Adaptive Color Structured Light for Calibration and Shape Reconstruction

Xin Dong* Southwest University
Haibin Ling† Stony Brook University
Bingyao Huang‡ Southwest University

Figure 1: The proposed adaptive color structured light.

Abstract

Color structured light (SL) plays an important role in spatial augmented reality and shape reconstruction. Compared to traditional non-color multi-shot SL, it has the advantage of fewer projections, and can even achieve single-shot. However, distortions caused by ambient light and imaging devices limit color SL’s applicability and accuracy. A common solution is to apply color adaptation techniques to cancel the disturbances. Previous studies focus on either robust fixed color patterns or adaptation approaches that may require preliminary geometric calibrations. In this paper, we propose an approach that can efficiently adapt color SL to arbitrary ambient light and imaging devices’ color responses, without device response function calibration or geometric calibration. First, we design a novel algorithm to quickly find the most distinct colors that are easily separable under a new environment and device setup. Then, we design a maximum a posteriori (MAP)-based color detection algorithm that can utilize ambient light and device priors to robustly detect the SL colors. In experiments, our adaptive color SL outperforms previous methods in both calibration and shape reconstruction tasks across a variety of setups.

Index Terms: Computing methodologies—Computer vision—Image and video acquisition—Camera calibration; Computing methodologies—Computer vision—Image and video acquisition—Reconstruction;

1 Introduction

Structured light is an important technique for projector-camera systems, and it is widely used in spatial augmented reality (SAR)/projection mapping [11–13,16,18,25,27,30,31,34,35,38,40]. Most SAR applications require a preliminary step of SL-based [14,42] calibration and scene shape recovery. Color SL uses colors to encode projector pixels’ spatial information to reduce the number of projections. Thus, in some applications such as dynamic projection mapping [31] and dynamic shape reconstruction [26,49,53], color SL is preferred to Gray-coded SL for better performance.

A typical color SL system is shown in Fig. 1, where the projector first projects carefully designed patterns to the target scene. Then, the camera captures the scene along with the superimposed patterns. Finally, the camera-captured images and the projected patterns are matched to obtain the projector-camera pixel correspondences for calibration or shape reconstruction. In practice, the projected SL patterns undergo geometric and photometric distortions due to the setup, i.e., scene geometry, ambient light and color responses of the imaging devices [19,47,49], e.g., the camera-captured colors may be significantly deviated from the projected ones if the ambient light, the camera and projector color responses are uncalibrated. These distortions may affect the accuracy and robustness of the pattern matching process. Thus, abundant previous work focuses on designing robust color SL patterns for these scenarios. Despite these efforts, most color SL methods use fixed patterns for all setups without considering the ambient light and device priors, and may still obtain suboptimal results in non-ideal conditions. Moreover, some methods require a preliminary geometric calibration step, which limits the practicability of color SL.

In this paper we propose a practical adaptive color SL to address these issues. Our goal is to find the optimal color combination of the SL pattern according to different setups rather than using a fixed pattern, such that the pattern segmentation and color detection are more robust under different ambient light conditions and projector-camera system’s color responses. We first design two quality measures for pattern segmentation and color detection, respectively. For pattern segmentation, we use the ratio between the current and the ideal number of segmented pixels as the segmentation success rate. For color detection, we assume that larger color distinction leads to better detection. Therefore, we proposed a color distinction measure by comparing colors’ hue distributions. Our method is shown in Fig. 1, we start by projecting and capturing the color SL pattern, and we update the SL color combinations by optimizing the two measures iteratively. To improve efficiency, we exclude the project-and-capture operation from the optimization loop, and use genetic algorithm (GA) to find the optimal color combination from a set of sampling images. Finally, the optimal color SL pattern is used for projector-camera calibration and shape reconstruction.

Another important issue addressed by our method is a robust color detection algorithm based on ambient light and device priors. Due to the optimal color combination searching step above, we have some prior knowledge about the ambient light and projector-camera system’s color responses, therefore we propose a maximum a posteriori estimation (MAP)-based algorithm for color detection. In experiments, our approach shows significant advantages in robustness and success rate compared with simple color thresholding and lookup table-based color detection methods, e.g., [21]. Moreover, unlike most previous work [31,53], our method does not require a prelimi-
nary device response function calibration or geometric calibration. In summary, our contributions are as follows:

- We propose an adaptive color SL that can adapt to different ambient light conditions and projector-camera color responses without device response calibration or geometric calibration.
- An MAP-based color detection algorithm is designed to utilize ambient light and device priors to improve SL color detection.
- In experiments, our method outperforms the previous method by higher calibration and reconstruction qualities, especially in non-ideal setups.

