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Abstract

In this paper we study the problem of online aligning a
newly arrived image to previously well-aligned images. In-
spired by recent advances in batch image alignment using
low rank decomposition [16], we treat the newly arrived im-
age, after alignment, as being linearly and sparsely recon-
structed by the well-aligned ones. The task is accomplished
by a sequence of convex optimization that minimizes the ℓ1-
norm. After that, online basis updating is pursued in two
different ways: (1) a two-stage incremental alignment for
joint registration of a large image dataset which is known a
prior, and (2) a greedy online alignment of dynamically in-
creasing image sequences, such as in the tracking scenario.
In (1), we first sequentially collect basis images that are eas-
ily aligned by checking their reconstruction residuals, fol-
lowed by the second stage where all images are re-aligned
one-by-one using the collected basis set. In (2), during the
tracking process, we dynamically enrich the image basis set
by the new target if it significantly distinguishes itself from
existing basis images. While inheriting the benefits of spar-
sity, our method enjoys the great time efficiency and there-
fore be capable of dealing with large image set and real time
tasks such as visual tracking. The efficacy of the proposed
online robust alignment algorithm is verified with extensive
experiments on image set alignment and visual tracking, in
reference with state-of-the-art methods.

1. Introduction

In the last two decades, the increasing popularity of
smart phones and consumer cameras has led to a dramatic
increase in the amount of visual data. Further, the image
and video sharing web sites, such as Facebook, Flickr and
YouTube, make these data easily available online. Analyz-
ing such increasing data challenges existing computer vi-
sion algorithms with scalability and image corruptions as il-

lumination variations, occlusions, misalignment. In partic-
ular, lack of reliable and efficient alignment algorithms for
a large amount of images makes it difficult for many image
analysis tasks such as face recognition, image classification,
and the increasing amount of data requires good scalability
of algorithms. Therefore, how to align these large increas-
ing amount of data with both time and memory efficiency
has become an urgent problem to be solved.

A lot of work has been done toward the batch image
alignment problem, where all the images of an object or
objects of interest are aligned to a fixed canonical template.
The congealing algorithm was proposed in [10] by seeking
an alignment that minimizes the sum of entropies of pixel
values at each pixel location in the batch of aligned images.
In [4], a least squares congealing approach is presented that
seeks an alignment that minimizes the sum of squared dis-
tances between image pairs. In [18], minimization of a log-
determinant cost function is used for image joint alignment.
In [5], an EM algorithm is introduced to optimize a low-
rank objective function with respect to domain transforma-
tions drawn from a known group.

Our study is motivated by the recent work by Peng et
al. [16], where a batch image alignment algorithm, named
robust alignment by sparse and low-rank decomposition
(RASL), is proposed to seek an optimal set of image do-
main transformations such that the matrix of transformed
images can be decomposed as the sum of a sparse matrix
of errors and a low-rank matrix of recovered aligned im-
ages. RASL has been verified over a wide range of realis-
tic misalignments and corruptions. However, when align-
ing a new coming image to the aligned ones, RASL needs
to re-adjust all the transformations of previous images to
achieve the rank minimization, which can be very time- and
memory-demanding when the image set is large or when it
grows quickly, such as in the tracking scenario. This limits
the scalability and scope of applications of RASL. Similar
alignment frameworks have also been exploited in [8].

To overcome the limitation of batch alignment, we pro-
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pose an online robust image alignment (ORIA) method that
can be applied to large image sets or dynamically increas-
ing ones. Similar as in [16], we assume that the aligned im-
ages are linearly correlated and each image, when aligned,
can be linearly reconstructed by others. Consequently, for a
newly arriving image I , our method seeks an optimal align-
ment for I such that after alignment I can be linearly recon-
structed by previously well-aligned image basis denoted as
A. We solve the task by a sequence of convex optimization
that minimizes an ℓ1-norm. This step is similar as in RASL
except we do not take into account of rank minimization.
Instead, we keep the rank fixed and assume that the aligned
image without corruption lies on the linear low rank sub-
space spanned by A. This assumption is reasonable for the
images of objects drawn from the same category. In other
words, we only need to align the newly added image to the
well-aligned images one at a time, which is much more ef-
ficient in both computation and memory than batch align-
ment. So, this strategy enables our approach to handle large
scale problems.

