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Mutually Guided Image Filtering
Xiaojie Guo, Yu Li, Jiayi Ma, and Haibin Ling

Abstract—Filtering images is required by numerous multimedia, computer vision and graphics tasks. Despite diverse goals of different
tasks, making effective rules is key to the filtering performance. Linear translation-invariant filters with manually designed kernels have
been widely used. However, their performance suffers from content-blindness. To mitigate the content-blindness, a family of filters,
called joint/guided filters, have attracted a great amount of attention from the community. The main drawback of most joint/guided filters
comes from the ignorance of structural inconsistency between the reference and target signals like color, infrared and depth images
captured under different conditions. Simply adopting such guidelines very likely leads to unsatisfactory results. To address the above
issues, this paper designs a simple yet effective filter, named mutually guided image filter (muGIF), which jointly preserves mutual
structures, avoids misleading from inconsistent structures and smooths flat regions. The proposed muGIF is very flexible, which can
work in various modes including dynamic only (self-guided), static/dynamic (reference-guided) and dynamic/dynamic (mutually guided)
modes. Although the objective of muGIF is in nature non-convex, by subtly decomposing the objective, we can solve it effectively and
efficiently. The advantages of muGIF in effectiveness and flexibility are demonstrated over other state-of-the-art alternatives on a
variety of applications. Our code is publicly available at https://sites.google.com/view/xjguo/mugif.

Index Terms—Image filtering, joint image filtering, guided image filtering, mutually guided image filtering
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1 INTRODUCTION

IMAGE filtering is a technique for modifying or enhancing
images according to certain rules, which can be directly

or indirectly written in the following general shape:

min
T

Ψ(T,T0) + αΦ(T), (1)

where T0 and T are the input and output signals respec-
tively, Ψ(T,T0) denotes the fidelity term, Φ(T) stands for
the regularizer on the expected output, and α is a non-
negative coefficient balancing the two involved terms. Vari-
ous multimedia, computer vision and graphics applications,
such as image restoration [1], [2], image stylization [3], [4],
stereo matching [5], [6], [7], optical flow [8], [9] and semantic
flow [10], [11], require image filtering to help simultaneously
suppress/eliminate unwanted information and preserve the
desired one. For instance, texture removal is to extract
structures under the complication of regular or irregular
texture patterns (Fig. 1 (a)-(c)), while boundary detection
seeks clear object boundaries from clutters. Ideally, if the
indication (in this paper, the weight acts as the indication),
i.e. which to discard and which to maintain, is set wisely,
the filtering would naturally become much easier. However,
it is difficult to construct the precise indication without the
ground truth. Hence, in spite of different goals, how to make
effective rules of indication/weight construction from inputs is a
core question regarding filtering performance.
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In literature, linear translation-invariant (LTI) filters
equipped with explicitly designed rules (also known as ker-
nels, such as mean, Gaussian and Laplacian kernels [12]) are
arguably the simplest ones. The spatial invariance, despite
its simplicity, very often hurts the effectiveness of filtering in
practical scenarios, as it treats noise, textures and structures
identically. That is to say, LTIs are content blind. Different
from LTIs, the mode and median filters [13], [14], [15],
[16], [17] compute mode or median rather than average in
local patches, which results in heavy computational loads.
They are able to remove salt&pepper noise effectively, but
frequently produce unsatisfactory results when facing oscil-
lating signals (see Fig. 2 (c) for a 1D example) that contain
frequent changes in certain dimensions. The oscillations
with a period larger than the (pre-defined) window width
persist, also commonly known as the oscillating effect. It is
worth to note that, these methods degenerate the model (1)
by disabling the regularizer and adopting ‖T − f(T0)‖ as
the fidelity with f(·) and ‖·‖ representing a specific operator
(e.g. Gaussian convolution and local median operators) and
a certain norm (e.g. `1 and `2 norms), respectively.

To overcome the issue of content-blindness, it is natural
to ask for some guidance information. As a consequence, a
series of guided filters (GF) have been proposed. We call a GF
relying on the input itself a self-guided filter. The bilateral
filter (BF) [18], [19], as a classic GF, processes a pixel via
averaging its neighbors, weighted by the Gaussian of both
spatial and intensity/color distances. Though BF is success-
ful in removing small textures while preserving edges, it
may suffer from unexpected gradient reversal artifacts [20],
[21]. Another self-guided filter, named rolling guidance filter
(RGF) [22], builds upon the scale space theory, which shows
that small structures can be completely removed by a prop-
erly scaled Gaussian filter while large-scale ones survive
(though blurred). Different from BF, RGF iteratively recalls
strong edges/structures, and employs the intensity infor-
mation of the result obtained from the previous iteration as
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(a) Input (b) RGF (c) Ours

(d) No-flash/Flash (e) GIF (f) Ours

(g) Depth/RGB (h) Mu. Str. by JFMS (i) Our Mu. Str.

Fig. 1: Texture removal: RGF [22] (b) and our muGIF (c)
remove rich textures from (a). No-flash/flash image restoration:
Guided by the flash image, the restored no-flash results
of GIF [27] and muGIF are in (e) and (f), respectively.
Mutual structure extraction: From the noisy depth/RGB (g),
the mutual structures extracted by JFMS [28] and muGIF are
given in (h) and (i), respectively.

guidance, instead of the input itself. RGF is limited to scale-
space filtering and may cause inaccurate edge localization.
Although BF and RGF improve the Gaussian filter in terms
of kernel construction according to local image content, they
essentially follow the degenerated model of Eq. (1), i.e.,
‖T−f(T0)‖. Furthermore, the aforementioned methods are
in nature local operators, thus still suffering from the oscil-
lating effect. Other pioneering attempts in global manners,
with anisotropic diffusion (AD) [23] and weighted least squares
(WLS) [21] as representatives, utilize the gradients of the fil-
tering image for the sake of structure-texture separation. The
dominant assumption of these works is that gradients with
large magnitudes should be preserved as they are of high
probabilities to be on edges/boundaries and vice versa. A
method adopting the `0 regularizer to constrain “intrinsic”
boundaries [24], a.k.a. `0 gradient minimization (L0GM), has
been developed, aiming to leverage the scale issue of [25]
that makes use of the `1 regularizer. Xu et al. proposed a
strategy based on relative total variation (RTV) [26], which
enforces desired statistic properties to distinguish structure
from rich textures.

Besides the filtering input, one may also consider an-
other image to act as the guidance. The principle behind is

transferring the structure in the reference image to the target
one, so called reference-guided filtering. The joint bilateral
filter (JBF) [1], generalized from BF, computes the weights
from the guidance rather than the filtered image, which
particularly favors the cases where the guidance image can
provide more reliable edge information than the filtered
image. He et al. proposed an approach, called guided image
filter (GIF) [27], which is a locally linear transform of the
guidance image. GIF has shown its promising performance
in a number of applications, such as image smoothing,
image enhancement and HDR compression. The aforemen-
tioned approaches including JBF and GIF, as the principle
indicates, imply that the information of the guidance image
is useful, which can be frequently violated. Because they
ignore the structural inconsistency between the reference
and target signals captured under different conditions, like
color, infrared, depth and day/night images. Moreover, in
practice, guidance images might be in trouble as well. Sim-
ply adopting such guidelines is at high risk of generating
undesired results. Most recently, Ham et al. developed a
static/dynamic (SD) filter [29]. The static part follows pre-
vious joint filters, say modulating the input image with
a weight function depending on features of the guidance
image. The dynamic component takes better care of the
filtered signal, i.e. iteratively utilizing the target image as an
additional (dynamic) guidance to constrain the output so as
to mitigate the effect from structural differences. However,
this strategy does not fully utilize the static guidance image
and cannot jointly deal with the two inputs.

