waterfall 37 10 50 40 43 - 57 63 27 17 13 23 76 83 75 67

Windmill farm 47 17 60 67 77 - 83 87 80 77 83 87 93 100 92 97
Average 63 22 69 40 74 82 75 81 62 76 78 84 86 96 86 94

(N = 6) than that of the “stabilized” scene dataset (from 94%
to 93%).

From the above experiments, we draw safely the conclu-
sion that CSR can improve the discriminability of classifiers
for dynamic scene classification. In addition, using the `2,1
regularizer helps achieve better results than the two baselines.

B. Violence video classification

In this subsection, we apply the proposed middle level
representation to an emerging video-based application, i.e.,
violence video classification. A related topic is abnormal
detection [56], which focuses on abnormal behavior of crowds.
By using CSR along with a simple nonlinear SVM (i.e., RBF
kernel), our method can achieve much better results than the
state of the art [20]. Note that, the task is binary (violence vs.
nonviolence) and therefore the CSR representation becomes
vector.

The goal of violence video classification is to monitor
crowded events of outbreak of violence [20]. We use the
benchmark dataset assembled in [20] and follow the five-
fold cross-validation classification test protocol therein. Fig. 9
shows some examples of violent frames. Violences are often
characterized by the interactions between subjects within a
video. Both G3D and SOE are tested as our low level features.

We compared our method with the state of the art on
violence video classification [20], and many other state-of-
the-art techniques on activity recognition2: LTP [55], HOG
[26], HOF [26] and HNF [26]. The results are reported as
mean accuracy and area under ROC curve (AUC) and shown in
Table IV. The proposed method outperforms all other methods
both in terms of accuracy and AUC. We also notice that in the
“Violence” video classification task, G3D outperforms SOE.
This could be explained by the fact that the key cue for group
“violence” is the quick movements of a group of people, and
G3D is more sensitive to this kind of motions.

2Re-implemented in [20]

C. Semantic Interpretability

Considering the middle level nature of CSR, it is of interest
to investigate its ability in representing video by semantically
meaningful features. For example, an “ocean” scene should
pay more attentions to water-related features in CSR. We
investigate this property of CSR by plotting the most dis-
criminative type of scenelets except for the scenelet models
belonging to itself. The discriminative ability is measured by
weights of each type of scenelet for each one-vs-all linear
SVM, i.e., the weight of each dimension for CSRs.

Fig. 10 shows the results of two scene categories in the
“stabilized” dynamic scene dataset. This figure visualizes
the importance of middle level scenelet measured by the
weights of one-vs-all linear classifier. Each type of scenelets is
visualized as a representative exemplar spatio-temporal patch.
A close inspection of the most discriminative scenelets verifies
that the proposed representation indeed carries discriminative
information. For the “beach” scene, scenelets of “sky clouds”
and “ocean” both have high discriminative ability because
they are compositional parts for a beach. In addition, the
scenelets from the lower part of the “street” scene also
show good discriminative abilities. This could be explained
by the appearance similarity between the sands on a beach
and concrete pavement of a street. For the “waterfall” scene,
scenelets from the “fountain” and “rushing river” scenes have
the highest discriminative ability. It is intuitively plausible as
they resemble “waterfall” in either motion or static context.
However, it is surprising that the “forest fire” scene also pos-
sesses high discriminative ability. Actually, we have observed
that the motion patterns in fire look similar to the motion of
waterfall.

V. CONCLUSIONS

In this paper, we proposed a middle level feature represen-
tation for dynamic scene recognition. In the representation,
redundant spatial grouping is used to harvest middle level
scenelets which can cover both static and dynamic portions
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Fig. 9. Examples of violence videos from the violence video dataset [20].

TABLE IV
CLASSIFICATION RESULTS ON THE VIOLENCE DATASET [20]. RESULTS FOR METHODS IN THE FIRST FIVE COLUMNS ARE QUOTED FROM [20].

Method LTP HOG HOF HNF ViF CSR`2 CSRb CSR CSR`2 CSRb CSR
[55] [26] [26] [26] [20] SOE SOE SOE G3D G3D G3D

Accuracy 71.53 57.43 58.53 56.52 81.30 70.95 67.07 78.95 82.20 76.52 87.08
AUC 79.86 61.82 57.60 59.94 85.00 78.80 76.21 88.72 90.11 86.17 93.60

Fig. 10. Examples of dynamic scenes and the most discriminative scenelets. Different scenelet models are visualized by its representative exemplar scenelets
(see Sec. IV-C for details).

of dynamic scenes with pre-defined spatial information. The
proposed middle level representation can significantly improve
the performances of the baseline low level features. In addi-
tion, by using the jointly learning of scenelet models via group
sparsity regularization, spatial layout information for dynamic
scenes is encoded and therefore recognition performances are
improved compared with the independent learning. Extensive
experiments on two benchmark dynamic scene datasets and a
violence video benchmark demonstrate the superiority of the
proposed representation in comparison with the state-of-the-art
methods.
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