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A B S T R A C T

Known as the most common bone disease, osteoporosis is affecting millions of people every year.
Clinical diagnostic methods for osteoporosis are expensive and therefore have limited availability
in population. Recent studies have shown that Dental Panoramic Radiography (DPR) images can
provide the bone density change clues in trabecular bone structure analysis. We collected 108 DPR
images from 108 different subjects with 52 osteoporosis and 56 normal subjects, and aim to use
the powerful deep neural network (DNN) on these DPR images for osteoporosis classification.
However, DNN, such as AlexNet, requires millions of images for model learning. For many
clinical related tasks, the available amount of data is far from adequate to train a DNN from
scratch. One common solution is to use a pre-trained DNN and fine-tune it on the target dataset.
Due to limited number of images and the big difference in image styles between ImageNet and
our DPR dataset, direct fine-tuning of DNN can hardly achieve promising performance. In this
paper, we propose a multi-task scheme to transfer the network pre-trained on ImageNet to our
DPR dataset and improve the accuracy in osteoporosis pre-screening. Specifically, the AlexNet
pre-trained on ImageNet is first fine-tuned on the task of (patient) identity classification using
the abundant patches extracted from 108 DPR images. Features learned from such task are more
dental-data friendly and are better for our main task, i.e., osteoporosis pre-screening. For this
purpose, the Octuplet Siamese Network (OSNet) is built on top of such features and trained on
eight regions of interest (ROIs) in each DPR image for the osteoporosis classification task. Finally,
the leave-one-out cross-validation shows that the highest overall accuracy of osteoporosis pre-
screening is 92.6%, showing significant advantage over previous methods.

1. Introduction

Osteoporosis is a metabolic bone disease characterized by low bone mass and disruption in bone microarchitecture. It can lead to bone fragility
and increase fracture risks Deng et al. (2018). According to National Osteoporosis Foundation’s report, osteoporosis affects 55% of Americans
over 50 years old and has more than 3 million US cases per year Wright et al. (2014). Osteoporosis patients have no symptoms until having a
bone fracture, which may lead to significant morbidity and mortality Oleksik et al. (2000, 2005); Bliuc et al. (2009); Ensrud et al. (2000). Early
diagnosis of osteoporosis plays an important role in reducing bone fracture risks and enhancing the quality of life for these patients. One of the most
precise diagnostic method of osteoporosis in current clinical treatments is dual-energy x-ray absorptiometry (DXA), which determines patients’
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osteoporosis conditions by measuring their bone mineral density (BMD) van Casteren-Messidoro et al. (2014). However, the DXA assessment
equipment is not widely available and the cost of DXA is high Moyad (2003).

Panoramic radiography is a relatively cheap and more convenient diagnostic method for potential osteoporosis patients Taguchi et al. (2008).
In fact, dental panoramic radiography (DPR) images are frequently taken by dentists in routine clinical dental examinations with no additional
cost Taguchi (2010). In this case, studies have been conducted on discovering the diagnostic potential of DPR images on osteoporosis. Recently,
increasing studies have shown that DPR images comprise trabecular bone patterns which can be used to predict undetected osteoporosis Geraets
et al. (2007); Devlin et al. (2007); Cakur et al. (2008); Taguchi (2009); Božič & Hren (2013). Those works investigated multiple image features in
these dental images, such as intensity and texture. However, in practice, those pre-defined low-level feature descriptors are vulnerable to various
imaging imperfections. Failing to integrate the comprehensive image features also restricts the efficiency and effectiveness to discriminate desired
trabecular bone patterns from other overlapping structures in DPR images White (2002); Devlin & Horner (2008). Recent deep learning methods,
especially the convolutional neural network (CNN), achieve great success in learning task-specific features from image data. With the deep and
hierarchical features, the performance in many medical image classification tasks are greatly improved. However, training a powerful deep neural
network (DNN) requires sufficient labeled training samples which are usually hard to acquire in many medical tasks. A common solution is the
fine-tuning scheme where a DNN is initialized by pre-training and task-specific data is used for minor adjustment on the pre-trained model. This
strategy works promisingly when the images in pre-training and target tasks share enough low-level features and the amount of task data is sufficient
to prevent over-fitting. However, neither of them are satisfied in our DPR dataset.