For boosting the performance of joint processing in
restoring shared structures, Shen et al. [28] explicitly defined
the concept of mutual-structure. In [28], three kinds of struc-
tures are presented, including 1) mutual structures: simply
explained as common edges existing in the corresponding
two patches, which are not necessarily with the same mag-
nitude and can be of different gradient directions; 2) incon-
sistent structures: different patterns between the two patches,
i.e. when one edge appears in only one image but not in
the other; and 3) smooth/flat regions: common low-variance
smooth patches in both images, which often host visual arti-
facts. The three definitions suggest that mutual structures
should be transferred to help filtering while inconsistent
ones should not be transferred to avoid misleading. Based
on the definitions, Shen et al. designed a normalized cross
correlation (NCC)-based model, joint filtering using mutual-
structure (JFMS) [28], which is in nature a locally linear
transform model (local method). Compared with the SD
filter, JFMS can be viewed as a dynamic/dynamic or mutually
guided filter, having the ability of jointly processing the two
inputs. However, due to the local filtering formulation of
JFMS, it sometimes introduces halo artifacts to the results.

Contribution. This paper proposes a novel measure on
structure similarity, and designs a general filtering model,
termed as mutually guided image filter (muGIF). We define
three kinds of structures similar to those in [28]. However,
they are not identical: JFMS’s definitions are on the patch
level while ours are on the pixel level, which changes a
local method to a global one. More concretely, the main
contributions of this paper can be summarized as the fol-
lowing points: 1) We define a new measurement, i.e. relative
structure, to manage the structure similarity between two
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(a) Input RGB and depth images, and their structure map

(b) Corresponding results to (a) by our muGIF
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(c) 1D intensity signal of (a)
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(f) 1D intensity signal of (b)
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(d) 1D gradient signal of (a)
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(g) 1D gradient signal of (b)
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(e) Mutual response of (d)
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(h) Mutual response of (g)

Fig. 2: 1D and 2D illustration. Only y-direction derivatives
are shown in (d-e) and (g-h). For structure maps, mutual
structures are colored in red while inconsistent and smooth
structures in green and black, respectively.

inputs. Based on the measurement, a global optimization
objective is designed to achieve high-quality filtering; 2) The
objective is in nature non-convex and hard to be directly op-
timized. By decomposing the objective, the target problem
can be effectively and efficiently resolved; 3) Our muGIF
is flexible in handling input signals captured by various
sensors and under different shooting conditions. Compared
with existing image filters, it can act as a dynamic/dynamic
(mutually guided), a static/dynamic (reference-guided), or
a dynamic only (self-guided) filter – please refer to Fig. 1
for examples; and 4) To demonstrate the efficacy of our
muGIF and show its superiority over other state-of-the-art
alternatives, experiments on a number of computer vision
and multimedia tasks are conducted.

A preliminary version of this manuscript appeared in
[30]. Compared with [30], this journal version presents the

model design and the solver in more theoretical detail and
gives deeper analysis on muGIF’s properties and potentials.
Extensive experimental comparisons are conducted to verify
the advantages of our muGIF on more applications. To allow
more comparisons from the community and encourage fu-
ture work, we release our code at https://sites.google.com/
view/xjguo/mugif.

2 MUTUALLY GUIDED IMAGE FILTER

Our system takes as input signals captured from the same
camera position by different sensors (e.g. RGB, infrared
and depth), and/or under different shooting conditions.
The inputs could have different number of channels. Pixel
values in each channel are scaled to a fixed range∗, and
color channels are processed separately. Here we give the
notations used in this paper. The target and reference images
are denoted by T0 and R0, respectively. The filtering (inter-
mediate) outputs are designated as T and R, respectively.
Further, we denote the pixel coordinates by i = (x, y)T , e.g.
Ti represents the pixel at (x, y)T . In addition, t, t0, r and r0
are vectorized versions of T, T0, R and R0, respectively.

2.1 Problem Formulation and Illustration
This work aims to develop an image filter that can preserve
mutual structures, prevent misleading from inconsistent
structures, and smooth flat regions between two input
images. Prior to detailing our objective, we first describe
the definitions of mutual structure, inconsistent structure,
and flat structure: 1) mutual structure – at a certain lo-
cation, when the magnitudes of ∇Ri and ∇Ti are both
strong enough; 2) inconsistent structure – when one of the
magnitudes of ∇Ri and ∇Ti is strong (larger than a pre-
defined threshold) and the other is weak; and 3) smooth/flat
structure – when the magnitudes of ∇Ri and ∇Ti are both
weak. ∇ is the first order derivative filter containing ∇h
(horizontal) and ∇v (vertical). It is worth to clarify that, in
the sense of common structure, both smooth and mutual
structures are consistent. In order to explain our idea better,
we also provide the definitions of mutual response and
structure map. The mutual response represents the joint
strength of derivatives of two signals in a certain dimension
(e.g., the horizontal mutual response of R and T at location i
is |∇hRi ·∇hTi|), while the structure map indicates whether
each region using the state is a mutual structure, inconsis-
tent structure or a smooth region. Below, we introduce a key
concept to our modeling, i.e. relative structure, as follows.

Definition 1 (Relative Structure). Given two input images T
and R with the same size, the relative structure of T with respect
to R is defined as:

R(T,R)
.
=
∑
i

∑
d∈{h,v}

|∇dTi|
|∇dRi|

, (2)

where | · | is the absolute value operator.

The relative structure R(T,R) measures structure discrep-
ancy of T with respect to R. The sign reverse between∇dRi

∗. Information from different domains may have different value
ranges. To avoid the scale issue, one can normalize the information
of a certain domain from its raw range to a pre-defined one, e.g. [0,1].
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and ∇dTi, which often exists when the inputs are captured
from different sensors or under varying conditions, is ig-
nored. For a location on an edge in R, the penalty on |∇dTi|,
say 1

|∇dRi| , is small; while for a location in a flat region in
R, the penalty turns to be large.

Based on the defined relative structure, we give the
following formulation:

arg min
T,R

αtR(T,R) + βt‖T−T0‖22+

αrR(R,T) + βr‖R−R0‖22,
(3)

where αt, αr , βt and βr are non-negative constants bal-
ancing the corresponding terms, and ‖ · ‖2 stands for the
`2 norm. We note that the fidelity terms ‖T − T0‖22 and
‖R − R0‖22 are introduced to avoid the trivial solution
through constraining T and R not to wildly deviate from
the inputs T0 and R0, respectively. We adopt the `2 loss on
intensity due to its fast computation. We emphasize that the
mutuality of guidance stems from R(T,R) and R(R,T).

