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Abstract

We propose using the proximity distribution of vector-
quantized local feature descriptors for object and category
recognition. To this end, we introduce a novel “proximity
distribution kernel” that naturally combines local geomet-
ric as well as photometric information from images. It sat-
isfies Mercer’s condition and can therefore be readily com-
bined with a support vector machine to perform visual cat-
egorization in a way that is insensitive to photometric and
geometric variations, while retaining significant discrimi-
native power. In particular, it improves on the results ob-
tained both with geometrically unconstrained “bags of fea-
tures” approaches, as well as with over-constrained “affine
procrustes.” Indeed, we test this approach on several chal-
lenging data sets, including Graz-01, Graz-02, and the PAS-
CAL challenge. We registered the average performance
at 91.5% on Graz-01, 82.7% on Graz-02, and 74.5% on
PASCAL. Our approach is designed to enforce and exploit
geometric consistency among objects in the same category;
therefore, it does not improve the performance of existing
algorithms on datasets where the data is already roughly
aligned and scaled. Our method has the potential to be
extended to more complex geometric relationships among
local features, as we illustrate in the experiments.

1. Introduction

Automatic visual classification and object recognition
promise to make computer vision a key component in ap-
plications such as surveillance, computer interaction, data
mining, assistance for the visually impaired. The problem
is difficult because the same object or category can mani-
fest itself in a variety of ways due to “nuisances” such as
changes of viewpoint, visibility, illumination and clutter, in
addition to inter-class variability.

The effect of such nuisances can be mitigated by design-
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ing image statistics (a.k.a. “features”) that are insensitive to
them, later to be fed to a classifier, or could be “learned
away” by a super-classifier given sufficient training data.
For instance, while illumination variability cannot be elim-
inated [5], it can be mitigated by using gradient orientation
[2] rather than image intensity statistics, as now custom-
ary in popular features such as SIFT [21]. Geometric nui-
sances include viewpoint variations and visibility effects,
such as occlusions and cast shadows. The former can be
approximated locally by affine image domain deformations,
while the latter cannot be eliminated by design, which has
prompted many to restrict the domain of features to small
regions (a.k.a. “patches” or “local features”), while defer-
ring to the classifier the choice of which features belong to
the “object” and which to the “background.”

Indeed, image deformations due to viewpoint variations
could be eliminated altogether, not just for locally planar
scenes, but this comes at the cost of discarding all geomet-
ric information [38]. This result gives theoretical grounding
to so-called “bags-of-features” approaches to visual recog-
nition [39], where local features are compared regardless of
their position, and partially explains their striking success
that took many in the community by surprise.

However, the results in [38] assume that objects of any
shape are equally likely, and therefore a true invariant fea-
ture has to “normalize” all possible shapes. This is not
the case in reality, where natural scenes exhibit significant
regularity in their geometry. This suggests that geomet-
ric information may be important and should be exploited
in recognition systems, and idea that has recently been put
to fruition, as we discuss in the next subsection.1 Because
modeling geometric variability explicitly is rather complex,
existing approaches either restrict the attention to simple
models that are too stiff, such as affine procrustes ([10] and
references therein), or try to impose some topological or
lose geometric constraints to otherwise geometry-free rep-

1We believe that the importance of geometry has been underestimated,
in part because popular datasets (e.g. Caltech 101) exhibit artificially lim-
ited variability with objects roughly centered and scaled, as illustrated by
[12].
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resentations such as bags of featuresa-posteriori.
We propose to use theproximity distribution of vector-

quantized local image statistics as a global image descrip-
tor that captures both photometric and geometric informa-
tion. We then propose a kernel, calledProximity Distrib-
ution Kernel (PDK),that can be readily used to design a
classifier. Features and classifiers are two aspects of the
same problem, and we believe that they should be designed
jointly. We do so, and demonstrate our approach on every
challenging experiment that we have tried, including stan-
dard datasets such as Graz-01 and Graz-02 [28] and Pascal
[6]. Our approach does not improve the state of the art on
the Caltech 101 dataset [7], for obvious reasons1, although
it is within 10% of the current best algorithm.