The second component in ORIA is the update of basis A,
which is pursued in two different schemes. The first scheme
deals with joint alignment of a fixed image set that is too
large to be easily handled by batch alignment. In this case,
we propose a two-stage solution. In the first stage, we col-
lect sequentially basis images that are easily aligned accord-
ing to the alignment residuals. In other words, the basis A
is dynamically increased by including reliably aligned im-
ages. Then, in the second stage, we re-align all images with
large alignment residuals one by one using the basis gener-
ated in the first stage. The second scheme deals with dy-
namically increasing image sequences, such as in the visual
tracking scenario. For such scenarios, ORIA dynamically
update the image basis by integrating the newly arrived im-
age if it significantly distinguishes itself from current basis
images.

Our approach not only inherits the benefits of sparsity,
but also enjoys time and memory efficiency. It is able to
process one image in less than one second regardless the
amount of images in the dataset on a standard PC with small
memory occupation. As we will verify with extensive ex-
periments on real image data, the algorithm runs efficiently
on a large dataset with thousands of images. Furthermore,
we adapt our online alignment algorithm to the visual track-
ing problem, which cannot be handled by batch aligning
algorithm, and it again confirms the the efficiency of our
algorithm.

In the rest of the paper, we will first describe the pro-
posed online alignment in §2. In particular, the online align-
ment is formulated in §2.1 and the online basis update in
§2.2. After that, experimental results are reported in §3 to
showcase the efficacy of our method on real images, fol-
lowed by the conclusion in §4.

Figure 1. Online image alignment. (a) Aligned image; (b) Original
image; (c) Combination of well-aligned images; (d) Sparse error.

2. Online Robust Image Alignment
In this section, we first describe the robust image align-

ment given known basis images, and then introduce the on-
line basis update procedure. The summary of the algorithm
is given in Algorithm 1.

2.1. Robust Image Alignment

Task Formulation. Given a newly arrived image, our task
is to align it with previously aligned image basis. Following
the formulation in [16], we treat the task as searching for
the optimal image transformation such that the input image
is warped to have a linear decomposition of an sparse error
vector and the aligned basis images. The idea is illustrated
in Fig.1. In the following we use similar notations as in [16]
to formulate the task.

Let us denote the newly arrived image as I ∈ Rw×h,
where w and h are width and height of the image. The basis
image set containing n images is defined as In = {Ii ∈
Rw×h : 1 ≤ i ≤ n}. In practice, each image is stacked
as a vector function vec : Rw×h → Rd, where d = w × h
is the vector’s dimension. For conciseness, we use notation
‘⃗ ’ to denote the vectorization operation, i.e., I⃗ .

= vec(I).
Finally, we organize the basis images into a matrix A =
[I⃗1, I⃗2, · · · , I⃗n].

To align I with A, we need to seek an optimal transfor-
mation τ : R2 → R2 in a certain Lie group G. In the fol-
lowing, we apply the notation τ to the vectorized image I⃗
such that I⃗ ◦τ .

= vec(I ◦τ), where I ◦τ(x, y) .
= I(τ(x, y))

denotes the image warping.
Given the above notation, the sparsity regularized align-

ment can be formulated as an ℓ1 minimization problem as

min
x,e,τ

∥e∥1 s.t. I⃗ ◦ τ = Ax + e , (1)

where x denotes the reconstruction coefficients and e de-
notes the reconstruction error.

The intuition of the above formulation is two-fold. On
the one hand, it is known that the global appearance of
an object under different illumination and viewpoint con-
ditions lies approximately in a low dimensional subspace.
Consequently, linearly decomposing the appearance of an
object using an image basis set is commonly used in many
vision tasks. On the other hand, such representation in prac-
tice is subject to corruptions such noise, occlusions and
background clutters. The sparse reconstruction errors have



been used to capture such corruptions. Such a sparse error
model has been successfully applied to many vision prob-
lems, such as face recognition [20] and visual tracking [14].