Illustration. From Fig. 2 (a) and (c), we can hardly recog-
nize obvious relations between the RGB and depth images
in the intensity field, as the two images reflect different
properties of the target scene. Specifically, the RGB image
provides the appearance details, while the depth reveals
the distances between the objects to the sensor. In addition,
they have different intensity ranges. In Fig. 2 (b) and (f),
despite the processed results showing less textures in (b)
and less ups-and-downs in (f), the mentioned issues remain.
Alternatively, transforming from the intensity field to the
gradient field exhibits the correlation between the RGB and
depth signals as shown in Fig. 2 (d-e) and (g-h). Although
the curves in Fig. 2 (d) are frequently oscillating around 0,
especially for the RGB image due to the rich textures and
noise, the plot in Fig. 2 (e) demonstrates that the mutual
responses tend to be sparse with the mutual structures (Case
1) giving powerful pulses. Please see the last picture in
Fig. 2 (a) for the entire 2D structure map. Recall that the
weighting strategy is important to indicate which structures
to maintain and which ones to discard. The goal of mutually
guided filtering is to jointly preserve mutual structures and
suppress other structures between two inputs. Hence, it
is natural to consider depressing the smoothing penalties
on mutual structures and elevating those on the others for
achieving the goal. By iteratively enhancing the sparsity of
mutual response, our proposed muGIF produces the desired
results as shown in Fig. 2 (b) and (f-h), i.e. textures and noise
removed and common structures preserved. The sparsity of
the structure map in Fig. 2 (b) and Fig. 2 (h) is significantly
improved over that of the input images. In other words, the
dominant mutual structures (in red) survive while the noisy
ones are eliminated. Most of the inconsistent structures (the
green regions) in (a) become flat (the black regions), and no
reversed changes happen.

2.2 Numerical Solution
The muGIF model (3) is complex, and its solution is difficult
to be obtained by directly optimization. We first introduce a
surrogate function for the relative structure, then decom-
pose the objective into several quadratic and non-linear
terms, and customize an effective and efficient solver to
solve the problem in an alternating manner.

Surrogate Function. First, to prevent against extreme sit-
uations such as division by zero, we introduce a small
positive constant εr into the denominator of Eq. (2) as:

R(T,R, εr)
.
=
∑
i

∑
d∈{h,v}

|∇dTi|
max(|∇dRi|, εr)

. (4)

Next, the relationship below holds true:

|∇dTi|
max(|∇dRi|, εr)

=
|∇dTi| ·max(|∇dTi|, εt)

max(|∇dRi|, εr) ·max(|∇dTi|, εt)
,

(5)
where the denominator can be viewed as the pixel-wise
mutual response in the gradient field. The introduction of
εt, same as εr , is to avoid dividing by zero. Thus, we can
distinguish different cases by treating the denominator as a
weight. Please see the structure maps in Fig. 2 (a) and (b)
for example. Furthermore, we have

R̃(T,R, εt, εr)
.
=∑

i

∑
d∈{h,v}

(∇dTi)
2

max(|∇dRi|, εr) ·max(|∇dTi|, εt)
≤

∑
i

∑
d∈{h,v}

(∇dTi)
2 + |∇dTi| ·max(εt − |∇dTi|, 0)

max(|∇dRi|, εr) ·max(|∇dTi|, εt)

= R(T,R, εr).

(6)

For a certain pixel, the equality breaks only when |∇Ti| <
εt, and the gap is upper-bounded by

|∇dTi| · (εt − |∇dTi|)
max(|∇dRi|, εr) · εt

≤ εt
4 max(|∇dRi|, εr)

. (7)

As can be seen, the biggest gap εt/(4εr) (for all the ex-
periments, we empirically set εt = εr = 0.01) is reached
when the two corresponding regions are both flat. Even
the biggest gap is trivial. An immediate consequence is the
suitability of employing R̃(T,R, εt, εr) as a tight surrogate
of R(T,R, εr). Analogous analysis and replacement serve
R(R,T, εt) and R̃(R,T, εr, εt). Please see Fig. 3 for the
visualized shapes of the functions. We will see the benefit
of the replacement to the fast numerical solution later. The
final objective to solve is:

arg min
T,R

αtR̃(T,R, εt, εr) + βt‖t− t0‖22+

αrR̃(R,T, εr, εt) + βr‖r− r0‖22.
(8)

Solver. Let Qd and Pd (d ∈ {h, v}) denote the diagonal
matrices with the ith diagonal entries being 1

max(|∇dTi|,εt)
and 1

max(|∇dRi|,εr) , respectively. Consequently, the objective
(8) can be decomposed as follows:

arg min
t,r

αtt
T

( ∑
d∈{h,v}

DT
dQdPdDd

)
t + βt‖t− t0‖22+

αrr
T

( ∑
d∈{h,v}

DT
dQdPdDd

)
r + βr‖r− r0‖22,

(9)
where Dd is the Toeplitz matrix from the discrete gradient
operator in the d direction with forward difference.

Thanks to the decomposition, the objective in the shape
of (9) makes an alternating least squares (ALS) solver possible.
To solve (9), we propose the following procedure:
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Fig. 3: Gap between relative structure and relative structure surrogate (6). The leftmost picture draws the shape of relative
structure (RS): |u|

max(|v|,0.01) + 1
2

|v|
max(|u|,0.01) . The middle left shows the shape of relative structure surrogate (RS Sur.):

|u|2
max(|u|,0.01)·max(|v|,0.01) + 1

2
|v|2

max(|u|,0.01)·max(|v|,0.01) . The rest two depict the gap and the zoomed-in gap between RS and
RS Sur., respectively. Please notice the scale of z-axis, the largest value is 0.25 + 0.5× 0.25 = 0.375.

Update T(k+1): Given R(k), Q(k)
d and P

(k)
d estimated from

the previous iteration, by dropping the terms unrelated to
T, the T subproblem boils down to the following:

arg min
t

αt
βt

tT
( ∑
d∈{h,v}

DT
dQ

(k)
d P

(k)
d Dd

)
t + ‖t− t0‖22.

(10)
As can be observed, problem (10) only involves quadratic
terms. Thus, its solution in closed form can be easily ob-
tained by solving the equation system:

(
I +

αt
βt

( ∑
d∈{h,v}

DT
dQ

(k)
d P

(k)
d Dd

))
t = t0, (11)

where I is the identity matrix with proper size. Di-
rectly calculating the inverse of the target matrix I +

αt

βt

(∑
d∈{h,v}D

T
dQ

(k)
d P

(k)
d Dd

)
is a straightforward way to

accomplish this job. However, the matrix inverse is compu-
tationally expensive, especially for large matrices like the
involved one. Fortunately, since the target is a symmetric
positive definite Laplacian matrix, there are many efficient
techniques available for solving it, for example, [21], [31],
[32], [33], [34].
Update Q

(k+1)
d : Having T(k+1) refreshed, the update of

Q
(k+1)
d can be simply done by following its definition.

Update R(k+1): With T(k+1), Q(k+1)
d and P

(k)
d fixed, picking

out the terms relevant to R yields:

arg min
r

αr
βr

rT
( ∑
d∈{h,v}

DT
dQ

(k+1)
d P

(k)
d Dd

)
r + ‖r− r0‖22.

(12)
Its solution can be obtained in a similar way with (10).

Update P
(k+1)
d : It is easy to construct P

(k+1)
d based on

R(k+1) according to its definition.
Iteratively processing the above steps is found efficient
to converge with promising performance. For clarity and
completeness, we sketch the whole scheme of muGIF in
Algorithm 1. We notice that the initialization of Q

(0)
d and

P
(0)
d is finished based on T(0) and R(0) at the beginning of

the procedure. Please refer to Algorithm 1 for details.

