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A Transformative Topological Representation
for Link Modeling, Prediction and
Cross-domain Network Analysis

Kai Zhang, Junchen Shen, Gaoqi He, Yu Sun, Haibin Ling, Hongyuan Zha, Honglin Li, Jie Zhang

Abstract—Many complex social, biological, or physical systems
are characterized as networks, and recovering the missing links
of a network could shed important lights on its structure
and dynamics. A good topological representation is crucial to
accurate link modeling and prediction, yet how to account for
the kaleidoscopic changes in link formation patterns remains
a challenge, especially for analysis in cross-domain studies. We
propose a new link representation scheme by projecting the local
environment of a link into a “dipole plane”, where neighboring
nodes of the link are positioned via their relative proximity
to the two anchors of the link, like a dipole. By doing this,
complex and discrete topology arising from link formation is
turned to differentiable point-cloud distribution, opening up
new possibilities for topological feature-engineering with desired
expressiveness, interpretability and generalization. Our approach
has comparative or even superior results against state-of-the-art
GNNs, meanwhile with a model up to hundreds of times smaller
and running much faster. Furthermore, it provides a universal
platform to systematically profile, study, and compare link-
patterns from miscellaneous real-world networks. This allows
building a global link-pattern atlas, based on which we have
uncovered interesting common patterns of link formation, i.e., the
bridge-style, the radiation-style, and the community-style across
a wide collection of networks with highly different nature.

Index Terms—Link Prediction, Topological Representation,
Complex Networks

I. INTRODUCTION

MANY complex social, biological, or physical systems
are characterized as networks, where vertices represent

individual agents and links signify their interactions [1]–
[9]. Due to the cost and uncertainties of data acquisition,
networked data are often incomplete with missing links. As
a result, estimating the likelihood that an unobserved link
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actually exists based on the observed portion of the network,
commonly known as link prediction, thus becomes a funda-
mental problem in network and information sciences [10]–
[16]. Accurate link prediction is not only a practical goal in
physics, social networks and recommender systems, but also
provides valuable insights into scientific discoveries related to
network structure, dynamics, and organizing principles.

Link prediction is a statistically hard problem and no single
model has shown to be superior for all networks unless by
stacking different models together as an ensemble model [16].
The predictability is related to the intrinsic structural regularity
of the network [15]. Early work study rules of link formation
and design various heuristics to evaluate the proximity be-
tween two nodes for link prediction [17]–[21]. Probabilistic
models [22]–[24] and maximum likelihood approaches [25],
[26], on the other hand, estimate the probability of a link
conditioned on the network structure or node attributes. Link
prediction can also be solved by using latent node representa-
tions through graph embedding techniques [27]–[31].

In recent years, learning-based algorithms that predict the
missing links through a classifier [32] began to draw more
attention. The key advantage of learning based algorithms
nowadays lies in their ability to automatically craft features
for the predictive task through end-to-end optimization [33] by
leveraging a specific inductive bias. In fact, the grand success
of deep neural networks is largely attributed to their power of
learning good representations. This philosophy has inspired a
surge of interest in applying graph neural networks (GNNs)
[29], [31], [34]–[37] to extract useful topological features
for link prediction. The pioneering idea of GNN-based link
prediction is due to Zhang et al. [38], which extracts the
“local enclosing subgraph” for a target link to capture the key
topological information for a link to be formed. By doing this,
link prediction is converted to subgraph classification, on top
of which powerful GNNs can be readily introduced to generate
significantly improved results over previous methodologies.

Despite recent progresses, substantial challenges persist in
link representation learning. This is because the links of
a network are often enclosed in local subgraphs involving
an arbitrary number of nodes and kaleidoscopic topologi-
cal variation, which is notoriously hard to align or profile.
Therefore GNN models may have to use heuristics such as
truncation or padding to obtain constant-sized features [39],
which inevitably alters graph topology; the convenient choice
of graph pooling, which collapses all the nodes into one, may
incur information loss and become the bottleneck as noted
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by [40], [41]. Moreover, graph convolutions can be difficult to
interpret when using topological features for message passing.
As to graph embedding techniques [29], [31], [36], the low-
dimensional node embedding vectors are defined only for
each individual network separately, which limits their utility
in cross-domain studies involving multiple networks. Overall,
the lack of a good link representation hampers not only link
prediction accuracy, but also knowledge discovery from links
of miscellaneous real-world networks.

In this paper, we propose a transformative link representa-
tion that characterizes complex link patterns in the network
with desired interpretability, generalization, and cross-domain
modeling capacity. The key idea is to project the local environ-
ment (or enclosing-subgraph) of a link into a two-dimensional
“dipole plane”. In this plane, the neighboring nodes of the link
are positioned via their relative proximity to the two anchors
of the link through random-walks, like a dipole. By doing this,
complex and discrete topology arising from link formation is
turned to continuous and differentiable distribution of a point-
cloud, opening up new possibilities for topological feature-
engineering in link modeling and prediction.

The presented link representation offers significant ad-
vantages for link modeling and prediction. Theoretically, it
possesses the ability to discern between link patterns with dif-
ferent topological characteristics, which is critical for training
discriminative models. The density-based profile is also robust
against link perturbations due to inherent kernel smoothing,
thus greatly contributing to the generalization performance.
Empirically, the proposed representation yields comparable or
even superior results in link prediction compared to the best-
performing Graph Neural Networks (GNNs), yet with a com-
pact model up to hundreds of times smaller and running much
faster. Finally, the proposed link representation is physically
interpretable and with naturally aligned dimensions, therefore
it provides a universal platform to study, compare and explore
link-patterns from networks across different domains simulta-
neously. This allows building a global link-pattern-atlas, based
on which we have uncovered interesting general themes of link
formation, as well as network similarities that may otherwise
be hidden from a collection of scientific, social, biological and
technological networks of highly different nature.

The subsequent sections of this paper are structured as fol-
lows. Section II provides a review of related work. Section III
introduces the proposed link representation scheme, while
Section IV contains the theoretical analysis. Experimental
evaluations and cross-domain case studies are presented in
Section V. The concluding remarks and identification of future
directions are outlined in the last section.

II. RELATED WORK

A large body of link prediction methods has been devised
and can be broadly grouped into similarity-based approaches,
probabilistic models, embedding techniques, and learning-
based models, as outlined in relevant surveys [42], [43].

Early work of link prediction focus on the design of various
heuristics to quantify the structural relations between the
nodes. Well-known examples include the common neighbors

[17], Jaccard similarity [18] and Adamic–Adar index [19]
based on first-order neighbors. Later, high-order heuristics
are proposed to characterize the relation between the nodes
in a more global context. For example, Rooted PageRank
[20] measures the probability of reaching a node from a
predefined root node through random-walks, implicitly taking
into account all possible paths in the network. Katz score [21]
considers paths of varying lengths and assigns higher weights
to shorter paths. SimRank [44] evaluates node similarity by
recursively looking into their neighbors. These heuristics are
easy to compute, and can well recover the missing links if the
underlying assumption of homophily is satisfied.

Another big family of algorithms relies on latent node
embeddings as fundamental features for link prediction. Such
low-dimensional representations can be obtained through tradi-
tional matrix factorization technique [27] and stochastic block
models [28]. In recent years, the development of distributed
representation learning frameworks such as the skip-gram
model in word2vec [45] lays a solid foundation for network
embedding (or node embedding), with prominent examples
including DeepWalk [29], LINE [30] and node2vec [31], and
a unified matrix factorization view can be found in [36]. The
high-quality network embedding allows faithfully capturing
the proximity relation between the nodes of a network, and
hence sophisticated classifiers can be built upon pairs of
such node embeddings to perform link prediction. See a
comprehensive review for such methods in [42].