The code and dataset are publicly available at https://github.com/Dongxin000/Adaptive-color-SL.

2 Related work

SL plays an essential role in SAR and projector-camera systems applications, such as geometric calibration [12, 18], response function calibration [6,15], projection mapping [27,31] and shape reconstruction [26,49,53]. Existing SL approaches can be briefly classified into time multiplexing, spatial multiplexing and mixed ones, please refer to [14,42] for more detailed reviews.

Time multiplexing methods project a sequence of patterns to encode each single pixel, and usually use Gray/binary code [39,46] or phase-shifted sinusoidal code [50,54]. Due to multi-shot of SL patterns, those approaches are computationally expensive and usually used in static scenes, despite offering pixel-wise or even sub-pixel dense correspondences.

On the other hand, spatial multiplexing SL uses spatial information to encode pixel locations. Exemplar patterns are checkerboard [1], fringe projection profilometry [22], M-array [2,48] and De Bruijn sequence [20,26,41]. With color encoding techniques, they can further reduce the number of shots [3,6,31,33,43,49], and thus are more suitable for dynamic applications. However, colors are sensitive to ambient light and projector-camera systems’ color responses [5,9,19,32,47,49,51,53]. Abundant previous work has been proposed to address this issue, and can be roughly divided into two categories: one type focuses on fixed SL patterns and aims to study more accurate and robust image detection algorithms or to design robust SL patterns; the other is to adaptively adjust SL patterns according to the environment and devices’ color responses.

Fixed color patterns. For fixed color SL patterns, clustering or thresholding are usually used for color detection [21,24,54]. But due to the disturbances from the ambient light and the imaging devices, these methods may result in suboptimal solutions. Some studies focus on more accurate and robust color detection approaches, e.g., Zhang et al. [51] present a decision-directed method to get the initial centroids, which overcomes the converging to local optima issue of K-means. A new strategy by Fechteler et al. [10] is proposed to make color detection independent of brightness, thereby reducing interference from object surfaces and ambient light. Fechteler and Eisert [9] improve the previous approach by a robust and adaptive color detection algorithm that can achieve single-shot face reconstruction. Lee et al. [32] use Log-gradient filters to reduce the color distortions from the object material. Zhang et al. [49] apply multi-pass dynamic programming to decode color stripe SL.

Hu et al. [17] design stripes and multi-slit patterns to maximize robustness while minimizing the number of colors and window size. This technique makes the projector-camera system more robust against ambient light and color crosstalk. Chen et al. [7] propose three pure color patterns to address the crosstalk between DLP projectors and CCD cameras. Je et al. [23] study a single-shot pattern that maximizes the color contrast between stripes, which can reduce the ambiguity caused by system resolutions and object colors. With two shots, their method can further reduce blurriness caused by colored object surfaces, ambient light, projector noise and nonlinear responses. Donlić et al. [54] use multi-shot color self-correcting De Bruijn sequences for robust color detection.

Adaptive color patterns. Adaptive color patterns aim to modify the SL color according to the environment and imaging devices. Koninckx and Gool [28] analyze the setup and the colors of the scene to find easily disturbed colors, and then solve the color that is least susceptible to the colors of the scene to form a pattern. Caspi et al. [6] estimate the albedo of the object surface, scene colors and color crosstalk between the projector and the camera. Then, they design a Gray-code based adaptive color SL pattern to reduce the number of shots, but a preliminary response function calibration step is required. Zhou et al. [53] present a color calibration method to deal with disturbances from surface albedo and ambient light, thereby improving the accuracy of color SL recognition. By calibrating the response functions of the camera and the projector, Koninckx et al. [29] propose an extended projector-camera model to address crosstalk and possible overexposure/underexposure. Kurfth et al. [31] study a color SL that can adapt to dynamic ambient light and object surface colors. However, most methods above need a preliminary step of response function calibration or geometric calibration.

3 Methods

The overview of our adaptive color SL is shown in Fig. 2, and we will explain the three key ingredients: adaptive pattern generation, MAP-based color detection and calibration and shape reconstruction.

3.1 Adaptive pattern generation

We employ a single color grid pattern (see Fig. 2) for both projector-camera calibration and shape reconstruction. Similar to [21], the color grid pattern uses De Bruijn [8,44] sequence encoding. A De Bruijn sequence is a special type of combinatorial sequence that generates an L-order cyclic sequence of length $N^L$ from an alphabet of N color labels, ensuring that each subsequence of length $L$ appears exactly once. De Bruijn is applied to encode both horizontal and vertical stripes of the color grid pattern. Let $C_1, C_2,...,C_N$ be the N-color combination encoding the stripes with corresponding color labels 1,2,...,N. By encoding in horizontal and vertical stripes, a color grid of $m_{hor} \times m_{vert}$ can be constructed, where $m_{hor} = \frac{N^L}{2}$, $m_{vert} = \frac{N^L}{2} + 2$ and $N_{hor}$, $N_{vert}$ are the numbers of color labels for horizontal stripes and vertical stripes, respectively. In our case $L = 3$ for both horizontal and vertical stripes.