In our study, we propose a multitask scheme to train a pre-trained DNN for osteoporosis classification task using limited labeled DPR images.
It is accomplished by introducing an auxiliary task to classify patients’ IDs using their DPR images. The network learns features from sufficient
patches extracted from DPR images in the auxiliary task and utilizes those features in the final osteoporosis classification task with limited labeled
data. The whole paper is arranged as follow: Section 1. Introduction: In the introduction section, we briefly describe the background information
of our study including shortcomings of current osteoporosis diagnostic methods and the potential of using features learnt from DPR images for
osteoporosis classification. Section 2. Related Work: In this section, we introduce previous work on osteoporosis screening using DPR images.
We also include a basic review of machine learning, CNN, multi-task network and their applications in medical research. Section 3. Method: In
this section, we first describe the composition of our dataset. Then we present the design of the network and ordinary fine-tuning scheme, followed
by the details of our multi-task scheme. Section 4. Experiments and results: In this section, we state the steps of our experiments and our results.
Section 5. Conclusion and discussion: In this section, we discuss the contributions and future directions of our work.

2. Related Work

2.1. Overview of machine learning in medical research

Machine learning (ML) is a scientific study that utilizes mathematical algorithms to improve the performance of computer systems on predict-
ing outcomes in target tasks. The basic process of machine learning is that the computer uses the sample data and statistical algorithms to build a
characteristic mathematical model. This model can be further used to make predictions on cases which are not in the sample dataset for this task.
As big data analysis growing, machine learning is closely related to many fields including data mining, optimization and statistics. Especially,
machine learning provides several indispensable and relatively inexpensive tools for large data analysis in medical research and clinical diagno-
sis Kononenko (2001), including cell activity study Zhang et al. (2018), health monitoring system Chen et al. (2017), medical prognose Chan et al.
(2002), missing data handling in medical research Quinlan (1989) and complementary medicine Zhao et al. (2015).

There are generally three types of machine learning algorithms: supervised learning, unsupervised learning and reinforcement learning. In
supervised learning, the training data have both inputs and desired outputs, known as labels. A supervised algorithm is first trained using given
dataset to make predictions as the given labels. After the training step, the optimized supervised learning algorithm should have the capability
to provide reliable predictions on new inputs Mohri et al. (2018). One of the most common supervised learning tasks is classification. In a
classification task, there are limited numbers or sets of outputs, known as classes. Each input is classified by the supervised learning algorithm
model into one class. In our study, we have two output classes, which are osteoporosis and normal. Our aim is to develop a network scheme that
uses DPR images as the input and outputs a proper prediction of the osteoporosis condition shown in each DPR image.

2.2. CNN and AlexNet in medical image analysis

With the booming of health-care and medical research, the accumulation of medical records offers a promising source for big data analysis.
Highly efficient techniques such as machine learning and artificial intelligence have been applied on medical data analysis in many aspects,
including medical image processing and computer-aided diagnosis Razzak et al. (2018). These techniques are built on conventional and deep
learning algorithms. Among them, one of the most popular algorithms is CNN. Different types of CNNs are Alexnet Krizhevsky et al. (2012),
ResNet He et al. (2016), VGGNet Simonyan & Zisserman (2014), ZFNet Zeiler & Fergus (2014) and so on. Due to its strong learning ability and
good performance, CNN has caught lots of attention in digital imaging processing and computer vision.

Gulshan et al. (2016) proposed a deep CNN algorithm for diabetic retinopathy and diabetic macular edema detection in retinal images.
They applied CNN on Eye Picture Archive Communication System (EyePACS-1) dataset and Messidor-2 dataset which contain 9963 and 1748
images respectively. They achieved 97.5% sensitivity and 93.4% specificity on EyePACS-1 dataset and 96.1% sensitivity and 93.9% specificity on
Messidor-1 dataset. CNN is also used in histological analysis. In Bayramoglu & Heikkilä (2016), the author used CNN transfer learning and fine-
tuning for cell nuclei classification. Quinn et al. (2016)employed CNN on shape feature learning for malaria diagnosis with samples from blood
smears, sputum and stool. All three cases shown high classification accuracy and better performance than traditional medical imaging techniques.
Spanhol et al. (2016) proposed an AlexNet variant for breast cancer image classification using histopathological images from BreaKHis dataset.
They generated patches from these images for network training and developed strategies to handle high-resolution textured images. Their results