The concept of using GNN models for link prediction is pi-
oneered by Zhang et al. in their seminal work of “SEAL” [38],
which introduces the notion of “local enclosing subgraphs”.
Given a graph G and any pair of nodes x and y representing
a target link, the local enclosing subgraph Gxy is defined
as a subgraph that is composed of the union of x and y’s
neighbors up to l hops. The enclosing subgraph delineates the
“l-hop surrounding environment” centered around the target
link (x, y), encapsulating the crucial topological information
necessary for link formation by theoretically approximating a
wide range of high-order heuristics. It allows link prediction to
be converted faithfully to subgraph classification. Automatic
graph feature engineering can then be performed on top of the
enclosing subgraphs with GNNs, leading to promising results
that significantly outperform previous algorithms.

Inspired by SEAL [38], various innovations have been made
toward extracting features from the enclosing subgraph (or the
entire training graph). For example, Walk-Pooling [41] inte-
grates node representations and graph topology into random-
walk based transition probabilities, and uses the difference of
such probabilities before and after removing the focal link of
the enclosing subgraph as the high-order structural information
for link prediction. Line-Graph Network [40] proposes to
convert the enclosing subgraph to a line graph where each
node corresponds to a unique link in the original graph. The
features of the link can then be learned directly through the
line graph representation, turning link prediction problems to
node classification with significantly improved performance.
Distance-enhanced GNN [46] combines the pairwise node
distances with the GNN model, and obtains promising results
in the problems of drug-drug-interaction and protein-protein-
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Fig. 1. The proposed Dipole Space Density Network (DSDN) that transforms a link to a continuous point-cloud distribution through an end-to-end learning
architecture. (a) For a focal link between two anchor nodes x and y, find the l-hop (here l = 1) enclosing-subgraph Gxy . Then use two random-walks
starting from x and y to measure the proximity between each node in Gxy and the two anchors. (b) Project the nodes in Gxy to the “dipole plane”, where
the 2-D coordinates are exactly the scores generated by the two random-walks starting from x and y. Then estimate the density of the 2-D point-cloud using
k Gaussian kernels whose centers and bandwidth are both optimizable. (c) Use the estimated density as input features to a classifier for link prediction.

association. The distance calculations are based on a set of
random anchors to improve the computational efficiency.

III. A NEW REPRESENTATION FOR LINK PREDICTION

Let G0 = (V0,E0) be a “complete” network with edge
set E0 and node set V0. In practice, only a partial version
G = (V,E) is observed with E ∈ E0, V ∈ V0. The goal of
link prediction is then to predict whether a link indeed exists
between a pair of unconnected nodes, (x, y) ∈ {V×V− E},
based on the observed graph G.

A focal link between any two nodes, x and y, is charac-
terized by its enclosing subgraph Gxy as in Fig. 1(a), i.e., a
subgraph composed of the l-hop neighbors around x and y. In
constructing the enclosing subgraph, l is typically chosen as a
small integer like one or two, and the truly observed focal link
between x and y will be removed from the subgraph. Next,
we show how to obtain a desired representation of the link
between x and y based on its enclosing subgraph.

The proposed approach is named as “Dipole Space Density
Network (DSDN)” and illustrated in Figure 1. First, we use
two random-walks that start from the two anchors of the link,
x and y, to evaluate the proximity between the neighboring
nodes and the two anchors. Then the “local environment” of
the target link Gxy can be projected as a point-cloud onto
a 2-D “dipole plane”, whose distribution closely reflects local
topological organizations of the target link. Finally, an adaptive
kernel estimator is used to profile the density distribution as
a compact and informative representation for link prediction.
In the following, we introduce the algorithm details.

A. From Enclosing-subgraph to Point-cloud
We first use two random-walks starting from the two

anchors of the target link, x and y, to evaluate the prox-
imity between the nodes in Gxy and the two anchors. More
specifically, we resort to Random-walk With Restart (RWR) to
quantify such relation [47]. It starts from one anchor node x
and iteratively visits neighbors encountered, each step having
a probability 1− c to jump back to the start node x, as

p(t+1)
x = c · Ãxyp

(t)
x + (1− c) · ex. (1)

Here t is step, px ∈ Rnxy×1 is node-wise random-walk scores,
nxy is the number of nodes in Gxy , Ãxy is the transition

probability matrix of Gxy , 1 − c is the restart probability,
and ex is a one-hot vector indicating the start node x. The
converged distribution for t→∞ has closed form [47],

px = (I− c · Ãxy)
−1ex. (2)

The random-walk score px reflects the proximity of each node
to anchor x. If c = 0, the re-start probability 1−c is 1, namely
the random-walk will be frozen at x with px being a one-hot
vector; if c → 1, px becomes the stationary distribution of
a Markov random-walk that freely explores Gxy but never
jumps back to x; in other words, the start node is forgotten.
In practice, we use c ∈ [0.5, 0.8] to explore the subgraph Gxy

thoroughly while still remembering where the starting node
is. We also prefer the closed-form random-walk distribution
(2) because it is more robust than the discrete version (1) and
saves the effort of determining the number of iterations.

We use two separate random-walks from x and y as in Fig.
1(a), to map Gxy’s nodes to a new space with nxy pairs of
coordinates Pxy = [px py] ∈ Rnxy×2, and normalize them by
the maximum score, as

Pxy =

[
px

max(px)

py

max(py)

]
. (3)

By normalizing the random-walk score vectors px and py

with their maximum entries, the resultant point-clouds will
always reside in a unit square [0, 1] × [0, 1]. We call it a
“dipole plane” as in Fig. 1(b), because it is induced by the two
anchors of the target link, like a dipole. It serves a universal
“coordinate system” quantifying how the neighboring nodes
of a link gather around its two anchors1.

B. From Point-cloud to Density-profile

The “dipole plane” allows any link of interest to be projected
and turned to a 2-D point-cloud. How is subgraph topology
translated to point-cloud distribution? Since the 2-D point
coordinates quantify the proximity of a node to the two
anchors of the link, x and y, some simple observations can
be made: (i) nodes far away from x and y must have lower

1For each link, the two anchors can be either labeled as (x, y) or (y, x),
so we can generate two point-clouds that are symmetric with regard to the
diagonal of the dipole plane, with the same label.
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Fig. 2. Three link examples, each with their enclosing-subgraphs Gxy on the left, and resultant point-clouds on the right. The focal link between x and y will
be removed if it is truly observed. The 2-D coordinates of the point-cloud are proximities of each node to x and y. Here, blue and red mark the nodes closer
to anchor x and y, respectively, while gray nodes along the diagonal are about equally distant away from x and y. (a) nodes in Gxy are roughly equal-distant
away from x and y, so the point-cloud is distributed along y = x; (b) nodes in Gxy breaks into two components, so the point-cloud forms two arms along
the two axes of the dipole plane; (c) nodes in Gxy fall into three zones: closer to anchor x (blue), closer to anchor y (red), or in the middle (gray).

proximity scores and hence be mapped around the origin,
otherwise they will be pushed away from it; (ii) nodes equally
distant away from x and y will be mapped around y = x. In
fact, the symmetry, grouping, and shape of the point-cloud are
closely related to the topological characteristics of the link.