To make the color SL more robust against ambient light and imaging devices’ color responses, we aim to find the optimal color combination. We assume that a color combination is optimal when each of the different colors can be clearly distinguished, and accurately detected. An intuitive solution is to use parametric optimizations, e.g., gradient descent and Levenberg-Marquardt, but these methods require gradient of the real project-and-capture operation. Clearly, it is nearly impossible to find the analytical gradient, while computing the numerical gradient requires thousands of real project-and-capture operations. As for gradient-free solution, a typical method is to randomly sample N colors from the RGB space to form an SL pattern, and then project and capture the SL pattern, and choose the best color combination that meet our criteria. However, it also needs thousands of real project-and-capture operations, since the RGB space is too large. To make things worse, the real project-and-capture operation is time-consuming, making these solutions more impractical.

To address this issue, we choose N colors to generate the initial color grid pattern. The N colors are separated by the largest equidistant distance on the hue wheel, and are shifted by the same amount together during color update. As shown in Fig. 2, when N = 4, the hue values of the four colors are always separated by $360^\circ/N$ on the hue wheel during the optimization loop, and for each iteration, the N colors are shifted by $360^\circ/(N \times K_{max})$, where $K_{max} = 5$. Afterwards, we project the color grid pattern to the calibration board and capture it using the camera, i.e., $I_{SL}$, with which we calculate the
Our segmentation success rate is defined as follows. Let the RGB value of the $i$-th candidate color of the projector input $C_i$, color subgrid $I_{bw}^i$, and camera-captured color grid $I_{bw}^i$ be: segmentation success rate $S_i$. Let the initial $N$-color combination be: $C_1, C_2, \ldots, C_N$, where $N \geq 3$ is a user-specified number of colors and $C_i = (R_i, G_i, B_i)$ is the RGB value of the $i$-th candidate color of the projector input pattern stripes. Our segmentation success rate is defined as follows.

$$I = \sum_{i \neq j} (1 - D(Q_i, Q_j))$$

(1)

Our goal is to make the $N$ colors in the camera-captured color grid images distinct by maximizing $I$. Moreover, to better segment the color grid, we add a constraint that the grid segmentation success rate $S_i$ must be greater than the grid segmentation success rate threshold $T_{seg}$. Then, the optimal $N$-color combination is found by iteratively optimizing the following objective function:

$$\hat{C}_1, \hat{C}_2, \ldots, \hat{C}_N = \arg \max_{C_1, C_2, \ldots, C_N} I \quad \text{s.t.} \quad S_i \geq T_{seg}$$

(2)
The detailed algorithm is shown in Alg. 1. It should be noted that in stage 2, if the optimal color distinction score of stage 1 does not reach the desired optimal score threshold, we use GA to search for an optimal N-color combination by optimizing Eq. 2 among all the observed colors in stage 1. Finally, the optimal color grid pattern \( \hat{I}_P \) is generated using the optimal \( N \)-color combination and used for system calibration and shape reconstruction.

### 3.2 MAP-based color detection

Color detection is the key to finding the correct projector-camera pixel correspondences. Another advantage of our adaptive color SL is a robust color detection algorithm that can leverage the ambient light and device priors embedded in the optimal \( N \)-color combination \( C_1, C_2, ..., C_N \) and hue distributions \( \hat{Q}_1, \hat{Q}_2, ..., \hat{Q}_N \).

Denote \( d \) as the hue of a camera-captured pixel, \( k \in \{1, 2, ..., N\} \) as the true color label of a camera-captured pixel. Then, \( P(k) \) is the probability of a camera-captured pixel’s true color label being \( k \). \( P(d) \) is the probability of a camera-captured pixel’s hue being \( d \). \( P(d|k) \) is the conditional probability of a camera-captured pixel’s hue is \( d \) given its true color label is \( k \). The detected color label \( \hat{k} \) can be obtained using maximum likelihood:

\[
\hat{k} = \arg\max_{k \in \{1, 2, ..., N\}} P(d|k).
\]  