Compared with the formulation of RASL [16], which
minimizes the error sparsity and the rank of aligned im-
ages simultaneously, ORIA only minimizes the error spar-
sity and preserves the rank of the aligned images by as-
suming all the well-aligned images lie in a low dimensional
linear subspace. Each time ORIA aligns and projects one
image to the subspace while RASL needs to align all the
images by mining the underlying low rank structure of the
dataset. When the dataset changes (adding or deleting im-
ages), RASL needs to re-align all the images in the dataset
to discover the new low rank structure. Therefore, ORIA
can be viewed as an online adaption of RASL. In practice,
we can employ RASL on the subset of the dataset to gener-
ate the aligned basis images for ORIA and then ORIA can
align the newly coming images on-the-fly.

Iterative Convex Optimization. The optimization prob-
lem (1) is non-convex in that the constraint I⃗ ◦ τ = Ax + e
is nonlinear in τ ∈ G. Inspired by the work in [16, 19, 23],
we solve the problem by an iterative convex optimization
framework. The key idea is to linearize the constraint and
iteratively improve the estimated solution. The lineariza-
tion is the first order approximation as I⃗ ◦ (τ + ∆τ) ≈
I⃗ ◦ τ + J∆τ , where ∆τ ∈ Rp and J ∈ Rd×p is the Ja-
cobian of I⃗ w.r.t. the transformation τ , which is determined
by p parameters. This way, the optimization problem (1)
reduces to

min
x,e,∆τ

∥e∥1 s.t. I⃗ ◦ τ + J∆τ = Ax + e. (2)

This linearized formulation is now a convex program-
ming and is amenable to solve efficiently. By iteratively
solving the problem in (2), we can approximate the solution
to the original non-convex problem in (1). Such an iterative
linearization scheme is a common technique in optimization
to solve nonlinear problems, which converges quadratically
to a local minimum of the original non-linear problem [16].

To solve the convex programming in (2), augmented
Lagrange multiplier (ALM) [12] is utilized for efficiency.
Specifically, we have the following augmented Lagrangian
function for our problem (2):

Lµ(x, e,∆τ, λ)=∥e∥1+λ⊤h(x, e,∆τ)+
µ

2
∥h(x, e,∆τ)∥22,

(3)
where h(x, e,∆τ) = I⃗ ◦ τ + J∆τ − Ax − e denotes the
constraints; λ ∈ Rd is a Lagrange multiplier vector; and µ
is a positive penalty scalar.

Intuitively, when µ is sufficiently large, the augmented
Lagrangian function shares the same minimizer as the orig-
inal constrained optimization problem [2] for appropriately
chosen Lagrange multiplier vector λ . Consequently, we can

Algorithm 1 The ORIA Algorithm
1: Input: Image basis set A ∈ Rd×n, image I ∈ Rw×h,

and initial transformation τ = τ0 ∈ G

2: Initialize I⃗ ◦ τ0 = vec(I ◦ τ0)
3: while not converged (n = 0, 1, . . . ) do
4: Update the Jacobian matrix: Jn = ∂(I⃗◦ζ)

∂ζ

∣∣
ζ=τn

5: Initialize x0 = 0, e0 = 0, ∆τ0 = 0, λ0 = I⃗ ◦ τn,
µ0 = 1.25

6: while not converged (k = 0, 1, . . . ) do
7: (xk+1, ek+1,∆τk+1)=argmin

x,e,∆τ
Lµk

(x, e,∆τ, λk)

8: λk+1 = λk + µkh(xk+1, ek+1,∆τk+1)
9: µk+1 = ρ · µk

10: end while
11: Update the transformation: τn+1 = τn +∆τk;

12: Update the transformed image vector: I⃗ ◦ τn+1 =
vec(I ◦ τn+1)/∥vec(I ◦ τn+1)∥2

13: end while
14: Update basis set A according to §2.2
15: Output: Solution x∗, e∗, τ∗ to problem (1), an updated

basis set A.

iteratively minimize (3) with an increasing set of µ, with the
following steps:

(xk+1, ek+1,∆τk+1) = arg min
x,e,∆τ

Lµk
(x, e,∆τ, λk),

λk+1 = λk+µkh(xk+1, ek+1,∆τk+1),

µk+1 = ρ · µk,

(4)

where ρ > 1 controls the steps of µ and {µk > 0, k =
0, 1, ...} forms a monotonically increasing sequence.