Fig. 2 gives some examples: (a) is an observed link, and
most nodes in Gxy are equally distant from x and y, so the
point-cloud falls in the diagonal band; (b) is a NULL link
whose Gxy breaks into two components, so the point-cloud
has two arms along the two axes; (c) is an observed link,
where blue and red nodes are close to x and y, respectively,
while gray nodes lie in the middle; so the point-cloud has a
mixed pattern of distribution. In all cases, anchor x and y are
around corners. Sometimes the points aggregate into clusters
in the dipole plane, meaning that the corresponding nodes in
one cluster have similar proximity patterns to x and y.

Next we show how to model these highly diversified
point-cloud distributions such that a compact, informative
representation can be obtained for link prediction. Here, a
key observation is that not all the locations in the dipole
plane have useful density values: some locations could be
rarely populated by the point-cloud, while some locations may
always have similar density values for true links and NULL
links. Therefore, we are interested in those locations in the
dipole plane whose densities are useful for discriminating the
true links against the NULL ones.

To achieve this, we borrow ideas from Parzen window den-
sity estimator [48], and extend it to a discriminative version.
We place a number of k Gaussian kernels in the dipole plane
that are marked as yellow circles in Fig. 1(b), each with center
µj ∈ R1×2’s for j = 1, 2, ..., k, and a common bandwidth
h ∈ R+. These kernel parameters are then optimized in an
end-to-end fashion by minimizing the link-prediction error
(defined in Sec III.C), so that a faithful density landscape can
be recovered for link prediction tasks.

Specifically, we compute the affinity between the nxy points
in (3) and the k kernel centers µj’s as a Rnxy×k matrix

Wij = exp

(
−
∥∥P[i,:] − µj

∥∥2
2h2

)
, (4)

where P[i,:] is the i-th row (point) in Pxy (sub-index xy
omitted for convenience). Namely, if the i-th point P[i,:] falls

in the receptive domain of the j-th Gaussian kernel, it will
trigger the kernel with strength Wij . After normalizing each
row of W to probabilities that sum up to 1, so that its ij-th
entry then signifies the probability that the i-th point triggers
the j-th kernel, we then sum up all the rows of W to get the
accumulated density at each kernel location µj , as

f(µj) =

nxy∑
i=1

Wij∑k
j′=1 Wij′

. (5)

The point-cloud distribution can then be nicely encoded as the
k-dimensional density-profile

Fxy =
[
f(µ1), 1

1f(µ2), 1
1 ..., f(µk)

]
. (6)

The representation Fxy has several advantages: (i) it is easy
to compute and can be very compact; (ii) it is invariant to the
order of the nodes in subgraph Gxy; (iii) it has k dimensions
consistently defined across different subgraphs of a network,
even if they have a varying number of nodes. In fact, by
sharing the Gaussian centers {µ′

js} in the dipole plane, Fxy

can be used as an intrinsic, well-aligned link feature even
across different networks for cross-domain studies; (iv) it is
interpretable. The k dimensions of Fxy sum up to nxy , the
number of nodes in Gxy due to normalization in (5)2. So the
j-th dimension f(µj) can be deemed as the “amount” of nodes
in Gxy whose relative proximity to the two anchors are close
to µj = [µj1 µj2], with µj the proximity pattern specified
by the j-th Gaussian center. With such physical meaning, our
network model is no longer a black-box, but instead allows
human interpretation of the prediction results by looking into
dominantly weighted Gaussian kernels in the classifier, each
of which represents a specific proximity or topological pattern
towards link formation in the enclosing subgraph.

C. Link Prediction

The k-dimensional density profile Fxy in (6) is used as
features for a multilayer perceptron (MLP) for link prediction,
with the cross entropy loss function. This then leads to
a complete end-to-end architecture, in which the Gaussian

2In this sense, Fxy is not strictly a density because it sums up to nxy , the
subgraph size. We believe nxy carries useful information in link prediction
so we do not normalize Fxy to sum to 1.
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kernels are placed adaptively to generate compact, discrim-
inative representation. Empirically, k ≈ 100 suffices for most
datasets. This gives a parsimonious model that is not only
computationally efficient, but also less prone to overfitting.

In case there are extra node attributes available (such as
bags of words feature for a paper in citation networks), the
dipole plane provides an innovative platform for heterogeneous
message passing, i.e., the cross-talk between the points (nodes)
and the “Gaussian sensors”. We can use the pairwise relation
between the nxy points and the k sensors W as an “adjacency”
matrix to aggregate node attributes to the nearby sensors, as

Zxy ← σ
(
D−1W⊤Zxy ·T

)
.

Here, D is column-wise degree matrix of W, Zxy ∈ Rnxy×d

is attributes matrix for nodes in subgraph Gxy , T ∈ Rd×d′

is a linear transform, and σ(·) is nonlinear activation. The
resultant sensor-wise feature matrix Zxy ∈ Rk×d′

is of a fixed
dimension regardless of the size of the enclosing subgraph
Gxy , and carries both featural and topological information of
the enclosing subgraph. We will feed it into the FC-layers for
the final link prediction task.

IV. PROPERTIES OF THE PROPOSED LINK
REPRESENTATION

In this section we study properties of the proposed link
representation. It transforms a target link by two steps, i.e.,
the enclosing subgraphs of the target link are first transformed
to a 2-D point-cloud, and then to a fixed-dimensional density
vector. In fact, these two steps have interesting properties
that are complementary to each other. On the one hand,
transforming an enclosing subgraph to a point-cloud is a
mapping that effectively captures topological differences of
the enclosing subgraphs. On top of such sensitivity, the kernel
density estimator can further improve the stability of the
learned feature, which is beneficial to link prediction tasks.

A. Discriminative Properties of the Point-cloud

A natural question on the representation power of the point-
cloud is under what condition it can distinguish between two
different enclosing subgraphs, so that accurate link prediction
can be made based on the topological structure of subgraphs.

For simplicity, we consider one anchor x in each subgraph
with point-cloud coordinate px as in (2). This is because the
choice of the two anchors is independent and so the extension
from one anchor to two anchors is trivial. Second, the anchor
is always the first node in a subgraph, followed by its 1st-
order neighbors, and then the 2nd-order neighbors, and so on;
this is a natural partial ordering due to the “central status” of
the anchor, under which we shall compare the point-clouds
from different subgraphs. Under this partial order, we provide
sufficient condition for point clouds of two subgraphs to be
different. We restrict ourselves to the case of equal-sized
subgraphs, because two subgraphs with different numbers of
nodes must have different point-clouds and density profiles.

Theorem 1. Consider unweighted, undirected subgraphs with
no self-loops. Let W1 and W2 be the adjacency matrix of

two equal-sized subgraphs, and w.l.o.g. assume the anchor
node is the first node, and the random-walk scores starting
from the anchor node are p1 and p2, respectively, for the two
subgraphs. Let Ã1 and Ã2 be the transition matrix of the two
subgraphs, and B∗

1 and B∗
2 be the adjugate matrix of I−cÃ1

and I− cÃ2, respectively. Then we have:
1) if |B∗

1 [1,1]|
B∗

1 [1,j]
̸= |B∗

2 [1,1]|
B∗

2 [1,j]
for some j ̸= 1, then p1 ̸= p2;

2) if |B∗
1 [1,1]|

B∗
1 [1,j]

=
|B∗

2 [1,1]|
B∗

2 [1,j]
for all j, then p1 = p2;

here j is an integer in [1, n].