Algorithm 1: muGIF

Input: T0, R0, K, αr , αt, βr , βt, εr , εt, T(0) ← T0,
R(0) ← R0.

Initialization: Q(0)
d and P

(0)
d based on T0 and R0

for k from 0 to K − 1 do
Update T(k+1) via solving Eq. (10);

Update Q
(k+1)
d based on T(k+1);

Update R(k+1) via solving Eq. (12);

Update P
(k+1)
d based on R(k+1);

end

Output: (T(K), R(K)).

Fig. 4: Sketch of MM. At the k-th iteration, the surrogate
function u(x, x(k)) is constructed based on the current x(k),
the curve of which is above that of the objective func-
tion f(x). At the point x(k), f(x) = u(x, x(k)). Through
minimizing u(x, x(k)), the next estimate x(k+1) is obtained.
The values of objective function f(x) at {x(k)} are non-
increasing. The procedure is terminated until convergence.

3 PROPERTY ANALYSIS

3.1 Optimization with Majorization-Minimization

Technically, the muGIF algorithm follows the framework of
iteratively re-weighted least squares (IRLS) [35], which can be
viewed as an advanced version of WLS [21] by dynamically
adjusting weights, and as a specific case of majorization-
minimization (MM) [36], [37].

For completeness, we briefly review the optimization
with MM. The MM technique is preferred to handle an ob-
jective function f(x) that is difficult to manipulate directly.
The fundamental idea of MM is to successively minimize
an easy-to-tackle majorizing surrogate u(x, x(k)) associated
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with the current estimate x(k). Besides, the constructed
surrogate function should satisfy the following properties:

∀x f(x) ≤ u(x, x(k)) and x(k) = argminxu(x, x(k))−f(x).
(13)

Very often, the second property is satisfied by choosing
u(x(k), x(k)) = f(x(k)). Then, by minimizing u(x, x(k)), the
next estimate x(k+1) is obtained. The values of objective
function f(x) at {x(k)} are non-increasing. The two steps
are repeated until convergence. Figure 4 pictorially shows
the idea of MM. Specifically, we provide two surrogate
construction rules. Rule #1: if f(x)

.
= |x| then it has a

quadratic majorizer u(x, x(k))
.
= 1

2

(
|x(k)| + x2

|x(k)|

)
, sat-

isfying the properties in Eq. (13); and Rule #2: if f(x)
is concave and differentiable then f(x) ≤ u(x, x(k))

.
=

f(x(k)) + f ′(x(k))(x− x(k)).

3.2 Flexibility
The model of muGIF is flexible to handle various
cases, including dynamic/dynamic (mutually guided),
static/dynamic (reference-guided) and dynamic only (self-
guided) cases.
Dynamic/Dynamic (mutually guided) When one intends
to seek the mutual structure between two inputs (see Fig.
1 (g)-(i)), e.g. depth/RGB and day/night, muGIF can han-
dle these scenarios using the general model of (9), which
approximately solves the problem:

min
T,R

αt
∑
i

∑
d∈{h,v}

|∇dTi|
max(|∇dRi|, εr)

+ βt‖t− t0‖22+

αr
∑
i

∑
d∈{h,v}

|∇dRi|
max(|∇dTi|, εt)

+ βr‖r− r0‖22.
(14)

Static/Dynamic (reference-guided) When the reference is
reliable, we can fix it during the process. Subsequently, the
model (9) degenerates to the following:

arg min
t

αtt
T

( ∑
d∈{h,v}

DT
dQdP̄dDd

)
t + βt‖t− t0‖22,

(15)
where P̄d is the fixed weighting matrix according to the
reference R0. The applications such as no-flash/flash and
RGB/depth image restoration (see Fig. 1 (d)-(f) for example)
fit this situation. Actually, muGIF in static/dynamic mode
attempts to resolve the following problem:

min
T

2αt
∑
i

∑
d∈{h,v}

|∇dTi|
max(|∇dR0i|, εr)

+ βt‖t− t0‖22,

(16)
which can be viewed as a weighted anisotropic total variation
minimization problem [38], [39], [40]. In this case, muGIF
gradually decreases the energy of (16), please see Propo-
sition 1.

Proposition 1. Optimizing the static/dynamic image filtering
problem (15) by muGIF is convergent, which gradually decreases
the energy of the objective (16).

Proof. The proof can be done from an MM [36] perspective.
Let us consider the objective function E(T|T0,R0) defined
as Eq. (16). We first put attention on the first term. In

this case, the following relationship can be obtained by
employing Rule #1, i.e.:

|∇dTi|
max(|∇dR0i|, εr)

≤ |∇dT(k)
i |

2 max(|∇dR0i|, εr)
+

(∇dTi)
2

2 max(|∇dR0i|, εr) ·max(|∇dT(k)
i |, εt→0+)

,

(17)

in which, the equality occurs at |∇dTi| = |∇dT(k)
i |. In

addition, the notation εt→0+ means that εt is a positive
constant and sufficiently close to 0.

With the above (17), it is immediate to give a surrogate
function of (16) as Qk(T|T0,R0)

.
=

αt
∑
i

∑
d∈{h,v}

(∇dTi)
2

max(|∇dR0i|, εr) ·max(|∇dT(k)
i |, εt→0+)

+ αt
∑
i

∑
d∈{h,v}

|∇dT(k)
i |

max(|∇dR0i|, εr)
+ βt‖t− t0‖22.

(18)
The function Qk(T|T0,R0) majorizes E(T|T0,R0) at the
point T(k). Then, minimizing Qk(T|T0,R0) equals to min-
imizing (15) by discarding the constant terms. Optimizing
(16) using MM ensures the non-incremental property of the
objective function. In addition, based on the nature of the
(16), the energy has a lower-bounded value. This is to say,
the muGIF in static/dynamic is convergent.

Dynamic Only (self-guided) When no other references are
available, the target itself is employed as the guidance.
The tasks like texture removal and scale-space filtering (see
Fig. 1 (a)-(c)) belong to the dynamic only category. In this
situation, the muGIF turns out to be:

arg min
t

αtt
T

( ∑
d∈{h,v}

DT
dQdQdDd

)
t + βt‖t− t0‖22.

(19)
Optimizing (19) via Alg. 1 implicitly minimizes the follow-
ing non-convex problem:

min
T

2αt
∑
i

∑
d∈{h,v}

log(|∇dTi|) + βt‖t− t0‖22. (20)

Please see Proposition 2 for explanation. The log term
log(|∇dTi|) can better approximate the sparsity (`0) [41],
[42] than |∇dTi| (`1, total variation regularized minimization)
[25], [43].

Proposition 2. Optimizing the dynamic only image filtering
problem (19) by muGIF is convergent, which gradually decreases
the energy of the objective (20).

Proof. In this case, the objective function E(T|T0,R0) is
defined as Eq. (20). The log term satisfies the following:

log (|∇dTi|) ≤ log (|∇dT(k)
i |) +

|∇dTi| − |∇dT(k)
i |

max(|∇dT(k)
i |, εt→0+)

≤ log (|∇dT(k)
i |) +

(∇dTi)
2

2(max(|∇dT(k)
i |, εt→0+))2

− |∇dT(k)
i |

2 max(|∇dT(k)
i |, εt→0+)

.