Note that the proposed solution is similar to the one used
in RASL. The main difference lies in that RASL includes an
additional penalty over the rank of the basis A. The solver
for (4) is also similar as that in RASL, the details can be
referred to [16].

2.2. Online Basis Update

Once a new image, say I , is aligned with current basis,
say A, we will update A according to the task requirement.
We pursue basis update in two different schemes. The first
scheme, which contains two stages, deals with joint align-
ment of a large amount of images from the same category.
The second scheme focuses on dynamically increasing im-
age sequences, such as in the visual tracking scenario.

Joint Image Set Alignment. It is impractical, in terms of
both running time and memory request, to batch aligning a
large image data set. Instead, ORIA adopts an an online so-
lution with a two-stage basis update scheme. The first stage
focuses on the easy cases, which are identified by ∥e∥1, and



after the basis set is improved in this stage, the next stage
will focus on the hard cases.

In the first stage, we start with a synthetic basis set A
generated from the first image by disturbing it with small
transformations. By this way, the images in A are visually
similar but A has full column rank. Although the repre-
sentative ability of this initial subspace is not powerful, we
can use it to collect informative basis online. In the online
process, when an image is well-aligned to current basis set,
i.e., with small reconstruction residual ∥e∥1 ≤ t0 for some
threshold t0 (10 in our experiments), we update basis A with
this image. In particular, the synthetic basis images will be
replaced first. After all the synthetic bases are replaced, the
size of basis set increases when adding the new basis. For
computation efficiency, we add constraint to the size of ba-
sis set (e.g., 100). If the size constraint is reached, when
adding a new basis, it will replace the oldest one, except the
first one, in the basis set.

Intuitively, when ∥e∥1 is large, the image may be oc-
cluded seriously or still be mis-aligned. In this case, the
image will not serve as a basis and it will be re-aligned in
the second stage. We run the first stage to enrich the basis
set and then start the second stage.

Online Image Sequence Alignment. For the alignment
of image sequences, in particular in the scenario of visual
tracking, the image set is not known a prior. In this case, we
can not apply the two-stage basis update, while instead up-
dating the basis on-the-fly. Specifically, in the first frame,
a synthetic basis set A is generated in the same way as in
the joint image set alignment. Then, when a new image I
arrives, it is first aligned with A using the method described
in Section 2. Then, if the reconstruction residual ∥e∥1 is
greater than a predefined threshold t2, we will update the
basis A with the aligned result, i.e., I ◦ τ .

3. Experiments

In this section, we first demonstrate the speed and scal-
ability of the proposed approach and then evaluate its ef-
ficiency on several image alignment tasks. After that, we
adapt ORIA to the online visual tracking problem, where
the results also verify the robustness of our approach.

3.1. Speed and scalability of ORIA

The ORIA formulation consists of solving a sequence
of convex optimization problems. Recent advances in ℓ1-
norm minimization have enabled us to develop scalable al-
gorithms for ORIA. We provide the running time for an ex-
ample case to give an idea of the efficiency of our algorithm.

The speed comparison experiment between ORIA and
RASL is carried out on a video sequence gore containing
140 images. The alignment results of both algorithms are
shown in Fig.3. The affine transformations G = Aff(2) is

20 40 60 80 100 120 140
10

−1

10
0

10
1

10
2

10
3

frame number

C
om

pu
ta

tio
n 

tim
e 

pe
r f

ra
m

e 
(S

ec
on

d,
 in

 lo
g 

sc
al

e) Speed Comparison

 

 
RASL
ORIA

Figure 2. Running time comparison between ORIA and RASL

used. Each face is aligned to be an 80× 60 canonical face.
In order to compare the alignment results with RASL visu-
ally, we use the first ten images from the alignment results
generated by RASL as the basis set of our ORIA. Then, the
remaining images of gore are aligned to these well-aligned
images one by one. To test the computation time of RASL
w.r.t the growing amount of images in the dataset, RASL
is running in a online batch mode, namely the data matrix
as the input to RASL is added one column once. The com-
putation time of the two approaches is illustrated in Fig. 2.
We can see that the computation time of our ORIA keeps al-
most constant, while the computation complexity of RASL
is growing linearly as the size of image set increases. Av-
eragely, on a PC with Intel Q8200 2.33 GHz CPU with a
MATLAB implementation, ORIA needs only 0.4 seconds
to warp the newly arrived image to the subspace spanned
by the well-aligned basis. RASL processes the first arrived
images in 3.4 seconds, and when the last image arrives, it
needs around 110 seconds to align all the images. Observed
from experiments, the inner loop of our ORIA is at least 15
times faster than RASL. RASL cannot adopt the historical
alignment information and wastes a large amount of compu-
tation resource to adjust the alignment of previous images.