Proof is in the Supplementary Materials. Theorem 1 shows
that as long as the ratio between the first and the j-th entry
in the first column of the adjugate matrix of I − cÃ−1

1 and
I− cÃ−1

2 are different for at least one j (2 ≤ j ≤ n), then the
point-clouds of the two enclosing subgraphs must be different.
In order for the two point-clouds to be the same, the ratios have
to be the same for all 2 ≤ j ≤ n across the two matrices. In
fact, we speculate that as long as the two enclosing subgraphs
are non-isomorphic, then their point-clouds will be different.
We have empirically verified this conjecture on a large number
of subgraph pairs. However, a strict proof involves the general
problem of graph isomorphism, which can be quite challenging
and is being pursued as a future research topic.

B. Smoothing Effect of the Kernel Density Estimator

In this subsection, we study how the bandwidth h in (4)
affects the distance between two point-cloud density-profiles
as measured by (6), thereby potentially improving the stability
of the representation. The distance between two point-cloud
distributions is affected by many factors, e.g., locations of
the points, choice of the Gaussian kernel centers, and the
bandwidth. To focus on the smoothing effect of the bandwidth
alone and obtain explicit bounds, we restrict ourselves to a
simple scenario, in which there is only one non-overlapping
pair of points across two point-clouds. Then such discrepancy
will be captured by the k Gaussian kernels located in the dipole
plane, as quantified below.

Theorem 2. Let there be only one pair of non-overlapping
points, u and v, from two equal-sized point-clouds. The
distance between u (or v) and the k Gaussian centers µj’s
are du

j = ∥u− µj∥2 (or dv
j = ∥v − µj∥2) for j = 1, 2, ..., k.

Let dmin
j = min

(
du
j ,d

v
j

)
, dmax

j = max
(
du
j ,d

v
j

)
, duv

j =∣∣du
j − dv

j

∣∣. The distance between the density profile F1 and
F2 as defined in (6) from the two point-clouds is bounded by

∥F1−F2∥2 ≥ 1

2h2

∑
j exp

(
−dmax

j

h2

)
max

(∑
j exp

(
−du

j

h2

)
,
∑

jexp
(
−dv

j

h2

)) ,
∥F1−F2∥2 ≤ 1

2h2

∑
j exp

(
−dmin

j

h2

)
min

(∑
jexp

(
−dv

j

h2

)
,
∑

jexp
(
−du

j

h2

)) .
Proof is in the Supplementary Materials. Theorem 2 shows

that the distance between two point-cloud densities, i.e., ∥F1−
F2∥, is strongly modulated by the bandwidth h: a small h
highlights their difference, while a large one trivializes it (due
to the 1

2h2 term). An empirical verification can be found in the
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TABLE I
AVERAGE LINK-PREDICTION AUC ON SYNTHETIC NETWORKS. IN WS-MODEL, p THE IS REWIRING PROBABILITY, AND THE THREE VALUES CHOSEN ARE

FOR REGULAR, SMALL-WORLD, AND MORE RANDOM NETWORKS, RESPECTIVELY; IN BA-MODEL (SCALE-FREE NETWORKS), m0 AND m ARE THE
INITIAL # NODES AND # ATTACHED NODES IN EACH STEP.

Data WS-network BA-network (m = m0)
Alg\Para p = 0 p = 0.5 p = 0.8 1 3 5

CN 99.51±0.01 61.46±0.56 51.16±0.58 49.54±0.01 53.96±0.46 57.17±0.63
Jaccard 99.58±0.01 61.58±0.57 51.17±0.58 49.02±0.27 53.67±0.42 55.90±0.55
PA 13.25±0.10 35.48±0.24 37.27±1.45 33.57±3.01 66.66±2.38 69.12±1.67
Katz 99.79±0.01 62.75±0.27 43.52±0.84 29.55±7.25 59.95±1.68 63.19±2.16
RWR 99.90±0.01 64.92±0.29 45.61±0.58 29.54±7.27 62.89±1.47 64.93±1.58
AA 99.51±0.01 61.54±0.55 51.15±0.56 49.54±0.01 54.04±0.46 57.17±0.71
SEAL 99.94±0.03 70.73±0.39 57.07±3.49 89.58±2.85 78.56±1.73 72.07±1.71
WP 99.83±0.09 74.87±0.50 59.81±1.51 95.59±0.52 81.25±0.56 72.56±1.72
LG 99.79±0.21 75.30±0.81 61.97±1.41 95.93±0.71 79.68±1.31 74.47±1.64
Ours 99.99±0.01 75.58±0.19 62.18±1.55 96.30±1.08 85.13±0.85 76.21±1.93

Supplementary Materials, in which we show that the curves
of the derived bounds and the actual distance both drop with
h for a data example satisfying the conditions in Theorem 2.
In fact, even for more complex cases in which the two point-
clouds have more than one pair of non-overlapping points, the
difference between their density profile still decays with the
bandwidth, as illustrated in the Supplementary Materials.

The relation between the distance ∥F1 − F2∥ and the
bandwidth is due to the smoothing effect of Gaussian kernels
[49], since large bandwidth flattens distributions. More specif-
ically, note that the j-th density feature f(µj) is a statistical
average on the “amount” of nodes in Gxy whose proximity
to the two anchors is close to µj = [µj1,µj2], and sum up
to |Gxy| = nxy . Therefore, if the links in a subgraph are
perturbed (insertion or removal) but with nodes unchanged,
the density Fxy is then a re-assignment of nxy “density
quota” among the k kernels, and will be relatively stable if
smoothed by a Gaussian whose bandwidth exceeds the level
of perturbation. This is desirable because real world graphs
are always incomplete, so a reasonable amount of smoothing
of the distances between different link-patterns can prevent the
model from remembering (overfitting) the training graph too
rigidly to generalize to unseen links. Note that the degree of
smoothing can be determined adaptively through end-to-end
optimization of the bandwidth parameter h.

V. EXPERIMENTAL RESULTS

A. Link Prediction

We evaluate link-prediction algorithms by (i) AUC of link
prediction, a highly interpretable and widely used metric in
the area; (ii) scalability; and (iii) model size. We use artificial
networks generated with the BA-model [50] and the WS-
model [51] (with 1000 nodes and different parameters), and 13
real-world benchmark networks widely used in link prediction
community ( [15], [38], [40], [41]), including scientific, social,
biological and technological networks of diverse topological
and statistical properties. See more details of the artificial and
the real networks in the Supplementary Materials.

Experimental results from nine competing methods are
reported, including common neighbors [52], Jaccard [18],
preferential attachment [53], Katz score [21], random-walk

with restart [47], Adamic-Adar [19], and state-of-the-art GNNs
like SEAL [38], Walk-Pooling [41], and Line-Graph [40].
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Fig. 3. Time consumption of GNN based link-prediction algorithms and our
method versus the number of training links. Our approach scales linearly with
sample size and is computationally more efficient.

1) Experimental setting: The training and testing data are
generated with the protocol widely used in link-prediction
community ( [15], [38], [40], [41]). For an input network,
we first randomly remove 10% observed links as the positive
testing data, and randomly sample the same number of un-
connected node pairs as negative testing data. The remaining
90% observed links and the same number of additionally
sampled negative links are used as the positive and negative
training data. We randomly generate 10 such splits for each
network. All competing methods are evaluated on the same 10
data splits for each network, and the mean and the standard
deviation of the AUCs are reported.