However, our color grid pattern has an imbalanced number of different color stripes. Considering this prior, we instead use maximum a posteriori estimation (MAP) for a more accurate detection:

\[
P(k|d) = \frac{P(d|k)P(k)}{P(d)}, \quad \hat{k} = \arg\max_{k \in \{1, 2, ..., N\}} P(k|d)
\]  

where \( P(k), P(d) \) and \( P(d|k) \) are given by:

\[
P(k) = \frac{\sum_j \hat{Q}_j(j)}{\sum_i \sum_j \hat{Q}_i(j)} = \frac{\hat{Q}_k(j)}{\sum_i \sum_j \hat{Q}_i(j)},
\]

\[
P(d \in [d_{j-1}, d_j]|k = i) = \frac{\hat{Q}_i(j)}{\sum_j \hat{Q}_j(j)}.
\]

Figure 4: Finding SL correspondences using MAP-based color detection. (1) Capture the scene with an adaptive color SL pattern. (2) Skeleton the grid of SL image. (3) Extract grid nodes (stripe intersections) and edges (stripe segment connecting two nodes). (4) Detect the edges’ color of the grid using MAP-based color detection – identify the pixel color label by maximizing posterior probability \( P(k|d) \). (5) Display the color detection result using idea colors. (6) Decode and identify the node correspondences between the camera image and projector image based on De Bruijn [8,44].

**Algorithm 1: Adaptive pattern generation**

**Input:**

- \( N \): number of colors
- \( K_{\text{max}} \): maximum number of iterations
- \( t_{\text{thr}} \): desired optimal score threshold
- \( C_{1:N} \): initial \( N \) colors
- \( I_{1:N,\text{mask}} \): color subgrid masks

**Output:** \( \hat{C}_{1:N}; \hat{Q}_{1:N} \)

1. **Initialize:** \( k = 1; \ l_{\text{max}} = 0; \ T_{\text{seg}} = 0.8; \ C_{1:N}^{(1)} \leftarrow C_{1:N} \)
2. **// Stage 1. Project & capture**
   
   while \( k \leq K_{\text{max}} \) and \( l_{\text{max}} < t_{\text{thr}} \) do
     
     \( i_{\text{p}}^{(k)} \leftarrow \text{GeneratePattern}(C_{1:N}^{(k)}) \)
     
     \( I_{\text{SL}}^{(k)} \leftarrow \text{ProjectAndCapture}(i_{\text{p}}^{(k)}); \)
     
     \( S_{1:N}^{(k)} \leftarrow \text{CalSegmentationSuccessRate}(I_{\text{SL}}^{(k)}, I_{1:N,\text{mask}}); \)
     
     \( Q_{1:N}^{(k)} \leftarrow \text{FindColorDistribution}(I_{\text{SL}}^{(k)}, I_{1:N,\text{mask}}); \)
     
     \( l = \sum_{j \neq i} (1 - D(Q_j^{(k)})) \)
     
     if \( \forall S_i^{(k)} \geq T_{\text{seg}} \) and \( l > l_{\text{max}} \) then
       
       \( l_{\text{max}} \leftarrow l \)
       
       \( C_{1:N} \leftarrow C_{1:N}^{(k)} \)
       
       \( \hat{Q}_{1:N} \leftarrow Q_{1:N}^{(k)} \)
     
     \( k \leftarrow k + 1; \)
   
end

3. **// Stage 2. Find optimal \( N \)-color combination based on GA**

if \( l_{\text{max}} < t_{\text{thr}} \) then

\( \hat{C}_{1:N}, \hat{Q}_{1:N} = \text{GA}(C_{1:N}^{(K_{\text{max}})}, Q_{1:N}^{(K_{\text{max}})}); \)

end

where \( j \in \{1, 2, ..., 256\} \) is the index of the histogram bins, and \( [d_{j-1}, d_j] \) is the lower and upper bounds of each bin, as shown in Fig. 5. The MAP-based color detection algorithm is shown in Fig. 4 step 4.
we decode the pattern and find 2D point correspondences between
where \( k \) of the imperfect planarity of the calibration board’s surface.

Finally, the intrinsic and extrinsic parameters are
ative rotation

distortion coefficients are
matrices of the camera and the projector. The camera and projector’s
transformation from the camera (or calibration board) coordinate
system to the projector coordinate system is represented by the su-
pose

The weight \( \lambda \) is set empirically as \( \lambda = \exp ( - \delta^m ( \mathbf{x}_i ) ) \).