(21)
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0.3 0.5 2.0 5.0Original  0.01  0.05 0.005

0.01 0.03 0.050.04Original  0.001  0.003 0.005

Fig. 5: Effect of αt on dynamic only cases. The 1st case corresponds to texture removal while the 2nd scale-space filtering.
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Fig. 6: Convergence behavior. Top row: A dynamic only
example (texture removal, αt = 0.05). Bottom row: A
dynamic/dynamic example (mutual structure extraction,
αt = 0.02 for RGB and αr = 0.01 for depth).

The relation in the first row is satisfied due to Rule #2, while
the second relation is satisfied by Rule #1. Both the equalities
hold when |∇dTi| = |∇dT(k)

i |. Similarly, the majorizer of
E(T|T0,R0) at the point T(k) is given by Qk(T|T0,R0)

.
=

∑
i

∑
d∈{h,v}

(
2 log (|∇dT(k)

i |)−
|∇dT(k)

i |
max(|∇dT(k)

i |, εt→0+)

)

+
∑
i

∑
d∈{h,v}

αt(∇dTi)
2

(max(|∇dT(k)
i |, εt→0+))2

+ βt‖t− t0‖22.

(22)
It is easy to recognize that optimizing (22) is actually min-
imizing (19). The convergence property of MM for non-
convex problems [37], like (20), establishes the claim.

3.3 Convergence Speed & Complexity

We first discuss the convergence speed of our algorithm.
It would be intuitive to see how quickly the algorithm
converges with the number of iterations (K). Two cases
including a dynamic only one and a dynamic/dynamic
one are provided in Fig. 6. From the first row of Fig. 6,
we can observe that, the curve of difference (defined as
‖U(k+1) − U(k)‖2/‖U(0)‖2) versus iteration rapidly drops

TABLE 1: Runtime (in sec) of muGIF (dynamic/dynamic)
on inputs with different resolutions.

Resolution 256× 256× 3 512× 512× 3 1024× 1024× 3 2048× 2048× 3

PCG (10 iter.) 2.5 11.2 46.7 191.6
SA (3 iter.) 0.13 0.59 2.6 17.0

JFMS [28] (10|20 iter.) 0.42|0.85 3.69|7.4 16.87|35.22 68.15|138.68

and converges within 10 iterations. Further, the result at
the 7th iteration is very close to that at the 20th iteration.
The second case corresponds to a dynamic/dynamic case. It
behaves similarly to the first test. The difference between the
6th and 20th iterations is unnoticeable quantitatively and
qualitatively in both depth and RGB images. Please note
that, for a better view of different settings, the difference
plots are normalized into the range [0, 1]. For all the experi-
ments shown in the paper, we set K = 10 according to the
results reported in Fig. 6.

For the complexity, as summarized in Alg. 1, our muGIF
mainly iterates four steps. Among the four steps, the com-
putational cost for obtaining Qd and Pd is negligible as the
weight values can be updated immediately with their defini-
tions. The main computational burden is with computing T
and R which requires solving the two linear systems Eq. (10)
and Eq. (12) - both in the form of weighted-least-square (WLS)
[21]. There are a number of iterative solvers that can apply
for solving this, like standard preconditioned conjugate gra-
dient (PCG). Accelerated solvers especially for this problem
are also available using strategies like separable approximation
(SA) [44]. Overall, the performance of these solvers is linear
in the number of pixels. We here test the muGIF runtime
on inputs with different resolutions on a PC with Intel i7
8700K@3.7GHz CPU and 32GB RAM. Table 1 summarizes
the performance in the dynamic/dynamic mode using two
different solvers (with no parallel computing): (1) Matlab
build-in PCG solver, and (2) modified version of the fast
solver† (Matlab + C++). It is worth to notice that in each
iteration, the dynamic only and static/dynamic modes (one
image to update) require half time of the dynamic/dynamic
mode (two images to update). It can be observed the run-
time is roughly linear in the number of pixels and with SA
solver the computation is much faster. Note that SA using 3

†. https://sites.google.com/site/globalsmoothing/
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(a) εr = 0.05 (b) εt = 0.05 (c) εr = 0.02 (d) εt = 0.02

(e) εr = 0.01 (f) εt = 0.01 (g) εr = 0.005 (h) εt = 0.005

(i) εr = 0.002 (j) εt = 0.002 (k) εr = 0.001 (l) εr = 0.001

Fig. 7: Impact of εr and εt. The results are generated by
fixing αt = αr = 0.06 and varying εr and εt.

iterations can obtain similar visual quality with PCG using
10 iterations, hence we report SA using 3 iterations. From
the view of processing mechanism, hierarchical and cas-
caded strategies like [45] can be applied to our problem for
acceleration. We can achieve even more significant speed-up
with GPU implementation of the solver to make real-time
applications possible.

The previous state-of-the-art filtering works, such as
WLS [21], L0GM [24], SD [29] and RTV [26], also need to
solve linear systems like Eq. (10), thus the complexity of
these works is the same as our muGIF on the self-guided
and reference-guided filtering. As for mutually guided fil-
tering (mutual structure extraction), JFMS [28] is in nature
a locally linear transform model (local method), demanding
less computation cost. We also provide the running time
of JFMS in Tab. 1. It can be seen that JFMS is faster than
muGIF, especially when the inputs are of low resolution. As
the input size increases, the gap shrinks. Please note that we
give two sets of running time for JFMS, because 10 iterations
are not sufficient to generate the desired results, while the
authors of JFMS suggested that 20 iterations should be used.
In visual quality, muGIF shows its significant superiority
over JFMS, please see Sec. 4.3 Mutual Structure Extraction.

3.4 Parameter Effect & Initialization Insensitivity

In our muGIF (9), there are 6 parameters, including εr , εt,
αr , βr, αt and βt. First, we fix the thresholds for gradient
stability to εr = 0.01 and εt = 0.01 and focus on the rest
4 parameters. In fact, as can be seen in (10) and (12) (the
update of Qd and Pd does NOT involve these 4 parameters),
the performance of muGIF is determined by αt/βt and
αr/βr , which means that the number of free-parameters
reduces from 4 to 2. By simply setting βt = 1 and βr = 1,
only αt and αr remain.

From the form of (9), it is easy to tell that a larger αt
(or similarly αr) leads to a smoother result T (or R) than a
smaller one. For more details about the theoretical explana-
tion about the smoothing scale versus the parameter, please
refer to [21]. We provide two examples including a texture
removal and a scale-space filtering to experimentally show
the parameter effect of αt in Fig. 5. From the pictures, we
can observe that as αt grows, the smoothing effect increases,

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8: Insensitive to initialization. (a) and (b) are randomly
initialized horizontal and vertical weights. (c) and (d) are the
results using (a) and (b) as initialization. (e) and (f) depict
the weights computed from the input images. (g) and (h) are
the corresponding results using (e) and (f) as initialization.

which corroborates the intuition and analysis. Thanks to our
guidance strategy, the edges/structures at large scale are
very well retained while textures/details at small scale are
clearly removed. We also give the gradient map on bottom-
right corresponding to each sub-picture for understanding
the parameter effect of αt from another perspective.