For our approach, we use 2-hop enclosing subgraphs, and
the Gaussian centers {µ′

js} are initialized as follows: we
first collect the enclosing subgraphs from the training links
and project them onto the 2-D dipole plane [0, 1] × [0, 1]
with 0.05 × 0.05 grids, and then initialize µj’s as the
centers of those grids with high point-cloud densities. One
can also use k-means clustering centers for initialization
with pre-defined k (k ≈ 100). The bandwidth is initialized
at h = 0.025. The re-start probability c is chosen from
{0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8} using 5% of the training



7

TABLE II
AVERAGE LINK PREDICTION AUC FOR 10 LINK PREDICTION ALGORITHMS ON 13 POPULAR BENCHMARK NETWORKS; BEST AUCS ARE IN BOLD FONTS.

Domain Social Science Collaboration Citation
Alg\Data Facebook Email NetSci GrQ Citeseer Pubmed Cora

CN 99.27±0.03 84.97±0.72 93.12±0.91 91.96±0.25 67.21±0.46 65.42±0.26 73.64±0.69
Jaccard 99.08±0.02 84.57±0.71 90.38±1.12 92.25±0.35 63.75±0.36 65.24±0.28 73.10±0.33
PA 83.15±0.22 77.79±1.45 66.54±1.75 73.61±0.84 58.51±0.93 72.00±0.62 63.65±0.50
Katz 61.18±0.36 89.75±0.48 93.83±1.01 91.27±0.47 75.35±0.79 75.54±0.60 83.36±1.22
RWR 99.31±0.02 90.40±0.16 93.87±1.01 91.39±0.49 75.48±0.83 76.49±0.63 85.07±1.22
AA 99.38±0.02 85.00±0.72 85.25±0.99 91.99±0.25 65.18±0.57 64.87±0.22 75.51±0.80
SEAL 99.36±0.03 91.72±0.58 98.87±0.43 97.89±0.17 89.74±1.13 97.15±0.31 92.00±1.56
WP 99.65±0.02 93.01±0.12 98.49±0.70 98.46±0.01 89.48±0.02 97.16±0.01 92.62±0.01
LGLP 99.47±0.02 92.80±0.67 99.14±0.08 98.39±0.30 91.88±0.05 97.15±0.04 92.44±0.13
DSDN 99.70 ±0.02 93.33±0.33 99.20±0.31 98.56±0.12 92.01±0.49 97.17±0.25 94.23±0.66

Domain Biology Infrastructure & Technology
Alg\Data Yeast PPI HPD USAir Power Router

CN 88.85±0.05 85.90±0.57 73.82±0.44 93.08±1.37 59.23±0.58 56.16±0.35
Jaccard 88.75±0.58 83.61±0.47 73.38±0.45 90.06±0.91 58.97±0.56 55.19±0.37
PA 82.31±0.87 88.47±0.35 82.19±0.40 88.67±1.57 44.50±0.73 48.01±1.17
Katz 91.98±0.77 89.75±0.40 86.36±0.35 92.39±1.61 64.77±1.48 38.69±0.97
RWR 92.61±0.75 91.14±0.36 87.64±0.38 94.44±1.55 65.17±1.53 38.75±0.96
AA 88.21±0.59 85.47±0.59 73.86±0.44 92.09±1.20 57.69±0.46 56.12±0.34
SEAL 97.53±0.18 92.70±0.20 93.59±0.27 96.08±0.58 87.77±0.87 96.37±0.74
WP 97.87±0.44 92.43±0.49 93.76±0.08 97.15±1.09 90.53±0.89 97.02±0.48
LGLP 97.62±0.03 92.40±0.08 93.16±0.30 97.09±0.14 85.40±0.22 95.66±0.09
DSDN 98.06±0.27 92.18±0.46 93.87±0.09 97.65±0.75 92.52±0.47 97.19±0.52

data as validation3. In other words, we encourage the random-
walk to explore larger neighbors when starting from the anchor
x or y. Three hidden FC-layers are used with dimension
(k, 64), (64, 16), and (16, 2). The model is optimized with
Adam of an initial learning rate 0.01 and decay factor 0.001.

For all the methods, the focal link is removed from the
enclosing subgraph of those positive link instances in training.
The averaged model size for different models are listed in
Table III. The detailed calculations can be found in the
Supplementary Materials.

TABLE III
AVERAGE MODEL SIZE OF OUR METHOD AND GNN-BASED ONES.

Methods Ours SEAL [38] WP [41] LGLP [40]

Number of parameters 7.6k 56k 3,278k 21k
feature generation 0.2k 11k 12k 8k

fully-connected layers 7.4k 45k 3,266k 13k

2) Comparative Results: Table I and II report average
AUCs with standard deviation over 10 random training/test
splits for synthetic and real networks, respectively. On syn-
thetic networks, our approach has the highest AUC across all
the different settings of model parameters, including regular,
small-world, random and scale-free networks. On real-world
networks, our approach achieves the highest AUC on 12
out of 13 networks, and the improvement over GNN-based
models ranges in 2-5% for difficult networks (e.g., Cora
and Power). It is worth mentioning that our model is 400
times smaller than Walk-Pooling [41], the best GNN-based
algorithm compared in this work (averagely) according to

3Note that the validation set can also be used to choose other hyper-
parameters, such as the number of hops, the initial bandwidth, and uniform-
sampling interval used to initialize the Gaussian centers.

Table III. So the performance gains of our approach are
considered encouraging, and clearly verify the effectiveness
of the proposed link representation. Along with the compact
model is the superior efficiency: as shown in Fig. 3, our
method is 5-20 times faster than GNNs. Experiments were
also conducted on networks with node attributes, and the
corresponding results can be found in the Supplementary
Materials.

3) Impact of the Hyper-parameters: In this section, we
examine the impact of the hyper-parameters. Figure 4(a) shows
the impact of the jump-back probability (1−c) in the random-
walk. As can be seen, when c grows larger and larger from
0.5 the performance of link prediction steadily improves and
reaches a plateau. In fact, the optimal choice is around c = 0.7
for the networks investigated here, corresponding to a jump-
back probability 1 − c = 0.3. This means that on the one
hand, the random-walk somehow remembers where it gets
started (i.e., the anchor node x or y); on the other hand, it
has the freedom to explore the whole subgraph, i.e., how the
neighboring nodes of the link gather around the two anchors.

In Figure 4(b), we report the AUC versus the number of
Gaussian kernels k. As can be seen, the AUC is relatively
insensitive to the choice of k if it is large enough. In the
experiments, we typically choose k around 100.

Figure 4(c) shows the AUC of link prediction over the
bandwidth. The bandwidth controls the degree of smoothing,
which is beneficial in avoiding overfitting. Here the AUC is
averaged over 5 random initialization of parameters. As can
be seen, when the bandwidth increases from a small value to
0.05, the predictive performance keeps improving, validating
the usefulness of smoothing. When the bandwidth is too large,
distinct point-cloud distributions will not be discriminated and
so the performance will drop as expected. In practice, the
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(a) The AUC of link prediction versus the choice of
c that controls the re-start probability (1− c).
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(b) The AUC of link prediction versus the choice of
the number of Gaussian kernels k.
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(c) The AUC of link prediction versus the choice of
the bandwidth parameter h.