1.1. Related work

Bags-of-features or -words have shown remarkable per-
formance in recognition of objects and categories [39, 41].
In light of [38] one could guess that the best performers
would not be the ones using local features with the high-
est possible level of invariance, a fact shown eloquently in
[41], which confirmed previous observations [19]. Never-
theless, recent attempts to enforce loose spatial information
have shown great promise, including [11] where features
are augmented with their spatial coordinates in the pyramid
matching kernel (PMK). A different method to exploit geo-
metric constraint was proposed by [16], who used “semi-
local parts” that combine neighboring features by validat-
ing their affine relations, and later [17] framed them into
a maximum-entropy approach that performed well on tex-
tures as well as objects. Even more recently, and more di-
rectly related to our manuscript, [19] proposed using spatial
pyramid matching for recognizing natural scene categories,
using dense SIFT-like descriptors at regular grid points. In
this case, performance on Caltech 101 registered at64.6%,
but did not perform as well on the Graz dataset, purportedly
because of the large geometric variability.

One of the first attempts to impose topological con-
straints by joining features into pairs is [34], whereas [40]
used proximity, measured by the Euclidean distance be-
tween feature coordinates, to improve their bag-of-words
algorithm for testing on the Caltech101. This exploits the
nature of the dataset, where foreground images are roughly
aligned. In [26] proximity is used to learn compositional
categorization models. Features were organized into triplets
by [36], who used the order type index histogram as a quali-
tative image descriptor. Performance on Caltech 6 improves
[10] on two of the four categories in the data set. In [33] the
joint statistics of local neighborhood operators are used for
object recognition and localization. Mercer kernels were
applied to semi-local groups of features by [22], where
features are grouped by nearest neighbors, whereas [24]
developed a spatial weighting technique that assigns low

weight to background features. The proposed method has
been shown to improve the traditional bag-of-words on the
PASCAL challenge [6] that is a four-category classification
task. Local geometric information is also represented in a
template-based approach by [3], who introduced the notion
of geometric blur. Second-order geometric relationships is
further used [4] to solve the correspondence between geo-
metric blur features, and then applied it to category recog-
nition problems. Small collections of points were also used
by [8] using triangulated polygons compared via their log-
anisotropy, whereas pair-wise constraints were exploited in
[29] for human detection. In [31] multiple segmentations
encode lose spatial structure, whereas [23] use Delaunay
triangulation to determine the neighborhood structure that
is important to fix the scale of textons. Context model-
ing has recently potential to improve object detection [14].
Hierarchical structure can also helps to improve local fea-
tures; examples can be found in [1] and [25]. Most recently,
Leordeanu et al. [20] also proposed using pairwise con-
figurations between edge fragments for category recogni-
tion. Recognition task is formulated as a quadratic assign-
ment problem and model parameters are learned sequen-
tially. Compared to [20], our approach is much simpler in
that no object model is required.

The most related work is thecorrelogramfirst proposed
in [15] and later extended by Savarese et al. [32]. In [32], a
correlagram is used to measure the distribution of distances
between all pairs of visual labels and then applied to cate-
gory classification tasks (with combination of label distrib-
ution). In comparison, PDK captures rank information be-
tween visual words, which is more reliable and sparse. In
addition, our method is simpler since it works without com-
bining other representations. It is interesting to compare
and/or combine these two approaches in the future.

Our manuscript introduces a novel representation that si-
multaneously encodes local photometric information (from
vector-quantized local feature descriptors) and local geo-
metric information (from proximity distributions), and pro-
poses a matched classifier based on a kernel defined on such
distributions. We introduce our approach next.