2



Sijia Yu etal Smart Health (2019)

2
1

3 4

7 8

5 6

Condylar 
(right)

Condylar 
(left)

Maxillar
molar region 

(right)

Maxillar
molar region 

(left)

Mandibular 
angle (right)

Mandibular 
angle (left)

Mandibular 
premolar 

region (right)

Mandibular 
premolar 

region (left)

Fig. 1: DPR image with eight ROIs. Eight ROIs are separated in 4 groups according to symmetry. 1 and 2: the condylar (green); 3 and 4: the maxillar molar region (yellow); 5 and 6:
the mandibular premolar region (orange); 7 and 8: the mandibular angle (blue).

shown improved accuracy using CNN than previous machine learning models on the same dataset. Besides, CNN has a variety of applications in
medical data analysis including cardiac imaging analysis, tumor detection and gastrointestinal diseases diagnosis Razzak et al. (2018).

2.3. DPR in osteoporosis diagnosis

It is known that variations in trabecular bone textures are closely related to changes of bone density. Therefore, trabecular bone structures
have the potential to assist bone disease analysis including osteoporosis diagnosis. According to recent medical research, dental radiography can
provide valuable information in trabecular bone structures for osteoporosis pre-screening studies Kavitha et al. (2012); Roberts et al. (2013); Ling
et al. (2014); Li et al. (2014). Kavitha et al. (2012) developed a kernel-based support vector machine learning method to identify women over
50 years old with osteoporosis or low bone mineral density. Their method discriminated osteoporosis from normal subjects using the difference
in cortical width of the mandible on DPR images. Their results suggested that DPR could be a useful source to get bone density information in
computer-aided osteoporosis diagnosis. Moreover, in Roberts et al. (2013), the authors reported that using additional texture features from DPR
images in osteoporosis classification led to highly correlated results with clinical diagnostic records. In this case, the authors suggested that image
features in DPR could be useful in bone quality measurement and thus could serve as a biomarker for osteoporosis diagnosis. Li et al. (2014)
proposed a multi-feature approach to analyze trabecular patterns from CBCT volumes. They extracted fractal dimension, multi-fractal spectrum
and gradient based features from regions of interest (ROIs) and used multi-kernel learning to fuse these features for classification. Their results
provided evidences that using multiple features and ROIs could benefit the outcome in computer-aided osteoporosis classification tasks. Ling et al.
(2014) investigated the correlation between multiple trabecular texture features and patients’ gender and age using dental cone beam CT (CBCT)
images. They showed that features in these dental CBCT images, especially those in the mandible, were statistically significantly related to the
changes of trabecular patterns. Therefore, they concluded that dental CBCT images had the potential for trabecular structure analysis.

However, the accuracy and reliability of using DPR to determine osteoporosis conditions is dissatisfactory. Bo et al. (2017) constructed a two-
stage classification framework using different support vector machines (SVMs) for osteoporosis classification task. In the training process, each
SVM in the first stage handled a given feature and a group of ROIs. The probability outputs from the first stage were combined by an additional
liner SVM in the second stage for classification. Their best results with HOG features reached 72.5% in overall accuracy with p-value 0.0164. Chu
et al. (2018) proposed to use Octuplet Siamese Network (OSNet) to classify patients on their osteoporosis status using DPR images. In their work,
the network was trained with augmented texture dataset and fine-tuned on target DPR images. Due to differences between the images in augmented
texture dataset and DPR images, the best accuracy achieved was 89.8%. Therefore, in this work, we propose a multitask scheme to enhance the
feature learning process and finally improve the classification accuracy of patients’ osteoporosis status using OSNet.

2.4. Multi-task network in medical image analysis

Typically, in a machine learning or deep learning task, we focus on training our single model and fine-tuning the model to its best performance.
However, it might be the case that we overlook useful information that could be acquired from some auxiliary tasks. Multi-task learning is a strategy
that further optimizes a model’s performance by introducing information of the training signals from related tasks Ruder (2017). According to
previous studies, multi-task learning can benefit the model training in many aspects including data augmentation, attention focusing and balancing
the representation bias.