Fig. 4. Impact of the jump-back probability (1− c), the number of kernels k and the bandwidth parameter h on the performance of link prediction.

bandwidth parameter is optimized end-to-end.

B. Cross-Domain Network Analysis

Cross-domain studies can be valuable in uncovering diver-
sified link formation patterns from miscellaneous real-world
networks and finding the underlying commonalities. However,
a universal representation for links from different networks is
still challenging. On the one hand, GNN-based approaches
such as SEAL [38] uses node2vec to extract topological
features for each node, which can only be defined for each net-
work independently; therefore the resultant link representation
is also network-specific and cannot be compared across multi-
ple networks. On the other hand, learning based approaches are
more suitable for differentiating between positive and NULL
links, while we are more interested in profiling the distribution
of positive links across different networks.

Our link representation provides a universal platform to
study and compare links from diverse fields simultaneously.
First, the density profile (6) serves as a fixed-dimensional, well
aligned representation that bears consistent physical meaning
even across networks (Section III-B), by choosing the same set
of Gaussian kernel centers {µ′

js} in the dipole plane across
networks. Second, the link representation can be obtained in
an unsupervised manner due to the strong inductive-bias in
link modeling. Specifically, the µj’s in the dipole plane can be
chosen as the clustering centers of the aggregated point-clouds
without using class labels. By doing this, the resultant link
representation faithfully preserves the distribution of diverse
patterns of positive links. It allows building a global link-
pattern atlas, based on which we have uncovered interesting
common patterns of link formation, as well as hidden network
similarities beyond their original domains.

Here we report a preliminary study. We select 10 networks
covering 5 different domains from Table II, and randomly
sample 3000 true links from each network. By using 2-hop
enclosing subgraphs, each link is represented as k-dimensional
density profile as in (6) with k = 64, and further normalized
by the average subgraph size from each network. Based on
this representation, we then visualize the 30,000 links through
their tSNE embedding, thus presenting a global link-pattern
landscape in Fig. 5 (panel-I). Based on this embedding, we

can see that the link patterns from the 10 networks form three
visual clusters (though with overlaps), discussed below.

Cluster-A (top): NetSci (co-author, dark red), Power (red),
Citeseer (citation, brown), Cora (citation, orange) and GrQ
(co-author, orange); the link distributions form a few zones
(with overlaps) that are stacked layerwise in this cluster.

Cluster-B (middle): Email (dark green), protein networks
Yeast (green) and HPD (green), and USAir (light green); the
link distributions form curved manifold in this cluster.

Cluster-C (bottom): Facebook (blue); link distribution has
many micro-clusters around the bottom of the landscape.

For visual clarity, links in each network are also plotted
separately in Fig. 5 (panel-II). An intriguing observation is
that networks from very different domains could exhibit strong
similarity of link patterns and group together. What is the
underlying “subject” of each cluster? In fact, networks in the
same cluster share general commonalities in the formation and
characteristics of link patterns. Next, we elaborate on these
clusters and look into some representative link examples.

Bridge-style (Cluster-A). Many links serve as a bridge to
connect two nodes that are otherwise many hops away, indi-
cating decentralized connections across distant subnetworks.
For example, in Power network, typically a limited number of
transmission lines are built to cover as many stations as needed
under efficiency and cost considerations. Citation networks
like Cora and Citeseer include many different research areas
and so the links also spread out. Similarly, links in co-author
networks like NetSci and GrQ are distributed, too4. The point-
clouds may look L-shaped or break into a few small groups,
see examples A1-A6 in Fig. 5 (panel-III).

Radiation-style (Cluster-B). Links are mostly between a
hub and a non-hub node, or central position of a star-shaped
subnetwork to its periphery, like B2, B3, B5 and B6. This
coincides well with the organizing principles of the networks
falling in this cluster. For example, in protein networks (Yeast
and HPD), it is widely acknowledged that a small number of
hub nodes play a central role in the global network organiza-
tion. In the USAir network, air flights are mostly between one

4Intriguingly, not all coauthor networks are dominated by decentralized
link connections; instead, some coauthor networks may have more centralized
collaboration similar to link patterns in Cluster-B, see the larger-scale case
studies reported at the end of this section. We speculate the latter is due to
the existence of a fraction of highly influential researchers in the area.
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Fig. 5. A Cross-domain study of network links collected from a number of different science and engineering fields. Panel-I: link-pattern atlas including
30,000 links drawn randomly from 10 networks, embedded as 30,000 points by tSNE with one color for each network. Three main clusters are identified:
cluster-A: bridge style, cluster-B: radiation style, and cluster-C: community style, each with a few representative examples that are marked as A1-A7,
B1-B6, C1-C3 for case study. Panel-II: the tSNE embedding in Panel-I is plotted separately for each network to better visualize the distribution of the links in
each network, allowing a quick examination of the similarity between the networks (in terms of link pattern distribution). Panel-III: enclosing-subgraph and
point-cloud for 16 representative link examples; each subgraph is with gray nodes and two orange anchors; each point-cloud is with blue points and plotted
in [0, 0.3]× [0, 0.3] of the dipole plane to better visualize details. Note that we have used 2-hop neighbors from each anchor node, so the resultant enclosing
subgraph would allow a maximum pairwise distance up to 5-hops between nodes. Section V provides detailed discussions.

Cluster A

Cluster C

Cluster B

Fig. 6. Pairwise similarities of the 10 networks selected from Table I across
5 domains. The similarities are based on the distribution of the link-patterns
from each network as measured through the proposed link representation.

of the transfer stations and a terminal station. For the Email
network (the email communications from the users of Univ.
Rovira i Virgili, Spain), many messages are between a central
unit (office, dept. head, group lead) to individuals (faculty,
staff, student), in a hierarchical, self-similar manner [6]. The
point-clouds typically lean to one axis, i.e., the structural roles

of the two anchor nodes are not symmetric to each other.
Community-style (Cluster-C). Notably, links in Facebook

are found inside communities, like C1, C2 and C3. Among
them, link C1 is between the central node and a boundary node
of the community, i.e., its two anchors are structurally asym-
metric; for link C2 and C3, the two anchors are structurally
more symmetric, and so the point-cloud spreads along y = x
in the dipole plane. Another observation is that the enclosing
subgraph typically involves multiple communities, indicating
local communities in social networks that are inter-connected
within a small number of hops.

Besides these representative cases, some transitional link
patterns around cluster boundaries can also be found. For
example, link B1 is between cluster-B and cluster-C. Here,
the two anchors of B1 are structurally symmetric like cluster
C, while the local enclosing subgraph only involves one
community like cluster-B. For Link C1, its two anchors are
found inside a community where one is the bub node and the
other is the boundary node, which is the key characteristic of
cluster-B. On the other hand, the enclosing subgraph involves
two communities, which is like cluster-C.

In Figure 6 we report the network-level spectral clustering
based on the link patterns from each network. Detailed pro-
cedures can be found in the Supplementary Materials. As can
be seen, the similarity matrix clearly reveals three diagonal
blocks, corresponding to the three clusters discussed above.
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Fig. 7. Hierarchical clustering of 30 networks collected from a wide spectrum of disciplines. Three big clusters are identified and correspond to the three
clusters A, B and C, as obtained in the Figure 4 of the main text. The 10 networks with underlines are those used in the comparative studies in Section V-B.
Networks marked with (*) are scientific networks that encode collaborative relations among the researchers.