The bundle adjustment (BA) loss function in Eq. 11 is defined as:

\[
\text{loss}_{BA} = \sum_{j=1}^{N_{pose}} M_j \sum_{i=1}^{M_j} \left( \delta_j^c ( \mathbf{x}_i ) + \delta_j^p ( \mathbf{x}_i ) + \lambda \delta_j^m ( \mathbf{x}_i ) \right),
\]

where \( \delta_j^c ( \mathbf{x}_i ) \) (Eq. 8) and \( \delta_j^p ( \mathbf{x}_i ) \) (Eq. 9) are reprojection errors of
the color grid intersection \( \mathbf{x}_i \) in the camera and projector image
space, respectively; \( \delta_j^m ( \mathbf{x}_i ) \) (Eq. 10) is a necessary scale constraint
that bounds the scale of SL node coordinates \( X^m \) during bundle
processing since \( X^m \) is coupled with translation vectors \( t^P \).

The weight \( \lambda \) is set empirically as \( \lambda = \exp \left( - \delta^m ( \mathbf{x}_i ) \right) \).

The bundle adjustment (BA) loss function in Eq. 11 is defined as:

\[
\text{loss}_{BA} = \sum_{j=1}^{N_{pose}} M_j \sum_{i=1}^{M_j} \left( \delta_j^c ( \mathbf{x}_i ) + \delta_j^p ( \mathbf{x}_i ) + \lambda \delta_j^m ( \mathbf{x}_i ) \right),
\]

where \( \delta_j^c ( \mathbf{x}_i ) \) (Eq. 8) and \( \delta_j^p ( \mathbf{x}_i ) \) (Eq. 9) are reprojection errors of
the color grid intersection \( \mathbf{x}_i \) in the camera and projector image
space, respectively; \( \delta_j^m ( \mathbf{x}_i ) \) (Eq. 10) is a necessary scale constraint
that bounds the scale of SL node coordinates \( X^m \) during bundle
processing since \( X^m \) is coupled with translation vectors \( t^P \).

The weight \( \lambda \) is set empirically as \( \lambda = \exp \left( - \delta^m ( \mathbf{x}_i ) \right) \).

The bundle adjustment (BA) loss function in Eq. 11 is defined as:

\[
\text{loss}_{BA} = \sum_{j=1}^{N_{pose}} M_j \sum_{i=1}^{M_j} \left( \delta_j^c ( \mathbf{x}_i ) + \delta_j^p ( \mathbf{x}_i ) + \lambda \delta_j^m ( \mathbf{x}_i ) \right),
\]

where \( \delta_j^c ( \mathbf{x}_i ) \) (Eq. 8) and \( \delta_j^p ( \mathbf{x}_i ) \) (Eq. 9) are reprojection errors of
the color grid intersection \( \mathbf{x}_i \) in the camera and projector image
space, respectively; \( \delta_j^m ( \mathbf{x}_i ) \) (Eq. 10) is a necessary scale constraint
that bounds the scale of SL node coordinates \( X^m \) during bundle
processing since \( X^m \) is coupled with translation vectors \( t^P \).

The weight \( \lambda \) is set empirically as \( \lambda = \exp \left( - \delta^m ( \mathbf{x}_i ) \right) \).

The bundle adjustment (BA) loss function in Eq. 11 is defined as:

\[
\text{loss}_{BA} = \sum_{j=1}^{N_{pose}} M_j \sum_{i=1}^{M_j} \left( \delta_j^c ( \mathbf{x}_i ) + \delta_j^p ( \mathbf{x}_i ) + \lambda \delta_j^m ( \mathbf{x}_i ) \right),
\]

where \( \delta_j^c ( \mathbf{x}_i ) \) (Eq. 8) and \( \delta_j^p ( \mathbf{x}_i ) \) (Eq. 9) are reprojection errors of
the color grid intersection \( \mathbf{x}_i \) in the camera and projector image
space, respectively; \( \delta_j^m ( \mathbf{x}_i ) \) (Eq. 10) is a necessary scale constraint
that bounds the scale of SL node coordinates \( X^m \) during bundle
processing since \( X^m \) is coupled with translation vectors \( t^P \).

The weight \( \lambda \) is set empirically as \( \lambda = \exp \left( - \delta^m ( \mathbf{x}_i ) \right) \).

The bundle adjustment (BA) loss function in Eq. 11 is defined as:

\[
\text{loss}_{BA} = \sum_{j=1}^{N_{pose}} M_j \sum_{i=1}^{M_j} \left( \delta_j^c ( \mathbf{x}_i ) + \delta_j^p ( \mathbf{x}_i ) + \lambda \delta_j^m ( \mathbf{x}_i ) \right),
\]

where \( \delta_j^c ( \mathbf{x}_i ) \) (Eq. 8) and \( \delta_j^p ( \mathbf{x}_i ) \) (Eq. 9) are reprojection errors of
the color grid intersection \( \mathbf{x}_i \) in the camera and projector image
space, respectively; \( \delta_j^m ( \mathbf{x}_i ) \) (Eq. 10) is a necessary scale constraint
that bounds the scale of SL node coordinates \( X^m \) during bundle
processing since \( X^m \) is coupled with translation vectors \( t^P \).