Due to these advantages, multi-task learning has been used successfully in many machine learning tasks, from natural language process-
ing Collobert & Weston (2008) to computer vision Girshick (2015) and drug discovery Ramsundar et al. (2015). Hunt et al. (2018) used multi-task
learning with LASSO and graph regularization to analyze plug-in estimators for missing data handling in healthcare records. They tested their
model on Alzheimer’s disease progression dataset and showed effectiveness for disease prediction when missing data was present. Ramsundar
et al. (2015) dug deeper in the advantages of multi-task neural architectures in drug discovery. They mentioned that, comparing with single-task
methods, multi-task networks could improve predictive accuracies and this predictive power was strengthened when additional data and tasks were

3



Sijia Yu etal Smart Health (2019)

Share all 
weights

Patch 
augment

+

OP

Normal

Feature 
fusion

Linear 
classifier

c

Feature 
extraction

DPR image

Concatenationc

+ Addition

+
+

+

Fig. 2: Overview of Octuplet Siamese Network (OSNet) Chu et al. (2018). OSNet has eight identical subnets and each of them is an AlexNet. OSNet has three parts: deep feature
extraction, feature fusion and linear classifier.

involved. Also, features learnt by multi-task networks showed some extent of transferability to tasks that were not trained with the network be-
fore. These studies provide evidences that multi-task learning can benefit tasks which have limitations in data and require more powerful network
learning abilities.

3. Methods

3.1. Dataset

Our dataset consists of 108 DPR images from 108 different subjects, among which 52 are diagnosed as osteoporosis and 56 are normal. The
subjects are classified according to the World Health Organization as normal (T-score ≥ −1.0) or osteoporotic (T-score < −1.0). In practice, due
to the abundance and homogeneity of trabecular bone structure distribution in oral cavity, we investigate multiple ROIs in the mandible and the
maxilla area for robustness. Specifically, eight ROIs are manually picked by dentists in each DPR. As shown in Figure 1, the locations of ROIs are
in the condylar (green), angle (blue) and premolar region (orange) of the mandible, and the maxillar molar region (yellow). The 8 ROIs in each
DPR image are divided into 4 groups according to symmetry: Group 1: ROIs 1, 2; Group 2: ROIs 3, 4; Group 3: ROIs 5, 6; and Group 4: ROIs
7, 8. Each ROI is normalized into 50 x 50 pixels and ROIs in the same group are labeled with the same color. We choose these four sets of ROIs
because the trabecular bone structure in these four regions are less likely to be affected by other dental diseases and are more closely related to
bone density of the observational subject. Thus, these eight ROIs are more effective and accurate in indicating the osteoporosis level of the subject.

3.2. Octuple Siamese Network

In order to apply powerful CNN on a dataset with limited DPR images on osteoporosis classification, Chu et al. (2018) designed an efficient
OSNet for this binary classification task, as shown in Figure 2. The OSNet mainly consists of three parts: deep feature extraction, feature fusion and
linear classifier. In the feature extraction part, Siamese-style network with eight identical subnets (AlexNet) are used and each subnet corresponds
to one of the ROI inputs in a DPR image. While from different locations, the eight input patches are extracted from the same DPR image so
they share the same image features. Since the network training is accomplished by updating weights in each layer of the neural network based on
information learnt from input features, the eight subnets are weights sharing. In this way, features in each ROI can be used to update weights in
all the eight subnets which is equivalent to increasing the training samples by seven times. The feature fusion part is built on the fact that human
face is symmetric. In this part, features from the same ROI group are added together while features from different ROI groups are concatenated.
These schemes ensure that features from different parts of a DPR image are passed independently into the classifier where decisions can be made
in parallel. At the same time, this design also keeps the feature compact so that a simple classifier can be adapted afterwards and it further reduces
the complexity for training. Finally, a single fully-connected layer with two output neurons is used to generate the classification decision of each
input DPR image. The two outputs indicate the probability of an input DPR image being osteoporosis or normal.