The cross-domain analysis based on the proposed link
representation fosters a global understanding of how the link
patterns from diversified application fields are distributed.
It reveals intriguing network similarities that may otherwise
be hidden. This universal platform could help promote new
findings in network knowledge discovery, especially from the
perspective of link-pattern characteristics or distributions. In
Figure 7 we use 30 networks from a wider variety of areas and
examine their network-level grouping based on the link-pattern
distributions. The details of these networks can be found in the
Supplementary Materials. A hierarchical clustering based on
pairwise network similarities shows three dominant clusters,
which are in accordance with the three clusters from the
smaller-scale studies in Figure 6.

Here we take a closer look at the 6 scientific collaboration
networks: GRQ, NetSci, KHN, ogbl-collab, ca-ConcMat, and
ca-HepTh. An interesting observation is that these 6 collabora-
tion networks are not in the same cluster. For example, GRQ
and NetSci are in Cluster A (bridge style), KHN and ogbl-
collab are in cluster B (radiation-style), and ca-HepTh and
ca-CondMat are in cluster C (community-style). This reflects
the diversity of the link-pattern distributions of networks even

for those from the same domain, due to the difference in the
organization principles. We speculate that the diversity of the
collaboration networks originates from the different ways of
collaborations in different scientific communities.

VI. CONCLUSION

We have introduced a novel topological representation for
link modelling, prediction and cross-domain link pattern anal-
ysis. It transforms the local enclosing subgraph associated with
each link into a fixed dimensional density distribution, which
possesses desired expressiveness, interpretability, and cross-
domain modelling power, opening up new possibilities for
topological feature engineering in the task of link prediction
and network analysis. Our experimental findings demonstrate
that our method achieves a performance comparable or su-
perior to that of GNN-based models, while simultaneously
offering accelerated training speed and reduced model size.
Moreover, our representation method establishes a versatile
research platform for investigating cross-network topological
information, which unravels interesting commonalities of link
formation patterns across networks of very different nature.
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A number of interesting directions will be pursued in our
future studies. For example, we will extend the proposed link
representation to more general scenarios like (sub)graph rep-
resentation learning. We will also apply it to large-scale case
studies to facilitate domain-specific knowledge discovery like
brain functional networks and protein interaction networks.
Finally, we plan to study how the proposed link representation
is related to network control, especially in building accurate
predictive models that can map the distribution of the link
patterns of a network to its global behaviour or functionality.

REFERENCES

[1] L. A. N. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley, “Classes
of small-world networks,” Proceedings of National Academy of Sciences,
vol. 97, no. 21, pp. 11 149–11 152, 2000.

[2] M. Newman, “The structure of scientific collaboration networks,” Pro-
ceedings of the National Acedemy of Sciences, vol. 98, no. 2, pp. 404–
409, 2001.

[3] A.-L. Barabási, Network Science. Cambridge University Press, 2016.
[4] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang,

“Complex networks: Structure and dynamics,” Physics Reports, vol. 424,
pp. 175 – 308, 2006.
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[26] R. Guimerà and M. Sales-Pardo, “Missing and spurious interactions and
the reconstruction of complex networks,” Proceedings of the National
Academy of Sciences, vol. 106, no. 52, pp. 22 073–22 078, 2009.

[27] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computers, vol. 8, pp. 30–37, 2009.

[28] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels:
First steps.” Social Networks, vol. 5, pp. 109–137, 1983.

[29] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proceedings of the ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, 2014, pp.
701–710.

[30] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
international conference on world wide web, 2015, pp. 1067–1077.

[31] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 855–864.

[32] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and
negative links in online social networks,” in International Conference
on World Wide Web, 2010, pp. 641–650.

[33] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2009.

[34] M. Bronstein, J. Bruna, Y. LeCun, and A. Szlam, “Geometric deep learn-
ing: going beyond euclidean data,” IEEE Signal Processing Magazine,
vol. 34, no. 4, pp. 18–42, 2017.

[35] W. W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning
on graphs: Methods and applications,” in Proceedings of the Neural
Information Processing Systems, 2017, p. 1024–1034.

[36] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network
embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec,” in ACM International Conference on Web Search and Data
Mining, 2018, p. 459–467.

[37] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in Proceedings of the Fifth
International Conference on Learning Representations, 2017.

[38] M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” in Proceedings of the 32nd Conference on Advances in Neural
Information Processing Systems, 2018.

[39] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep
learning architecture for graph classification,” in AAAI Conference on
Artificial Intelligence, 2018, pp. 4438–4445.

[40] L. Cai, J. Li, J. Wang, and S. Ji, “Line graph neural networks for
link prediction.” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 9, pp. 5103–5113, 2022.

[41] L. Pan, C. Shi, and I. Dokmanić, “Neural link prediction with walk
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APPENDIX A
PROOF OF THEOREM

We will provide a sufficient theoretic condition for the point-
clouds of two enclosing-subgraphs to be different. Here, we
only consider equal-sized subgraphs, since if two subgraphs
have different numbers of nodes, their layer-wise degree
sequences must be different from each other, and so their
point-clouds are also easily distinguishable. In this case, the
proof of Theorem 1 becomes trivial and so will be skipped.

Given two enclosing subgraphs, G1 and G2, each with node
set V1 and V2, unweighted (1/0), zero diagonal adjacency
matrix A1 ∈ Rn×n and A2 ∈ Rn×n, and anchor node x1 and
x2, respectively. In each subgraph, the anchor will be the first
node, followed by its 1st-order neighbors, and then 2nd-order
neighbors, and so on. This is a natural partial ordering given
the central status of the anchor. Note that, only when the point-
clouds of the two subgraphs are different under all the feasible
partial orderings, the two point-clouds will be different. The
random-walk starting from each anchor can be defined as

p1 = (I− cÃ1)
−1e

p2 = (I− cÃ2)
−1e,

with e an n-dimensional one hot indicator vector whose first
entry is 1 (corresponding to the anchor), and Ã1 and Ã2 the
transition probability matrix by normalizing the columns of
A1 and A2, respectively, so that each column sums up to 1.

Define B1 = I− cÃ1 and B2 = I− cÃ2. Let B∗
1 and B∗

2

be the adjugate matrix of B1 and B2. Then it is easy to see
that the first entry of p1 and p2 can be written as

p1[1] =
B∗

1[1, 1]

|B∗
1|

, p2[1] =
B∗

2[1, 1]

|B∗
2|

Now we examine the j-th entry of p1 and p2, with j ̸= 1.
They can be written as

p1[j] =
B∗

1[j, 1]

|B∗
1|

, p2[j] =
B∗

2[j, 1]

|B∗
2|

If we have the following condition

B∗
1[1, 1]

B∗
1[j, 1]

̸= B∗
2[1, 1]

B∗
2[j, 1]

Then equivalently
p1[1]

p1[j]
̸= p2[1]

p2[j]

In this case, we must have p1 ̸= p2 under the partial ordering
specified, and the proof is complete.