Furthermore, RASL needs to keep all the previous im-
ages to carry out the batch alignment. This limits its appli-
cation to large scale dataset or online vision problems. In
contrast, our method needs only keep the basis A and the
current arrived image. Both the computation and memory
efficiency allows our method to be applied to the practical
online vision problems. One example among these applica-
tions is visual tracking, which will be shown in §3.3.

3.2. Joint Image Set Alignment

We test our algorithm on a subset of the Labeled Faces
in the Wild (LFW) [7] and handwritten digits. This sub-
set of LFW contains 19 subjects and each has 35 images.
The initial basis set is constructed from one face from Glo-
ria Macapagal and then the basis set is updated by the fol-
lowing well-aligned faces. The average faces before and
after alignment are shown in Fig.4(a) and Fig.4(b) respec-



(a) frames 1-10 (b) 10 frames drawn from frames 11-140 (c) well-aligned (a) as the basis for ORIA

(d) aligned (c) by RASL in online batch mode (e) aligned (c) by RASL using 140 faces (f) aligned (d) by ORIA
Figure 3. Image alignment on 140-frame video sequence gore. The original face images are cropped out by applying a face detector to each
frame. (a) frames 1-10; (b) 10 frames uniformly drawn from frames 11-140; (c) the first 10 aligned faces from all the 140 faces aligned
by RASL. It takes as the basis for ORIA. (d) aligned faces in (c) by RASL using online batch mode (the amount of images as the input of
RASL is increasing). Note that the first image is not aligned to the other nine; (e) aligned frames in (c) by RASL taking all the 140 faces
as input; (f) aligned faces in (c) by ORIA.

tively. We can see that the average faces after alignment
is much clearer than those before alignment. The specific
alignment results for Ariel Sharon and Donald Rumsfeld are
illustrated in Fig.5. Note that RASL in [16] is used to align
each subject while our ORIA here is used to align faces
across subjects as well. Even though alignment across sub-
jects is much more difficult than within each subject, ORIA
achieves almost the same alignment results as RASL. This
also verifies that the proposed basis update strategy is effec-
tive. We also tested ORIA to the alignment of digit images
taken from the MNIST database. For this experiment, we
use 100 images of the handwritten “3”, of size 29× 29 pix-
els and the results are shown in. Fig.4 (c-d).

By comparing the results of ORIA to those in [16] gener-
ated by RASL, we can see that our ORIA achieves very sim-
ilar results as RASL. However, to generate the same results
ORIA uses much less computation resources (both CPU and
memory).

3.3. Visual Tracking

Visual tracking is a critical task in many computer vi-
sion applications. The challenges in designing a robust vi-
sual tracking algorithm are caused by the presence of noise,
occlusions, varying viewpoints, background clutter, and il-
lumination changes. Many tracking approach are based on
the linear subspace representation. In [3], the eigenspace
is adopted to represent the target. Further, the incremen-
tal eigenspace update is proposed in [17]. Recently, in [14]
sparse representation is proposed for visual tracking, where
the sparsity is achieved by solving an ℓ1-regularized least
squares problem. Then, the group sparsity is used for im-
proving tracking robustness [13]. Later, some approaches
are proposed to accelerate the L1 tacker [15, 11]. In [22],
the sparse representation is extended to the motion-blurred
target tracking. Our ORIA tracker is also based on the linear
subspace representation. Here, we will see that our ORIA
is qualified for this challenging online task and outperforms
many state-of-the-art trackers.

In our visual tracking experiments, each target is initial-
ized manually by a bounding box in the first frame. The ini-
tial transformation for current target is the estimated trans-

formation of target in the last frame. One of critical prob-
lem in visual tracking is model update. Here, we adopted
the strategy proposed for online image sequence alignment.