Here we show the impact of different values of εr and
εt. Without loss of generality, a dynamic/dynamic (mutually
guided) case is presented in Fig. 7. In this experiment, we
fix αr = αt = 0.06 and vary εr and εt. As shown in Fig.
7 (a-b), we observe that the results are under-smoothed in
most regions. This is because larger εr and εt make the gap
between the surrogate function and the relative structure
larger, and make the corresponding weight 1

max(|∇dRi|,εr)
( 1
max(|∇dTi|,εt) ) over small when |∇dRi| < εr (|∇dTi| < εt).

As εr and εt decrease, this issue is mitigated, as shown in
Fig. 7 (c-h). However, when εr and εt go to 0, the results
suffer from over-smoothing as given in Fig. 7 (i-l). The
reason comes from the instability and unbalance brought
by too small εr and εt. In addition, when setting εr and εt
to 0, the proposed algorithm exits abnormally due to zero
denominator. Both the static/dynamic (reference-guided)
and the dynamic only (self-guided) modes are in similar
situations. All the results given in Sec. 4 are produced by
setting εr = εt = 0.01.

From the perspective of non-convex optimization, the
initialization would affect the final results. However, for
images from different domains with the normalized range,
our muGIF algorithm shows its insensitivity even with
respect to random initialization. To verify this, Figure 8
gives a comparison on a depth and RGB image pair in
dynamic/dynamic mode. The upper row in Fig. 8 contains
the randomly initialized horizontal and vertical weights (i.e.
Q

(0)
h P

(0)
h and Q

(0)
v P

(0)
v , please refer to Alg. 1 for details)

and the corresponding smoothing results, while the lower
row includes the horizontal and vertical weights initialized
according to the input images (i.e. computing Q

(0)
d and P

(0)
d

based on T0 and R0) and the corresponding results. We can
observe that, although the initializations are very different,
the two manners do not show any noticeable difference,
which confirms the insensitivity to initialization.
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(a) Input (b) L0GM (Diff: 0.1111) (c) SD (Diff: 0.1116)

(d) RTV (Diff: 0.1112) (e) RGF (Diff: 0.1077) (f) Ours (Diff: 0.1115)

(a) Input (b) L0GM (0.3295) (c) SD (0.3289) (d) RTV (0.3238) (e) RGF (0.3236) (f) Ours (0.3235)

(a) Input (b) L0GM (0.2175) (c) SD (0.2155) (d) RTV (0.2170) (e) RGF (0.2167) (f) Ours (0.2169)

Fig. 9: Comparisons on texture removal. Results are by L0GM [24] (λ = 0.021/0.35/0.18, top/middle/bottom), SD [29]
(λ = 110/4.5e3/2e4), RTV [26] (λ = 0.009/0.025/0.07, σ = 2.0), RGF [22] (σs = 3.5/3.5/9, σr = 0.05) and ours (αt =
0.0075/0.05/0.12), respectively.

4 APPLICATIONS AND COMPARISONS

4.1 Texture Removal & Scale-space Filtering

We compare our muGIF in the dynamic only mode with the
recently proposed state-of-the-art competitors‡, including
L0GM [24], RTV [26], RGF [22] and SD [29], on texture
removal. For comparison fairness, we need to set a common
smoothing level. To this end, we tune the parameter(s)
for each method to reach a similar difference defined as
‖T−T0‖2/‖T0‖2, which is denoted as Diff in figures.

Figure 9 depicts the visual results obtained by the com-
peting techniques. From the first case, we observe that
RGF has the problem of edge localization. L0GM, RTV,
SD and muGIF outperform RGF in localizing edges. But,
these methods are inferior to our muGIF in edge preser-
vation – please refer to the zoomed-in patches. Two more
comparisons are provided in Fig. 9. Specifically, the win-
dowed weighting strategy of RTV is suitable for repetitive
textures, while at high risk of wrongly filtering out strong
but relatively dense edges [26], for instance the ‘Z’ shape
intrinsic boundary on the neck of the bird in the first case,

‡. All the codes are downloaded from the authors’ websites.

and the collar of the dog in the second case. As for L0GM,
its problem comes from the “hard” `0 regularizer, which is
expected to address the scale issue of the `1 regularizer and
thus enhance the edge sparsity. However, its solver very
likely sticks into bad minima because of the discreteness
[24] – please refer to the second and third cases. Different
from the others that update the guidance at each iteration,
SD statically utilizes the input. The self-guided filtering
is to smooth out undesired textures from itself, however
the static component containing undesired information will
consistently perform as a part of weight, which would
hinder the desired smoothing effect in some regions, and
thus lead to defects as shown in the second and third cases.

In addition, we provide a comparison on scale-space
filtering in Fig. 10 at three scales altered by controlling the
difference. RGF, due to its isotropic Gaussian kernel, poorly
retains the boundaries especially at coarse scales. L0GM,
though keeping some dominant boundaries, seems not so
effective to determine the importance of edges. SD filter
improves the result compared to L0GM, but the symptom is
not eliminated throughly. RTV performs considerably well,
which is, among others, closest to our muGIF. It is worth
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(a) Input (b) L0GM (Diff: 0.0997/0.1952/0.2267) (c) SD (Diff: 0.0982/0.1989/0.2290)

(d) RTV (Diff: 0.0992/0.1964/0.2248) (e) RGF (Diff: 0.0994/0.1953/0.2217) (f) Ours (Diff: 0.0995/0.1982/0.2294)

Fig. 10: Comparison on scale-space filtering. Results are obtained by L0GM [24] (λ = 0.033/0.14/0.2), SD [29] (λ =
1.4e2/1.5e4/4.3e4), RTV [26] (λ = 0.0092/0.12/0.5, σ = 2.0), RGF [22] (σs = 3.9/23/700, σr = 0.05) and ours (αt =
0.01/0.3/2.0), respectively.

Ground Truth TGV

Reference Low Resolution Input JGF WLS MRF

muGIFSDGIF

Fig. 11: Visual comparison on the 8x Dolls case. The inputs are the reference RGB and low-resolution noisy depth. Results
are by JGF [46], WLS [21], MRF [47], TGV [48], GIF [27], SD [29] and ours, respectively.

mentioning that the windowed weighting strategy of RTV
turns to be pixel-wise (same with our muGIF in dynamic
only) when facing images/regions without repetitive pat-
terns [26], like the case given in Fig. 10.