2. Sorting Out Bags of Features with Spatial
Information

Let I : D ⊂ R2 → R3 be an image and{φk}k=1,...,M

a collection ofM local features extracted fromI: φ :
{I(x), x ∈ Ω ⊂ D} → RK , for instance [21, 13]. On the
set of all available features, we perform vector-quantization,
to arrive atV codebook elementsV = {v1, . . . , vV }, each
inRK , together with the position of the centroid of each fea-
turexk =

∫
Ωk

xdx/
∫
Ωk

dx whereΩk is the support region
of thek-th feature. So, in this first coding stage, the imageI
is represented by thelocal feature{(xk, αk)} k=1,...,M with



Figure 1.Demonstration of building proximity distribution of local features. (a) An input imageI. (b) Local features. (c) Codebook with
sizeV = 4. (d) Local words and their positions. (e) An example cumulative proximity distributionHr(2, 3) for word pairv2, v3. (f) The
array of proximity distributionsHr(i, j).

eachαk identified with the integersk = 1, . . . , V . An il-
lustration of this representations is shown in Fig.1 (a-d). In
the next subsection we introduce the proximity distribution
of these local features.

2.1. Proximity Distributions of Local Features

Given an image I, and its associated coding
{(xk, αk)}k=1,...,M , we now construct a two-dimensional
array of one-dimensional proximity distributions by consid-
ering, for each codeword pairvi, vj , the number of features
Hr(i, j) of type j that are withinr-nearest neighbors of a
feature of typei.

Hr(i, j) = #{(αl, αm) : αl = i, αm = j,
dNN (xl, xm) ≤ r}, r = 1, . . . , nr

(1)

wheredNN (xl, xm) ≤ r indicates thatxm is within ther-
th nearest neighbors ofxl (strictly speaking, this depends
on the set{xk}k=1,...,M ). nr is the size of the neighbor-
hood of interest. Note that this defines a one-dimensional
array (indexed byr) for fixed i, j = 1, . . . , V , correspond-
ing to an un-normalized cumulative probability distribution.
This includes local photometric information, encoded in the
codewords returned by vector-quantization, as well as local
geometric information, encoded by the proximity cumulo-

gram. Examples of such distributions are shown in Fig.1
(e-f).

Another choice is to use the histogram instead of the cu-
mulative distribution, i.e.,dNN = r instead ofdNN ≤ r
in (1). This may sound more natural; however, in prac-
tice the histogram is often less stable. On the other hand,
the cumulative distribution is better tailored for our pur-
pose: For example, theL1 norm between two cumula-
tive (one-dimensional) histograms is equivalent to the Earth
Mover distance [30] (or Wasserstein, Ornstein & Mallows
distance) between the them. Other advantages of this repre-
sentation will become apparent shortly.

2.2. Proximity Distribution Kernel

Now that we have a representation of the images, we
need to introduce a method to compare them. As mentioned
above, we can use theL1 distance to build the extended
Gaussian kernel. However, because of visibility artifacts, as
we discuss further, it is better to use a “minimum” kernel
for this purpose. Given two imagesI1 andI2, represented
by their distributionsH1

r ,H2
r , we define theProximity Dis-

tribution Kernel(PDK) as

K(I1, I2) .=
V∑

i,j=1

k∑
r=1

min(H1
r (i, j),H2

r (i, j)). (2)



This distance measures the similarity of proximity distrib-
ution, or co-occurrence of codewords in close spatial prox-
imity. The use of the minimum, already introduced by [11],
affords some resistance to clutter without the need for more
rigid models that account for occlusions explicitly in a hy-
pothesis testing scenario [10]. Naturally, local spatial defor-
mations are lost in the distribution: Although the nearest-
neighbor relationships are discontinuous with respect to do-
main deformations, the use of the cumulative distribution
smooths out the effects of such discontinuities (a similar
outcome could have been obtained by taking the spatial den-
sity and smoothing it).