The weight \( \lambda \) is set empirically as \( \lambda = \exp \left( - \delta^m ( \mathbf{x}_i ) \right) \).

The bundle adjustment (BA) loss function in Eq. 11 is defined as:

\[
\text{loss}_{BA} = \sum_{j=1}^{N_{pose}} M_j \sum_{i=1}^{M_j} \left( \delta_j^c ( \mathbf{x}_i ) + \delta_j^p ( \mathbf{x}_i ) + \lambda \delta_j^m ( \mathbf{x}_i ) \right),
\]

where \( \delta_j^c ( \mathbf{x}_i ) \) (Eq. 8) and \( \delta_j^p ( \mathbf{x}_i ) \) (Eq. 9) are reprojection errors of
the color grid intersection \( \mathbf{x}_i \) in the camera and projector image
space, respectively; \( \delta_j^m ( \mathbf{x}_i ) \) (Eq. 10) is a necessary scale constraint
that bounds the scale of SL node coordinates \( X^m \) during bundle
processing since \( X^m \) is coupled with translation vectors \( t^P \).

The weight \( \lambda \) is set empirically as \( \lambda = \exp \left( - \delta^m ( \mathbf{x}_i ) \right) \).

The bundle adjustment (BA) loss function in Eq. 11 is defined as:

\[
\text{loss}_{BA} = \sum_{j=1}^{N_{pose}} M_j \sum_{i=1}^{M_j} \left( \delta_j^c ( \mathbf{x}_i ) + \delta_j^p ( \mathbf{x}_i ) + \lambda \delta_j^m ( \mathbf{x}_i ) \right),
\]
We compare color detection and grid segmentation metrics such as RMSE\(^c\), projector reprojection (RMSE\(^p\)), stereo reprojection (RMSE\(^\text{stereo}\)) and point cloud alignment (RMSE\(^\text{align}\)) errors as defined below:

\[
\text{RMSE\(^c\)} = \sqrt{\frac{1}{np} \sum_{i=1}^{M_j} \sum_{j=1}^{N_{\text{pose}}} \delta_j^c (x_i)}
\]
\[
\text{RMSE\(^p\)} = \sqrt{\frac{1}{np} \sum_{i=1}^{M_j} \sum_{j=1}^{N_{\text{pose}}} \delta_j^p (x_i)}
\]
\[
\text{RMSE\(^\text{stereo}\)} = \sqrt{\frac{1}{np} \sum_{i=1}^{M_j} \sum_{j=1}^{N_{\text{pose}}} \left( \delta_j^c (x_i) + \delta_j^p (x_i) \right)}
\]
\[
\text{RMSE\(^\text{align}\)} = \sqrt{\frac{1}{np} \sum_{i=1}^{M_j} \sum_{j=1}^{N_{\text{pose}}} \left( \bar{X}_j^m (x_i) - \hat{X}_j^m (x_i) \right)^2}
\]

where \(\bar{X}_j^m (x_i)\) is the ground truth coordinate of a point \(x_i\) in the model space and \(\hat{X}_j^m (x_i)\) is the reconstructed coordinate in the model space using the calibrated parameters \(\hat{\theta}^c\), \(\hat{\theta}^p\). \(M_j\) is the number of SL node 3D coordinates at the \(j\)-th calibration board pose and the total number of points from \(N_{\text{pose}}\) poses is given by

\[
N = \sum_{j=1}^{N_{\text{pose}}} \sum_{i=1}^{M_j} n
\]

\[
\sum_{j=1}^{N_{\text{pose}}} \sum_{i=1}^{M_j} n
\]
We conduct the experiment in a carefully tuned setting, where the camera resolution is $1280 \times 1080$, and the other parameters are similar to Setting1. As shown in Tab. 3, it is evident that our adaptive color SL can extract and decode more color grid nodes, which are vital to the subsequent system calibration and shape reconstruction tasks. Overall, our adaptive color SL pattern and MAP-based color detection algorithm together bring constantly higher color detection accuracy and more color grid nodes in different imaging settings.

**Calibration and reconstruction.** Calibration comparisons are shown in Tab. 1, and it is clear that our method has lower projector and stereo reprojection RMSEs for different settings. Clearly, our method has lower projector and stereo reprojection RMSEs than Moreno & Taubin [36] and Huang et al. [21]. In particular, for Setting7, Huang has high reprojection RMSEs due to high proportion of incorrectly decoded color grid nodes, while our method can still work. Because of the adaptive color SL pattern and MAP-based color detection algorithm, our method not only has a smaller calibration error in different settings but can also work in an extreme imaging setting.