4.2 Depth Upsampling & No-flash/Flash Restoration
This part first assesses the performance of the proposed
muGIF on a static/dynamic filtering task, say ToF depth
upsampling. The datasets employed are from [49], contain-
ing six groups from Middlebury benchmarks§. The data
are formed by introducing noise into depth images and
downsampling them at four scales {2, 4, 8, 16} to simulate
ToF-like depth degradation. The upsampling and denoising
can be jointly addressed by adopting a registered high-
resolution RGB as a reference. Table 2 reports the mean

§. http://vision.middlebury.edu/stereo/

absolute difference (MAD) between ground truth depth maps
and the results by different methods including Bicubic, JGF
[46], WLS [21], MRF [47], TGV [48], GIF [27], SD [29] and our
muGIF. The proposed method consistently outperforms the
other methods, like Bicubic, JGF, WLS, MRF, GIF and SD, for
all the cases. Our muGIF, although falling behind TGV on
the 2x cases with a slight 0.15 gap on average, achieves the
second best performance. From the averages, we can clearly
see that, on 4x, 8x and 16x cases, muGIF shows its supe-
riority over the others. Moreover, the advance of muGIF
gets more and more conspicuous as the upsampling rate
increases, with muGIF vs the second best: 4x [0.97 vs 1.16], 8x
[1.49 vs 1.89], 16x [2.56 vs 3.60], respectively. Figure 11 pro-
vides the visual results by the competitors on the 8x Dolls
case. The inferior performance of SD is from its regular-
izer defined as

∑
d

∑
i exp(−µ∇dR2

i )(1−exp(−ν∇dT2
i ))/ν
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(a) Day input (b) Night input (c) JFMS’s Day (Diff: 0.1583) (d) JFMS’s Night (Diff: 0.2576)

(e) Our Day (Diff: 0.1491) (f) Our Night (Diff: 0.2665) (g) Our Day (Diff: 0.1676) (h) Our Night (Diff: 0.3006)

Fig. 13: Visual comparison on mutual structure extraction. (a) and (b) are the day and night images, respectively. (c) and
(d) are the results by JFMS [28] (εI = εG = 2e− 4 and λI = λG = 1). (e) and (f) are the results by muGIF (αt = αr = 0.03).
(g) and (h) are the results by muGIF (αt = αr = 0.06).

(a) Day to night by muGIF (b) Night to day by muGIF (c) Day to night by JFMS (d) Night to day by JFMS

Fig. 14: Day-night transfer. (a) and (b) are produced by our muGIF. (c) and (d) are by JFMS [28].

Method Art Book Moebius Reindeer Laundry Dolls Average
2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x

Bicubic 3.52 3.84 4.47 5.72 3.30 3.37 3.51 3.82 3.28 3.36 3.50 3.80 3.39 3.52 3.82 4.45 3.35 3.49 3.77 4.35 3.28 3.34 3.47 3.72 3.35 3.49 3.76 4.31
MRF[47] 1.69 2.40 3.60 5.75 1.12 1.44 1.81 2.59 1.13 1.45 1.95 2.91 1.20 1.60 2.40 3.97 1.28 1.63 2.20 3.34 1.14 1.54 2.07 3.02 1.26 1.68 2.34 3.60
TGV[48] 0.82 1.26 2.76 6.87 0.50 0.74 1.49 2.74 0.56 0.89 1.72 3.99 0.59 0.84 1.75 4.40 0.61 1.59 1.89 4.16 0.66 1.63 1.75 3.71 0.62 1.16 1.89 4.31
WLS[21] 1.34 1.90 2.95 4.63 1.25 1.70 2.39 3.29 1.34 1.92 2.66 3.56 1.47 2.05 2.82 4.09 1.11 1.55 2.24 3.49 1.34 1.85 2.55 3.50 1.31 1.83 2.60 3.76
JGF [46] 2.36 2.74 3.64 5.46 2.12 2.25 2.49 3.25 2.09 2.24 2.56 3.28 2.18 2.40 2.89 3.94 2.16 2.37 2.85 3.90 2.09 2.22 2.49 3.25 2.17 2.37 2.82 3.85
GIF [27] 1.49 1.97 3.00 4.91 0.80 1.22 1.95 3.04 1.18 1.90 2.77 3.55 1.29 1.99 2.99 4.14 1.28 2.05 3.04 4.10 1.19 1.94 2.80 3.50 1.21 1.85 2.76 3.87
SD [29] 1.05 1.66 3.16 5.78 0.77 0.98 1.53 2.74 0.81 1.08 1.66 2.85 0.89 1.21 1.89 3.82 0.86 1.20 1.94 3.82 0.85 1.14 1.74 3.05 0.87 1.21 1.99 3.67
muGIF 1.00 1.26 2.00 3.46 0.73 0.89 1.35 2.15 0.67 0.85 1.35 2.25 0.78 0.94 1.39 2.52 0.64 0.87 1.36 2.57 0.85 1.04 1.50 2.45 0.77 0.97 1.49 2.56

TABLE 2: Quantitative comparison of the depth upsampling task in terms of MAD on the data from Middlebury
benchmarks [49]. The best results are highlighted in bold, while the second best ones are underlined and in italic.

with µ and ν being two coefficients. Since the reference is
fixed, by eliminating the effect of constant terms and the
constant coefficient ν, we obtain

∑
d

∑
i

−1
exp(µ∇dR2

i+ν∇dT2
i )

,
which shows an additive relation between∇dR2

i and∇dT2
i .

Considering the characteristic of −1
exp(µ∇dR2

i+ν∇dT2
i )

, for re-
gions with relatively small ∇dR2

i , SD may over-smooth
those regions in the target image because a slight ∇dT2

i

will cause a great cost (please see the boundaries of the
toy horses in Fig. 11). While for regions with very large
∇dR2

i , SD may under-smooth those regions in the target
image or even generate new edges since an intense ∇dT2

i

will only result in a small penalty (please see the top-left
region corresponding to the green hat region in the reference
with strong textures in Fig. 11).

In addition, our method is also applicable to flash/no-
flash image restoration. We use the flash image to guide
image restoration on the corresponding no-flash noisy im-
age. A comparison between JBF [1], GIF [27], SD [29] and
muGIF is presented in Fig. 12. JBF and GIF can suppress

noise, but also blur both structures and textures. SD is much
better at preserving details than JBF and GIF, but in trouble
with staircase-like artifacts. Overall, our recovered results
are sharp and clean.

4.3 Mutual Structure Extraction
This part tests the dynamic/dynamic filtering ability of
muGIF on extracting shared structures between two images
captured from distinct domains and/or under different con-
ditions. There are few works specifically developed for this
task. Recently, JFMS [28] has been proposed to fulfill such
demand, which is employed as the compared method. An
example on a pair of noisy depth and RGB images is shown
in Fig. 1 (g)-(i). From the results, we can see that, given the
inputs, both JFMS and muGIF can effectively distill the com-
mon structures. By taking a closer look at the pictures, we
find that our muGIF (αt = 0.005 for depth and αr = 0.02 for
RGB) exceeds JFMS (εI = εG = 5e−5, λI = 0 for depth and
λG = 100 for RGB) in both noise suppression on depth and
structure extraction on RGB. Another comparison executed



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

(a) Flash image (c) Jointly denoised by MJIR [50] (e) muGIF Dyn./Dyn. + detail transf.

(b) No-flash image (d) Jointly denoised by muGIF Sta./Dyn. (f) Light enhancement on (e) by LIME [51]

Fig. 15: Flash/no-flash transfer based on mutual structure extraction.

OursSDGIF

Flash Input No-flash Input JBF

OursSD

JBFNo-flash InputFlash Input

GIF

Fig. 12: Qualitative comparison on flash/no-flash image
restoration. The parameters are tuned for the methods to
obtain their best possible results.

on a couple of day and night images from a complex scene
is given in Fig. 13. In this experiment, JFMS can not offer
satisfactory results with heavy visual artifacts introduced,
as can be seen from Fig. 13 (c) and (d). The reason of such a
failure is probably that both the two inputs are of complex
details, so that the patch level measurement of structure
similarity degrades or loses its ability to accomplish the
task. We notice that JFMS’s effectiveness on the previous

noisy depth/RGB case is because one of the two images (the
depth) is, although noisy, simply structured. Our results, as
shown in Fig. 13 (e) and (f), significantly improve those by
JFMS, for example the building facades and water surface.
Further, we provide one more pair of results by turning up
the smoothing parameters as shown in Fig. 13 (g) and (h),
from which, we see that more details disappear while the
dominant structures still exist steadily.