3.3. Fine-Tuning

Training a powerful CNN requires a huge dataset, such as ImageNet Deng et al. (2009), which contains one million labeled images for training.
However, available training data in ordinary tasks is usually very limited and is not enough to train deep CNNs, such as AlexNet, from scratch. One
practical method to handle this situation is fine-tuning. The procedure of fine-tuning usually involves two steps. Firstly, the deep CNN is trained on
some large and comprehensive databases such as ImageNet, where the CNN can be trained on enough data with very limited levels of overfitting.
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Fig. 3: ImageNet Deng et al. (2009) Images(left) vs DPR Images(right).

After that, the CNN obtains powerful feature representation abilities and can serve as a pre-trained model for general image learning tasks. In the
second step, the task-specific dataset, which is usually much smaller than ImageNet, is used to further train the pre-trained model. This training
is usually performed with very small learning rates, such as tenth or even less of the original learning rate in the initial network settings. In this
way, the pre-trained model is making only slight modifications to fit the target dataset. By these two steps, a task-specified CNN can be obtained
even when the task has a relatively small number of training data. The reason that fine-tuning works is that the feature representation in CNN is
hierarchical. While images from different domains have different appearances, they all share the same low-level graphic characteristics. Through
the classification process, these low-level features contribute to the domain specific clues and these clues, known as high-level features, are used
for object classification. This feature representation peculiarity in CNN makes it possible for us to apply the feature extracting network which is
trained in one domain on other domains. Moreover, pre-training on big datasets helps the network loss get close to global minimum. When this
network is further applied on the target task, it is easier to converge with limited training data. Therefore, fine-tuning is an effective and efficient
strategy in DNN training.

In many medical image classification tasks where labeled data is hard to collect, the number of data required for fine-tuning is still hard to
reach. In this case, fine-tuning with insufficient data cannot improve the feature representation in the target domain. Moreover, medical images
share less low-level features with natural images, especially for those captured by X-ray or in MRI. All these factors attribute to the need of more
domain data for fine-tuning the CNN pre-trained on natural images. To meet this requirement, we introduce an auxiliary task to improve the
network performance.

3.4. Multi-task Scheme

In order to improve the efficiency and accuracy of the network in our proposed osteoporosis classification task, we need to pre-train it before
applying on the final classification task. However, we have two main challenges.

In the first step of training, we use the network trained on ImageNet as our pre-trained model. The ImageNet dataset is a large image database
which contains more than 14 million images from over 20,000 classes. About one million images in ImageNet have bounding box annotations
which makes it a useful resource for network pre-training in a variety of deep learning tasks including object localization and classification.
However, in our task, the images for classification are DPR images which contain trabecular bone structures. As shown in Figure 3, patterns in
ImageNet are mostly from colorful natural objects whereas patterns in our dental images are porous, spongy or honeycombed. Due to the huge
difference in image styles between ImageNet and DPR images, the model pre-trained on ImageNet cannot offer qualified performance on our
classification task. Thus, we need to further fine-tune our model on images that have features close to those in DPR images for better classification
performance.

Secondly, AlexNet pre-trained on ImageNet is powerful and needs lots of training samples to accommodate it from ImageNet to dental
images. Insufficient data can easily lead to overfitting and losing generalizability, which severely degrades the performance of network on testing
data. However, we have only 108 images and each of the image has eight ROIs. Even though we can make the most use of our DPR images by
leave-one-out training strategy, the amount of data is still insufficient to accomplish this task. Thus, we need more data to ensure that the network
can learn the features in DPR images well. Chu et al. (2018) used an augmented texture dataset to facilitate the transition from natural images
to trabecular bone radiographs. In this dataset, there are images showing natural or artificial textures. Using an intermediate dataset of different
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domains may introduce overfitting on other irrelevant features and lose the discriminability on potential useful features. Considering this issue, we
believe that learning features using patches directly extracted from DPR images should be the optimal solution to further enhance the performance
of classification. Thus, we propose a multi-task feature learning setting to include DPR feature learning in our classification task.