One very important property of PDK is that it satisfies
the Mercer’s condition, i.e., it is a positive semi-definite
kernel. This is clear from the fact thatmin(., .) is a Mer-
cer kernel and that the set of Mercer kernels is closed un-
der summation. This property guarantees consistency in
a reproducing-kernel Hilbert space scenario, and is best
suited for use with a support vector machine (SVM) [37]
for classification, as we articulate in our experimental sec-
tion.

2.3. Extensions beyond second-order statistics

The construction above could be easily extended to prox-
imity relationships between more than two features, for in-
stance to triplets arranged into cubic arrays, and to higher-
order as well. However, we have found empirically that
even simple pairs of features represent a good tradeoff be-
tween capturing some spatial relationships without overly
constraining the representation. For the purpose of illus-
tration, we outline the construction for triplets, leaving the
extension to higher-order statistics to the reader.

The geometry of a triplet of features is characterized
by the triangle formed from their coordinates. To be in-
variant to similarity transformation, we represent a trian-
gle by the so called two-dimensional Bookstein coordi-
nates, as used in [9]. Given an imageI and its coded local
feature sets{(xk, αk)}k=1,...,M , the triplet proximity dis-
tribution is captured as a three-dimensional array of two-
dimensional histograms,Tt1,t2(i, j, k), wheret1 andt2 are
discrete Bookstein coordinates. In other words, a triplet
proximity distribution T is a five-dimensional histogram
that measures the joint distribution of word triplets and tri-
angular shapes. Similar to PDK, the similarity between two
distributions(T 1, T 2) can be computed by the following
triplet-PDK

KT (I1, I2) .=
V∑

i,j,k=1

∑
t1,t2

min(T 1
t1,t2(i, j, k), T 2

t1,t2(i, j, k)).

(3)
The triplet-PDK is essentially a histogram intersec-

tion [35] for five-dimensional histograms. It is obvious that

the Triplet-PDK also satisfies Mercer’s condition and there-
fore also suitable to the kernel-based approaches.

2.4. Implementation Issues

To capture the co-occurrence distribution ofk features
requires a computational complexity ofO(Mk). Specif-
ically, the complexity to buildHr(i, j) is O(M2) and to
build Tt1,t2(i, j, k) is O(M3). In practice, however, due
to the sparseness of local features and therefore the co-
occurrence joint histograms, it is often more efficient to
compute PDK (for pairs or triplets) directly without explic-
itly computation ofH or T . For example, in formulae (2)
and (3), the summation over all(i, j) or (i, j, k) are often
not necessary. This is particularly useful when one is in-
terested in capturing higher-order of co-occurrences, for in-
stance between quadruplets of features.

One parameter for PDK is the size of neighborhoodnr.
Theoretically, largenr will capture more information until
saturation occurs (e.g., fornr > M − 1). This is consis-
tent with our observation in our preliminary experiments.
However, the computational complexity and memory re-
quirements are linearly increased withnr. In practice the
performance is not very sensitive fornr ≥ 64 for images
with several hundreds of features. We discuss the actual
choice of numerical parameters in the next section.

3. Experiments

We test the proposed approach on several public image
data sets, including the Graz-01, Graz-01, and the PASCAL
challenge. Only grayscale images are used in all the exper-
iments, although there may be rooms for further improve-
ment by including color information.

Our experiments mainly focus on the pairwise proximity
case, i.e. PDK. The triplet case or the triplet-PDK is tested
in one experiment for the sake of comparison with PDK.

3.1. Graz-01

The Graz-01 data set [27] contains two object classes
containing 373 bike images and 460 person images. In ad-
dition, it has a background class with 270 images. The data
set is challenging because of the large variability in object
scale, pose and illumination. Some example images are
shown in Fig.2.

Two experiments, called “test I” and “test II,” have been
performed on this data set. In both tests, we usenr = 200
for PDK.