It is worth noting that Moreno & Taubin’s [36] projector and stereo reprojection RMSEs are larger than the proposed method, because the projector and stereo reprojection RMSEs are calculated using a different formula from Moreno & Taubin [36]’s software, since we also include the extrinsic parameters $\theta^p$ and $\theta^s$ in the projector and stereo RMSEs equations to better evaluate extrinsics calibration accuracy (see Eq. 9, Eq. 13 and Eq. 14). Moreover, Moreno & Taubin [36] do not use BA to deal with imperfect planarity of the calibration board.

The obtained calibration parameters, i.e., $\theta^p$, $\theta^s$ of the three methods are also used to reconstruct point clouds for different real objects using Moreno & Taubin’s [36] Gray-coded SL patterns. An iPad Pro 2020 trueDepth camera is used to obtain ground truth point clouds [45]. Point cloud alignment errors (RMSE) are calculated and compared among the three methods. However, it should be noted that point clouds generated by iPad Pro 2020 have a different coordinate system. To calculate the alignment error, we use ICP [4] to align the point cloud to the ground truth before calculating point cloud alignment errors. The alignment errors of different real objects, i.e., David (mm), girl (mm) and box (mm), are shown in supplementary. Qualitative comparisons are shown in Fig. 7. Clearly, our method has the lowest mean point cloud alignment errors, due to our higher calibration accuracy.

We also experiment with high-resolution settings in Setting5 and Setting6. As shown in Tab. 3, it is evident that our adaptive color SL can extract and decode more color grid nodes, which are vital to the subsequent system calibration and shape reconstruction tasks. Overall, our adaptive color SL pattern and MAP-based color detection algorithm together bring constantly higher color detection accuracy and more color grid nodes in different imaging settings.
To further evaluate the robustness of our adaptive color SL under different ambient light conditions, we compare our method to Huang’s [21] in Table 3. It can be noticed that under different ambient light conditions, Huang’s [21] color detection accuracy is lower than our method, due to three reasons: (1) The colors of Huang’s color grid are heavily polluted by ambient light, as shown in Fig. 8. (2) As shown in Fig. 8, the ambient light produced by the RGB fill light and room light causes nonuniform light intensitites on the calibration board, leading to inconsistent hue distributions across the entire board surface and all poses. Thus, Huang’s method performs much worse under different ambient light conditions (Tab. 4) than under different imaging settings (Tab. 3). (3) Huang’s method [21] is sensitive to overexposed ambient light conditions as shown in Fig. 8. Our method effectively excludes colors that are easily affected by ambient light during adaptive color SL pattern generation. In addition, our MAP-based color detection algorithm adds robustness to nonuniform and slightly overexposed ambient light conditions.

Overall, Huang’s fixed color SL [21] is more sensitive to ambient light, while our method constantly outperforms it on color detection accuracy, the number of extracted and decoded nodes, due to the adaptive color SL pattern and MAP-based color detection.

### Calibration and reconstruction

We compare our method with Huang’s fixed color SL [21] on calibration tasks, under different ambient light conditions. Observing the calibration results in Tab. 2, we find that the proposed method has constantly lower projector and stereo reprojection errors, which demonstrates that our method can also adapt to different ambient light conditions. Similar to § 4.2.1, the calibration parameters, i.e., $\theta^p$, $\theta^o$ obtained by the three methods are used for shape reconstruction comparison. The mean alignment errors of shape reconstruction for different real objects are shown in supplementary and our method is more robust against different ambient light conditions. Ablation studies on the effectiveness of adaptive color SL and MAP-based color detection are given in supplementary.

### 5 Conclusion and Limitations

In this paper, we propose an adaptive color SL that can adapt to different ambient light conditions and imaging device color responses. Our novel efficient color adaptation and MAP-based color detection methods show clear advantages in experiments compared with fixed color SL. Moreover, our method does not require a preliminary response function calibration or geometric calibration step, making it more practical for arbitrary setups. Our method also has some limitations, e.g., our method needs to regenerate the adaptive color SL when the imaging settings or ambient light conditions change. The projector-camera intrinsics and extrinsics need recalibration when the relative projector-camera poses or focal length change.

###Acknowledgments

This work was supported in part by Fundamental Research Funds for the Central Universities (SWU-KQ22004). Ling was not supported by any research fund for this work.

---

### Table 2: Comparison of calibration reprojection errors of Moreno & Taubin [36], Huang et al. [21] and Ours under different ambient light conditions.