Instead of directly fine-tuning AlexNet (the backbone network of OSNet) on 108 patients’ osteoporosis status, we use the 108 patients’ IDs as
the training label set to enhance feature learning for our model. In detail, multiple patches are extracted from each DPR image. Those patches are
used to train AlexNet to classify which patient a patch comes from. Since the patches are directly derived from DPR images, they share the same
low-level features with those in eight ROIs. Through the 108-classes classification task, AlexNet gets adapted on DPR images through the feature
learning and is more sensitive on the image details that discriminates each DPR patch. We use cross-entropy loss for training in this step and the
loss can be calculated as:

Loss =
M∑

c=1

yo,c log(po,c), (1)

where:

• M - number of classes (in our case: 108)
• log - the natural log
• yo,c - binary indicator (0 or 1) if class label c is the correct classification for observation o
• po,c - predicted probability observation o is of class c

4. Experiments and results

4.1. Process flow

The whole task consists of three parts: pre-training, feature learning and fine-tuning for osteoporosis classification. As shown in Figure 4, we
firstly use AlexNet pretrained on ImageNet as the initialization. Then, in the feature learning step, the pretrained AlexNet is trained with patient ID
classification task using patches generated from DPR images. In this step, sufficient DPR patches are extracted from the mandible region mask and
used for the network to learn the low-level features in DPR images. In the final step, the AlexNet after feature learning is served as the backbone
network of OSNet. The OSNet is trained for the osteoporosis status classification task using patches in the eight ROIs.

4.2. Feature learning

To improve the performance of our network, we need to generate more data with features in DPR images and train our network on those
data before doing the osteoporosis classification. To generate patches from each DPR image for feature learning, we firstly draw a polygon mask
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Fig. 5: Learning curves from the training (left) and testing (right) processes are shown. In detail, left figure shows training loss (orange), top-1 accuracy (green) and top-5 accuracy
(blue) in the training and right figure shows top-1 accuracy (green) and top-5 accuracy (blue) in the testing. The shift the 30th epoch accords with the first-time learning rate change.

Table 1: Accuracy of osteoporosis classification with different number of epochs on feature learning.

# of Epoch 0 1 3 4 5 6 7 8 9 10
Accuracy of

classification (%)
87.96 87.96 92.59 90.74 92.59 90.74 91.66 87.96 87.04 87.04

covering the trabecular bone structure in mandible region, as shown in Figure 4 bottom left. We do not expend the mask into the maxilla area
because there is only limited trabecular bone structure shown in that region. Each of the mask starts from the left condyle and goes down to cover
the whole mandible area all the way to the right condyle. All six ROIs in the mandible region are included in the mask and the rest area in the mask
share the same bone texture pattern with the six ROIs. Patches are extracted by using sliding-widow across the whole DPR image with a bounding
box starting from the left top corner of each image. Since DPRs are taken with different scaling, the size of the bounding box is normalized
according to DPI (Dots Per Inch) of each image and resized into 100 × 100 pixels. A patch is accepted if its overlapping with the mask is larger
than 90%. DPR patches are generated with step length of 25 pixels and for patches whose distances to any of the six ROIs are smaller than 50
pixels, the steps are reduced to 10 pixels. The distance is calculated between the center of the bounding box and the center of a ROI. All these steps
and distances are also normalized according to DPI. As a result, we extract 69,850 patches from 108 DPR images in total and on average each class
(patient ID) contains about 650 patches.

Then, we use these patches to train AlexNet for patient identification. Patches are randomly split into 10 folds, with equal distribution in
each patient class. We take 9 folds for training and 1 fold for testing. We also use online data augmentation methods including random crop and
horizontal flip to reduce overfitting. In order to adapt AlexNet for ID classification task, we make some adjustments on network configuration.
Firstly, since AlexNet has 1000 output classes by default, we add an extra layer to fit 1000 outputs into 108 classes. In this layer, there are 108
nodes and each node corresponds to one patient. After a patch is processed through the network, each node in this layer can give a probability if
an input patch belongs to one of the 108 classes. Based on those probabilities, the output layer gives a prediction which patient class should this
patch come from. Here, we pick both a tight and a loose way to evaluate the classification accuracy of the network and they are called the top-1 and
top-5 accuracy respectively. The top-1 accuracy is calculated by picking the node with the highest probability and if the node’s class is the same as
the ground truth of this patch, we consider the prediction is true (mark as 1), otherwise false (mark as 0). For top-5 accuracy, the top 5 nodes with
the highest probabilities are picked. If one of them is the ground truth of the patch, the prediction is 1 and if the ground truth is not in these five
classes, then the prediction is 0. Also, to meet the default setting of input in AlexNet, we resize patches into 224 × 224 pixels.