In test I [27, 41], specific training and testing sets are
used as done in [28], which contains 200 training images
and 100 testing images for each category. Table1 shows
our experimental result for this test along with previously
reported scores. From the table it is clear that PDK out-
performs existing methods. It is worth noting that a kernel-



Figure 2.Example images from Graz-01. Top row: bike images.
Middle row: person images. Bottom row: background images.

based approach (EMD kernel with SVM) is also used by
[41], without taking into account any spatial relations. In
addition, both SIFT and spin image [18] are used in [41],
while only SIFT are used in our experiment.

In test II [19], for each non-background class, 100 posi-
tive and 100 negative images (50 from the background class
and 50 from the other class) are used for training. Testing is
on a similarly distributed set but the number of images are
reduced by half. The result is an averaged equal-error rate
over ten runs. Table2 shows our experimental results for
test II. In addition to PDK, we also tested the triplet-PDK
with only 300 randomly sampled features for each image
for computational efficiency.

Two important lessons were learned in test II. First,
it shows that our method is more robust in dealing with
large geometric deformations when compared to the pyra-
mid matching technique (PMK) used in [19]. It is worth
noting that PMK has demonstrated excellent performance
when images are roughly aligned, such as those in Caltech
101. In other words, the comparison with PMK verifies
both the importance of including spatial information and the
importance of been robust for large image deformations -
both are taken care of by our approaches. Second, although
complex geometric relations captured by triplet-PDK may
improve the performance, the simple pairwise relation cap-
tured by standard PDK represents a good tradeoff between
insensitivity to geometric deformation and preservation of
discriminative power of the representation.

Figure 3.Incorrectly classified images in test I. Top left: a bike
image classified as no bike. Top right: a background image classi-
fied as a bike image. Bottom left: a person image classified as no
person. Bottom right: a background image classified as a person
image.

Figure 4.Incorrectly classified images in test II. Top left: a bike
image classified as no bike. Top right: a person image classified as
no person. Middle left: a person image classified as a bike image.
Middle right: a bike image classified as a person image. Bottom
left: a background image classified as a bike image. Bottom right:
a background image classified as a person image.

3.2. Graz-02

The Graz-02 data set [28] is an improved version of the
Graz-01 data set and designed to be even more challenging.



Table 1.Results (EER %) of test I on the Graz-01 data set [27].
Class Boosting [27] SVM [41]+ Pair. PDK+

+SIFT (SIFT+Spin) Inter.[20] SIFT
Bikes 86.5 92.0 84.0 95.0
Person 80.8 88.0 82.0 88.0
Ave. 83.7 90.0 83.0 91.5

Table 2.Results (EER) of test II on the Graz-01 data set [27].
Class PMK [19] T-PDK (300 samp) PDK
Bikes 86.3±2.5 88.9±1.8 90.2±2.6
Person 82.3±3.1 85.1±3.1 87.2±3.8

Table 3.Recognition results (rate at EER %) on Graz-02 data
set [28]. In the fifth column, only 600 randomly sampled features
per image are used for computational efficiency.

Boost.+ Boost.+ Pair. PDK+ PDK+
SIFT[28] Comb.[28] Inter.[20] SIFT hybrid

Bike 76.0 77.8 92.0 86.7 86.0
Person 70.0 81.2 86.0 86.7 87.3

Car 68.9 70.5 n/a 74.7 74.7
Ave. 71.6 76.5 n/a 82.7 82.7

It contains three object classes including 365 bike images,
311 person images, 420 car images, and 380 counter-class
images. In addition, the Graz-02 has been carefully bal-
anced with respect to backgrounds for all categories. We
follow the experimental setup of [28]. More specifically, for
each non-background class, 150 positive and 150 negative
(counter-class) images are used for training. Similarly, 75
positive and 75 negative images are used for testing. Some
example images are shown in Fig.5.