<table>
<thead>
<tr>
<th>Light</th>
<th>RMSE $\downarrow$</th>
<th>RMSE $\downarrow$</th>
<th>RMSE $\downarrow$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moreno &amp; Taubin</td>
<td>Huang</td>
<td>Ours</td>
</tr>
<tr>
<td>Light1</td>
<td>0.1639</td>
<td>0.2381</td>
<td>0.2349</td>
</tr>
<tr>
<td>Light2</td>
<td>0.1545</td>
<td>0.2352</td>
<td>0.2353</td>
</tr>
<tr>
<td>Light3</td>
<td>0.1764</td>
<td>0.2573</td>
<td>0.2417</td>
</tr>
<tr>
<td>Light4</td>
<td>0.1732</td>
<td>0.2291</td>
<td>0.2243</td>
</tr>
<tr>
<td>Light5</td>
<td>0.2181</td>
<td>1.7906</td>
<td>0.2371</td>
</tr>
<tr>
<td>Light6</td>
<td>0.1554</td>
<td>6.5740</td>
<td>0.2176</td>
</tr>
</tbody>
</table>

### Table 3: Comparison of color detection accuracy, #extracted nodes and decoded nodes between Huang’s [21] and our method under different ambient light settings. Setting 1 is an ideal setting.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Accuracy $\uparrow$</th>
<th>#Extr. nodes $\uparrow$</th>
<th>#Deco. nodes $\uparrow$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting1</td>
<td>0.9438</td>
<td>3388</td>
<td>2255</td>
</tr>
<tr>
<td>Setting2</td>
<td>0.8837</td>
<td>3102</td>
<td>1428</td>
</tr>
<tr>
<td>Setting3</td>
<td>0.8774</td>
<td>3456</td>
<td>1470</td>
</tr>
<tr>
<td>Setting4</td>
<td>0.8353</td>
<td>5010</td>
<td>1064</td>
</tr>
<tr>
<td>Setting5</td>
<td>0.9265</td>
<td>8782</td>
<td>3099</td>
</tr>
<tr>
<td>Setting6</td>
<td>0.9054</td>
<td>4777</td>
<td>1547</td>
</tr>
<tr>
<td>Setting7</td>
<td>0.7179</td>
<td>3916</td>
<td>771</td>
</tr>
</tbody>
</table>

### Table 4: Comparison of color detection accuracy, #extracted nodes and decoded nodes between Huang’s [21] and our method under different ambient light conditions.

<table>
<thead>
<tr>
<th>Light</th>
<th>Accuracy $\uparrow$</th>
<th>#Extr. nodes $\uparrow$</th>
<th>#Deco. nodes $\uparrow$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moreno &amp; Taubin</td>
<td>Huang</td>
<td>Ours</td>
</tr>
<tr>
<td>Light1</td>
<td>0.9230</td>
<td>5498</td>
<td>5512</td>
</tr>
<tr>
<td>Light2</td>
<td>0.7905</td>
<td>5487</td>
<td>5505</td>
</tr>
<tr>
<td>Light3</td>
<td>0.7938</td>
<td>5563</td>
<td>5571</td>
</tr>
<tr>
<td>Light4</td>
<td>0.7842</td>
<td>5699</td>
<td>5674</td>
</tr>
<tr>
<td>Light5</td>
<td>0.7198</td>
<td>7021</td>
<td>6993</td>
</tr>
<tr>
<td>Light6</td>
<td>0.7752</td>
<td>8290</td>
<td>8888</td>
</tr>
</tbody>
</table>

ICP [4]. As shown in Fig. 9, because Huang’s fixed pattern [21] has few points, the point cloud merge failed and is excluded from the figure. The number of reconstructed points and RMS point cloud alignment errors are shown in supplementary. Shape reconstruction experiments in an extreme setting are also shown in supplementary.

### 4.2.2 Ambient light

To further evaluate the robustness of our adaptive color SL under different ambient light conditions, we keep the camera resolution at 640×480 and the projector resolution at 1024×768, and also keep their color responses as ideal. The numbers of color labels for both horizontal and vertical stripes in Huang’s [21] and our SL pattern are set to 4, i.e., $N_{\text{hor}} = N_{\text{ver}} = 4$. We only change the RGB fill light and room light to create different ambient light conditions, as shown in Fig. 8. It should be noted that room light is used to introduce strong ambient light, such that the camera-captured image might be overexposed, as shown in Fig. 8. Light4 and Light6, the images are severely washed out due to the strong room light.

Color detection and grid segmentation. The color detection and grid segmentation performance under different ambient light conditions are shown in Tab. 4. It can be noticed that under different ambient light conditions, Huang’s [21] color detection accuracy is lower than our method, due to three reasons: (1) The colors of Huang’s color grid are heavily polluted by ambient light, as shown in Fig. 8.