To intuitively validate the advantage of our muGIF over
JFMS, we conduct a comparison on an interesting task,
which tries to transfer features/details of one of day and
night images to the other based on the extracted mutual
structures. As shown in Fig. 14 (a) and (b), the transfered
results based on our muGIF very well maintain the original
day’s and night’s basic appearances, meanwhile their de-
tails/features are exchanged¶. For example, colorful lights
on the water surface of the day, and ambient light on the
building facade of the night. Though the results by JFMS are
reasonable, the halo and feature-residue artifacts frequently
appear in Fig. 14 (c) and (d).

Inspired by the day-night transfer idea, we wonder
whether it is possible that a no-flash image containing
noise and unbalanced lights can be enhanced by its cor-
responding flash image. Figure 15 positively responses, in
which (a) and (b) are the flash and no-flash inputs. We can
see from Fig. 15 (b) that the no-flash image hides noise,
shadows, highlight and low-light regions. As previously
shown in Fig. 12, the flash image can be employed to guide
denoising on the no-flash. Figure 15 (c) and (d) are the
denoised versions by MJIR [50] (the state-of-the-art method
for multispectral joint image restoration) and muGIF in
static/dynamic respectively, which are very close and well-
done from the view of denoising. However, the unbalanced
light remains. Figure 15 (e) gives the result transfered from

¶. The residuals between the original signal and the extracted mutual
structure act as the details/features.
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(a) Noisy depth input (b) RGB reference (c) Depth by Dyn. Only

(d) Depth by Sta./Dyn. (e) Depth by Dyn./Dyn. (f) Our mutual structure

Fig. 16: Comparison of muGIF’s three modes. (c) is the
filtered depth using itself as the guidance. (d) is obtained
by employing the RGB as the reference. (e) and (f) are the
mutually guided results.

(a) Input (b) Result by RGF (c) Our Result

Fig. 17: Limitation. (a) is a halftone example. (b) and (c) are
inverse halftoning results by RGF [22] and our muGIF in
dynamic only, respectively.

the flash image, which reveals that the lighting unbalance
issue is greatly addressed and the transfered textures are
cleaner and sharper than those in (c) and (d). Using low-
light enhancement techniques like [51] can further adjust
brightness as shown in Fig. 15 (f). Moreover, we conduct an
experiment to reveal the difference of muGIF between the
three modes including the dynamic only mode (self-guided,
Fig. 16 (c)), the static/dynamic one (RGB guided, Fig. 16 (d))
and the dynamic/dynamic one (mutually guided, Fig. 16 (e)
and (f)).

5 CONCLUSION AND LIMITATION

Image filters are fundamental and important tools for vi-
sual data processing. This paper has defined a novel mea-
surement, i.e. relative structure, to manage the structure
similarity between two input signals. Based on the new
measure, a robust joint image filter, called mutually guided
image filter (muGIF), has been proposed, which is flexible
to perform in one of the dynamic only, static/dynamic and
dynamic/dynamic modes. A global optimization objective
and an effective algorithm have been designed to achieve
high-quality filtering performance. To verify the efficacy of
muGIF and demonstrate its advantages over other state-of-

the-arts, the experimental results on a number of applica-
tions, such as texture removal, scale-space filtering, depth
upsampling, flash/no-flash image restoration and mutual
structure extraction, have been conducted.

Our current muGIF exposes its limitation when the de-
sign principle is violated. For instance, when an RGB image
is intruded by corruptions, especially on tiny structures, the
restored result even with another assistance (e.g. NIR) will
not be satisfied. This situation is encountered not just by our
muGIF but also by (most of) existing image filters. We note
that the work [50] is specified to multispectral joint image
restoration with promising performance. Another situation
is halftone-like cases, as shown in Fig. 17, in which the
advantage of precisely localizing edges instead becomes the
disadvantage. In contrast, RGF can produce a visually better
result.
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age guided depth upsampling using anisotropic total generalized
variation,” in ICCV, pp. 993–1000, 2013.

[49] J. Yang, X. Ye, K. Li, C. Hou, and Y. Wang, “Color-guided depth
recovery from rgbd data using an adaptive autoregressive model,”
IEEE Trans. Image Processing, vol. 23, no. 8, pp. 3443–3458, 2014.

[50] X. Shen, Q. Yan, L. Ma, and J. Jia, “Multispectral joint image
restoration via optimization a scale map,” IEEE Trans. PAMI,
vol. 37, no. 12, pp. 2518–2530, 2015.

[51] X. Guo, Y. Li, and H. Ling, “LIME: Low-light image enhancement
via illumination map estimation,” IEEE Trans. Image Processing,
vol. 26, no. 2, pp. 982–993, 2017.

Xiaojie Guo (M’13) received his Ph.D. degree
in computer science from the School of Com-
puter Science and Technology, Tianjin Univer-
sity, Tianjin, China. He is currently an Associate
Professor with tenure (Peiyang Young Scientist)
at Tianjin University. Prior to joining TJU, he
spent about 4 years at the Institute of Information
Engineering, Chinese Academy of Sciences. He
was a recipient of the Piero Zamperoni Best Stu-
dent Paper Award in ICPR 2010, and the Best
Student Paper Runner-up in ICME 2018.

Yu Li (M’16) received his Ph.D. degree in
National University of Singapore. He is now
with Advanced Digital Sciences Center, a re-
search center founded by University of Illinois at
Urbana-Champaign (UIUC) and the Agency for
Science, Technology and Research (A*STAR),
Singapore. His research interests include com-
puter vision, computational photography, and
computer graphics.

Jiayi Ma received the B.S. degree from the
Department of Mathematics and the Ph.D. de-
gree from the School of Automation, Huazhong
University of Science and Technology, Wuhan,
China, in 2008 and 2014, respectively. From
2012 to 2013, he was an Exchange Student with
the Department of Statistics, University of Cal-
ifornia at Los Angeles, Los Angeles, CA, USA.
He is currently an Associate Professor with the
Electronic Information School, Wuhan Univer-
sity, Wuhan.

Haibin Ling received his B.S. and M.S. degrees
from Peking University in 1997 and 2000, re-
spectively, and his Ph.D. degree from the Uni-
versity of Maryland, College Park in 2006. From
2000 to 2001, he was an assistant researcher
at Microsoft Research Asia. From 2006 to 2007,
he worked as a postdoctoral scientist at the
University of California Los Angeles. After that,
he joined Siemens Corporate Research as a
research scientist. Since fall 2008, he has been
with Temple University where he is now an As-

sociate Professor. He received the Best Student Paper Award at the
ACM UIST in 2003, and the NSF CAREER Award in 2014. He serves
as Associate Editors for IEEE Trans. on Pattern Analysis and Machine
Intelligence (PAMI), Pattern Recognition (PR), and Computer Vision and
Image Understanding (CVIU). He has also served as Area Chairs for
CVPR 2014, CVPR 2016 and CVPR 2019.