The learning curve of the first 70 epochs is shown in the left in Figure 5. The shift in curve at the 30th and 60th epoch correspond to the
change in learning rate. The starting learning rate is 0.001. Every time the training finishes 30 epochs, the learning rate is decreased to one tenth.
We measure both the top-1 and top-5 prediction on every patch and the average accuracy of all patients in each epoch is shown in the figure. The
highest top-1 accuracy on training data is around 70% and the highest accuracy on testing data is 60%.

4.3. Osteoporosis classification

After feature learning, we use the network as the feature extraction sub-network of OSNet and apply it on osteoporosis classification. The
network trained in the feature learning part with different numbers of epochs is used to train the osteoporosis classification task. Their accuracies
are shown in Tabel 1. The highest accuracy is around 92.6% with 3 or 5 epochs of feature learning. We also compare our results with other methods
on the same task, shown in Tabel 2. We report the accuracy on non-osteoporosis subjects (NOPA), osteoporosis subjects (OPA) and the overall
accuracy (OA). Our model increases 2.7% in OA and remains top in OPA and NOPA compared with the best previous model.
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Table 2: Accuracy of osteoporosis classification compared with other methods.

Methods TSL[5] SFTA[6] OSN[6] proposed
NOPA(%) 67.86 71.43 89.29 89.29
OPA(%) 67.31 82.69 90.38 96.15
OA(%) 67.59 76.85 89.81 92.59

Ground Truth Normal Ground Truth OP

Pr
ed

ic
tio

n
N

or
m

al
Pr

ed
ic

tio
n

O
P

Fig. 6: Visualization of selected results. Each cell shows two sample cases with their left faces. The eights patches in the ROIs are visualized at the bottom of each case. Top left and
bottom right are correctly classified cases and the rest two are misclassified cases. The T-score of misclassified cases are -3.45 (#036), -1.25 (#108), -0.98 (#05), -0.37 (#20).

5. Conclusion and Discussion

In this project, we present a study that uses DPR images for osteoporosis condition evaluation and propose an image-based osteoporosis pre-
screening method. To improve the classification accuracy, we conduct a multi-task network scheme with feature learning to enhance the network
performance in osteoporosis classification. Thanks to the powerful features learned in the multi-task scheme, we improve classification accuracy
to 92.59%. In this work, we firstly use the ImageNet dataset for pretraining on AlexNet. Then we extract patches from the mandible region in DPR
images for feature learning and use patches in eight ROIs from each DPR image for osteoporosis classification. This multi-step training scheme
can be adopted in clinical osteoporosis condition analysis using DPR images as a fast and easy diagnostic method.

For further understanding the behavior of the proposed method, some misclassified samples are shown in Figure 6 (top right and bottom left)
from our results. Compared with correctly classified samples (top left and bottom right in Figure 6), we can see that these are visually very hard
cases, and our network may not be sensitive enough for handling them. Potential future directions along the study include 1) Include more areas in
the DPR image, such as the maxilla region. 2) Use more data for osteoporosis classification. This can be done by either gather more DPR images
or use patches extracted in feature learning part for osteoporosis classification. 3) Take other related factors into consideration. For example, since
one very correlated indicator of osteoporosis is tooth loss, we can potentially include the bone structure in the tooth region for training. Moreover,
we need to not only include more relative factors for learning but also look at the correlations between different factors to further increase the
model’s sensitivity to these factors. While there is much more future work to be done, our tentative work shows improvements in osteoporosis
classification accuracy even when the data is scarce and hopefully can inspire more efficient models in the future.

Overall, the improvement shown in classification accuracy in this work encourages future work using DPR image for inexpensive osteoporosis
pre-screening. This method also indicates that using effective training strategies and carefully designed feature augmentation can help improve
network performance on other screening tasks.
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