Our ORIA tracker is compared with five latest state-
of-the-art trackers named Incremental Visual Tracking
(IVT) [17], Multiple Instance Learning (MIL) [1], Visual
Tracking Decomposition (VTD) [9], Incremental Covari-
ance Tensor Learning (ICTL) [21], and Online AdaBoost
(OAB) [6]. The tracking results of the compared methods
are obtained by running the source code or binaries pro-
vided by their authors using the same initial positions in the
first frame.

3.4. Tracking results

We first test ORIA on the sequence rubik1, which lasts
around 2000 frames. As illustrated in Fig.6(a) one pla-
nar surface of the rubik is undergoing affine transformation
over time and our ORIA can robustly estimate the state of
the target regardless the pose variations and occlusions. In
the sequence car, the vehicle undergoes drastic illumina-
tion changes and some samples of the final tracking results
are demonstrated in Fig.6(b). Our ORIA tracker can track
target well even though the illumination changes. In the se-
quence singer, although the target is undergoing gradually
large scale changes (#8, #350), severe illumination varia-
tions (#85, #133) and viewpoint changes (#8, #350), our
ORIA tracker can track the object accurately as illustrated
in Fig.6(c). Fig.6(d) shows the tracking results of sequence
woman, where the target is severely occluded by another
object (#197) and the scale changes gradually (#500). Our
ORIA tracker can follow the target throughout the sequence
in spite of these challenging conditions. In sequence pole
(Fig.6(e)), the IVT fails to track the target from the begin-
ning and the VTD also loses the target after #274. Our
tracker and the rest trackers successfully track the target.
Finally, we test our ORIA tracker on the sequence sylv
(Fig.6(f)). Although the pose of the target changes severely
together with lighting variations, our ORIA tracker follows
the target throughout the sequence.

1The implementation of VTD from the original authors can only output
the results for the first 1000 frames of rubik.



(a) average faces before alignment (b) average faces after alignment (c) original digit images (d) aligned digit images by ORIA
Figure 4. Alignment results of face images and handwritten digits. In (a) and (b), the results marked with red boxes are the average faces
of the whole face set and others are the average faces of different subjects.

(a) original images (b) aligned by ORIA (c) original images (d) aligned by ORIA
Figure 5. Alignment of personal specific image sets.

MIL OAB ICTL VTD IVT ORIA
car 0.749 0.786 0.326 0.313 0.049 0.033

singer 0.299 0.466 0.503 0.056 0.155 0.082
woman 0.361 0.179 0.323 0.339 0.148 0.021

pole 0.007 0.010 0.008 0.049 0.572 0.003
sylv 0.069 0.058 0.096 0.203 0.197 0.031
Ave. 0.297 0.300 0.251 0.192 0.224 0.034

Table 1. The average tracking errors. The error is measured using
the Euclidian distance of two center points, which has been nor-
malized by the size of the target from the ground truth. The last
row is the average error for each tracker over all the test sequences.

Qualitative comparison. To quantitatively compare ro-
bustness under challenging conditions, we manually anno-
tated the target’s bounding box in each frame for all the test
sequences except rubik. As shown in Table 1, the position
differences of the ORIA tracker are smaller than those of
the other trackers.

4. Conclusions

We have presented an online alignment method that can
incrementally align images to the well-aligned basis images
despite gross corruptions. Our approach seeks an optimal
image domain transformation such that the transformed im-

age can be decomposed as the sum of a sparse error and
a linear composition of well-aligned basis set by solving
a sequence of convex optimization problems. Our method
inherits the benefits of sparsity and enjoys both time and
memory efficiency. We have shown the efficacy of our
method with extensive experiments on image alignment un-
der a wide range of real-world conditions. Further, we adapt
our approach to an online vision application, visual track-
ing, where the experimental results demonstrate our method
achieves higher accuracy than many existing methods.

Acknowledgment. We thank the reviewers for valuable comments
and suggestions. The work is supported partly by NSF Grants
IIS-0916624 and IIS-1049032. Wu is supported partly by NSFC
(Grant No. 61005027) and PADA.