Opelt et al. [28] presented a framework using boosting
to learn a subset of feature vectors and combine them into
final hypothesis for category classification. They test their
method with several different types of feature descriptors
on the Graz-02 data set. The best recognition rate of their
method was achieved by using a combination of different
features. In our experiment, similar to [28], two versions
of feature descriptors are used. The first one uses only stan-
dard SIFT features (i.e. blobs only), which corresponding to
the fourth column in Table3. The second one uses both cor-
ners and blob regions same as in our experiment for Graz-
01, which corresponding to the fifth column in Table3. The
experimental results are listed in Table3. From the table
it is clear that our method outperforms previously proposed
approaches for both standard SIFT and hybrid features.

3.3. PASCAL 2005

We further tested our approaches on the PASCAL VOC
Challenge [6]. This challenge contains both classification
and detection tasks. In this paper we focus on the former.
The classification task consists of binary classification on
four categories: motorbikes, bikes, person, and cars. Some

Figure 5.Example images from Graz-02. Each row contains two
images from one category, from top to bottom: bikes, person, cars,
background.

example images are shown in Fig.6. The classification con-
tains an easy test (test 1) and a difficult test (test 2). We
applied our approach to the difficult one because there is
not much to be improved for the easy one. Eleven teams
attended the challenge for test 2, the best score is achieved
by Zhang and Schmid using bag-of-features (SIFT) with an
extended Gaussian kernel.

Similar to Zhang and Schmid, we use SIFT descriptors
on scale invariant corners and blobs. We use a vocabulary
set with 200 words and setnr = 64 for our proposed ker-
nel. The experiments is listed in Table4 together with the
best score achieved in the PASCAL challenge2. From the
table we see that our approach outperforms the PASCAL
winner in half of the four categories and in the average per-
formance. While examining the dataset more closely, we
observed that images from the categories “motorbike” and
“bike” have more extreme clutter than those from the cat-

2Higher scores (except for cars) were achieved in [24] using prior (man-
ual) segmentation during training process.



Figure 6.Example images from PASCAL 2005. Each row con-
tains two images from one category, from top to bottom: motor-
bikes, bikes, person, cars. Note that some images contains multi-
ple categories.

Table 4.Testing on PASCAL challenging [6] (test 2).
Motor Bike Person Car Average

Winner [6] 79.8 72.8 71.9 72.0 74.1
PDK 76.9 70.1 72.5 78.4 74.5

egories “person” and “car.” This is one reason why our
method works so much better on “car” images than on “mo-
torbikes.”

4. Discussion

Our goal in this work is to bring geometric context in-
formation back into category recognition, after the surpris-
ing success of bag-of-words approaches. We have shown
that the proximity distribution of vector-quantized features

represents an effective compromise between achieving in-
sensitivity to geometric deformations, for instance due to
viewpoint variations in addition to inter-class shape vari-
ability, and maintaining discriminative power, so that geo-
metric structure, albeit in “weak form,” is taken into ac-
count.

The proximity distribution kernel (PDK) has been de-
signed with this goal in mind, and we have shown that it
can be easily computed for pairwise relationships, and can
be easily extended to capturing higher-order co-occurrence
statistics, hence capturing the local geometric context of an
image. Insensitivity to occlusions is achieved through the
use of a “min” functional in the definition of the kernel, and
insensitivity to the discontinuities in the proximity relations
is achieved through the use of the probability distribution in
place of a (density) histogram.

We have demonstrated empirically the potential of our
approach, by showing that it outperforms all existing ones
in scenarios where there is significant geometric variability,
such as in the Graz datasets, and in the PASCAL challenge.
Other datasets where geometric variability is limited, e.g.
Caltech 101, do not exalt our approach, since the data is
provided in (roughly) aligned and scaled form to begin with.

Our approach opens the door to additional ways to in-
clude spatial structure into image representations for recog-
nition, including higher-order statistics (involving more
than two features at a time), as we have illustrated. Other
uses of our representation, for instance for object detection,
are certainly possible and will be the subject of future work.
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