References
[1] B. Babenko, M. Yang, and S. Belongie. “Visual Tracking with On-

line Multiple Instance Learning”, in CVPR, 2009. 5
[2] D. Bertsekas, Nonlinear Programming, Athena Scientific, 2004. 3
[3] M. J. Black and A. D. Jepson. “Eigentracking: Robust matching and

tracking of articulated objects using view-based representation”,
IJCV, 26:63-84, 1998. 5

[4] M. Cox, S. Lucey, S. Sridharan, and J. Cohn. “Least squares con-
gealing for unsupervised alignment of images”, in CVPR, 2008. 1

[5] B.J.Frey and N. Jojic. “Transformation-invariant clustering using
the EM algorithm”, PAMI, 25(1):1-17, 2003. 1



#435 #1299 #1602 #1820 #1961

(a) rubik
#174 #176 #293 #354 #600

(b) car
#8 #49 #85 #133 #350

(c)singer
#177 #190 #197 #218 #500

(d)woman
#14 #89 #236 #274 #397

(e) pole
#271 #358 #544 #605 #731

(f) sylv

Figure 6. Tracking results of different algorithms. Sequence names are rubik(a), car(b), singer(c), woman(d), pole(e) and sylv(f).

[6] H. Grabner, M. Grabner, and H. Bischof. “Real-time tracking via
online boosting”, in BMVC, 2006. 5

[7] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments”, in The ECCV Workshop on Faces in Real-
Life Images, 2008. 4

[8] J. Huang, X. Huang, and D. Metaxas, “Simultaneous Image Trans-
formation and Sparse Representation Recovery,” in CVPR, 2008. 1

[9] J. Kwon and K. M. Lee. “Visual Tracking Decomposition”, in
CVPR, 2010. 5

[10] E. Learned-Miller. “Data driven image models through continuous
joint alignment”, PAMI, 28(2):236-250, 2006. 1

[11] H. Li, C. Shen, and Q. Shi. “Real-time Visual Tracking Using Com-
pressive Sensing”, in CVPR, 2011. 5

[12] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma. “The
Augmented Lagrange Multiplier Method for Exact Recovery of
Corrupted Low-Rank Matrices”, UIUC Technical Report UILU-
ENG-09-2214, 2010. 3

[13] B. Liu, L. Yang, J. Huang, P. Meer, L. Gong, and C. Kulikowski.
“Robust and fast collaborative tracking with two stage sparse opti-
mization”, in ECCV, 2010. 5

[14] X. Mei and H. Ling. “Robust Visual Tracking and Vehicle Classifi-
cation via Sparse Representation”, PAMI, 33(11):2259-2272, 2011.
3, 5

[15] X. Mei, H. Ling, Y. Wu, E. Blasch, and L. Bai. “Minimum Error
Bounded Efficient ℓ1 Tracker with Occlusion Detection”, in CVPR,
2011. 5

[16] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. “RASL: Ro-
bust Alignment by Sparse and Low-rank Decomposition for Lin-
early Correlated Images”, PAMI, 2012, in press. 1, 2, 3, 5

[17] D. A. Ross, J. Lim, R. Lin and M. Yang. “Incremental learning for
robust visual tracking”, IJCV, 77:125-141, 2008. 5

[18] A. Vedaldi, G. Guidi, and S. Soatto. “Joint alignment up to (lossy)
transforamtions”, in CVPR, 2008. 1

[19] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, and Y. Ma. “Towards
a Practical Face Recognition System: Robust Registration and Illu-
mination via Sparse Representation”, in CVPR, 2009. 3

[20] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. “Robust
Face Recognition via Sparse Representation”, PAMI, 31(1):210-
227, 2009. 3

[21] Y. Wu, J. Cheng, J. Wang, H. Lu, J. Wang, H. Ling, E. Blasch, and
L. Bai. “Real-time Probabilistic Covariance Tracking with Efficient
Model Update”, T-IP, 2012, in press. 5

[22] Y. Wu, H. Ling, J. Yu, F. Li, X. Mei, and E. Cheng. “Blurred Target
Tracking by Blur-driven Tracker”, in ICCV, 2011. 5

[23] Z. Zhang, A. Ganesh, X. Liang and Y. Ma. “TILT: Transform In-
variant Low-rank Textures”, IJCV, 2012, in press. 3