APPENDIX B
PROOF OF THEOREM 2

Let P1 and P2 be two equal-sized point-clouds, and they
only have one pair of non-overlapping points, u and v, while
all the remaining n− 1 points from the two point-set overlap
exactly. This setting allows to focus on the impact of the
bandwidth parameter on the difference of the distributions of
the two point-clouds. Let µ′

js be the set of k sensors, and the

distance between u and v to the sensors can be written as the
following distance vector

du =
[
∥u− µ1∥2, ∥u− µ2∥2, . . . , ∥u− µk∥2

]
dv =

[
∥v − µ1∥2, ∥v − µ2∥2, . . . , ∥v − µk∥2

]
we then define

wu = exp

(
− du

2h2

)
∈ R1×k,

wv = exp

(
− dv

2h2

)
∈ R1×k

Here wu and wv encode the similarity from u and v to the set
of k sensor. It can be easily shown that the distance between
the two density profiles reduces to the distance between the
non-overlapping pair of points, u and v, as

∥F1 − F2∥2 =

∥∥∥∥ wu

|wu|1
− wv

|wv|1

∥∥∥∥2 . (7)

Let’s first study the unnormalized term wu −wv , as

wu −wv =

[
exp

(
−

du
j

2h2

)
− exp

(
−

du
j

2h2

)]
j=1,2,...,k

Each dimension can be bounded as follows according to the
mid-value theorem in calculus

|du
j − dv

j |
2h2

·min

(
exp(−

du
j

2h2
), exp(−

dv
j

2h2
)

)
≤

∣∣wu
j −wv

j

∣∣ ≤ |du
j − dv

j |
2h2

·max

(
exp(−

du
j

2h2
), exp(−

dv
j

2h2
)

)
For the convenience of notation, we define

dmin
j = min

(
du
j ,d

v
j

)
, dmax

j = max
(
du
j ,d

v
j

)
, duv

j =
∣∣du

j − dv
j

∣∣
Then the bound can be simplified as

duv
j

2h2
· exp

(
−
dmax
j

2h2

)
≤
∣∣wu

j −wv
j

∣∣ ≤ duv
j

2h2
· exp

(
−
dmin
j

2h2

)
(8)

Having obtained the bounds along each dimension |wu
j −wv

j |,
we can then normalize it by |wu|1 and |wv|1 to obtain the
bounds of ∥F1−F2∥. To do this, we can simply use the smaller
one and the larger one of the two ℓ1-norms to bound the
denominator of the two sides; then we square the bounds along
each dimension, sum them up, and finally obtain Theorem 2.

Next, we show that we can further tighten the lower and
upper bounds in (8), which was used instead in the plot of
Figure 3 because it looks cleaner and would allow the readers
to observe the interesting trend more easily. For the upper
bound, since the absolute difference between two positive
numbers must also be upper bounded by the larger one of
the two, we can tighten the upper-bound as

∣∣wu
j −wv

j

∣∣ ≤ exp

(
−
dmin
j

2h2

)
·min

(
duv
j

2h2
, 1

)
For the lower bound, we will also tighten it by observing
that the difference between two non-negative numbers that
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are significantly different in their magnitude should be more
closely lower-bounded. Let we define

λj =

exp

(
−dmin

j

2h2

)
exp

(
−dmax

j

2h2

) = exp

(
−
(
dmin
j − dmax

j

)
2h2

)
(9)

which is the ratio of the maximum and minimum of the j-th
entry in wu and wv. Note that λj ≥ 1. Then the lower bound
can be tightened as follows∣∣wu

j −wv
j

∣∣ ≥ max

(
duv
j

2h2
· exp

(
−
dmax
j

2h2

)
, (λj − 1) exp

(
−
dmax
j

2h2

))
= exp

(
−
dmax
j

2h2

)
·max

(
duv
j

2h2
, (λj − 1)

)
So we have a tightened version of the bounds in (8), as∑

j

exp

(
−
dmax
j

h2

)
·max

(
duv
j

2h2
, λj − 1

)2

≤

∥wu −wv∥2 ≤
∑
j

exp

(
−
dmin
j

h2

)
·min

(
duv
j

2h2
, 1

)2

.
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Fig. 8. The distance between two density profiles, and its tightened
lower/upper bounds, drop with the bandwidth h in the toy example.
This quantifies the smoothing effect of the Gaussian kernel.

To verify the correctness of the bounds, we use a simple
data example that satisfies the condition stated in Theorem 2.1.
The two equal-sized point-clouds are chosen as uniform points
in [0, 1]2, and they only have one pair of non-overlapping
points, i.e., u = [0.2, 0.5]⊤ and v = [0.7, 0.5]⊤.The Gaussian
sensor locations µj’s are chosen as uniform grids in the dipole
plane with interval 0.25. This setting allows us to minimize the
impact of the point-cloud distribution and the sensor locations,
and focus only on the role of the bandwidth h in modulating
the distance between the distribution of two point-clouds. As
can be seen from Figure 8, the actual distance and its lower
and upper bounds all decay steadily with the bandwidth h.

APPENDIX C
DETAILS OF THE NETWORK DATA

1) Synthetic Networks: We have adopted the BA-model and
the WS-model to generate synthetic networks, in order to test

the performance of different link prediction algorithms. The
parameters of the two models are specified as follows.

The Watts–Strogatz model produces graphs with small-
world properties. It starts from a ring-shaped graph with m
nodes, where each node is connected with K

2 neighbors on
both sides. For every node, pick the K

2 links connecting to
its rightmost neighbors and rewire them (replace them with
a random node) with probability β, while avoiding self-loops
and duplication. We chose three sets of model parameters,
namely β = 0, 0.5, 0.8, corresponding to a regular ring, a
totally random network, and a small-world network.

The Barabási–Albert (BA) model generates random scale-
free networks with preferential attachment. It begins with an
initial network of m0 nodes. New nodes are added one at a
time. Each new node is connected to m ≤ m0 existing nodes
with a probability pi proportional to the number of links that
the existing nodes already have, namely pi = ki/

∑
j kj , where

ki is the degree of node i and the sum is made over all pre-
existing nodes j. We chose m = m0 = 1, 3, 5 as small integers
so that the resultant degree distributions are scale free .

2) Real-world Networks: We used 13 popular benchmark
datasets whose key statistics are in Table IV, detailed below.
Facebook [54]: social network from facebook with 4039 users
and 88234 edges; USAir [55]: US air transportation network
with 332 airports and direct flights; NetSci [56]: collaboration
network among 1589 researchers from a variety of fields
in network science; GRQ [57]: collaboration network from
researchers of general relativity and quantum cosmology in
arXiv from 1993 to 2003; Yeast [58]: a protein-protein inter-
action network in yeast with 2,375 nodes and 11,693 edges;
Router [59]: a router-level Internet with 5,022 nodes and 6,258
edges; PPI [60]: protein-protein interaction in human tissues
with 3890 nodes and 38292 edges; Power [61]: the power grid
of the Western States of the U.S, with 4941 nodes (a generator,
a transformator or a substation), and 6594 links (high-voltage
power supply line); CiteSeer [62]: citation network with 3312
scientific publications with 4732 links. Cora [62]: citation
network with 2708 publications and 5429 links; Pubmed [62]:
citation network with 19717 publications of diabete research
with 44338 links; HPD [63]: protein-protein interaction about
human protein in health and disease with 8756 nodes and
32331 edges; Email [6]: the email communication network
at the University Rovira i Virgili in Tarragona in the south of
Catalonia in Spain. Nodes are users and each edge represents
that at least one email was sent.

APPENDIX D
DISTANCE BETWEEN TWO POINT-CLOUD DISTRIBUTION

In the case of more complicated point-cloud distribution or
different point-cloud sizes, an explicit bound could be hard to
derive. However, empirically, we find that the smoothing effect
of the bandwidth can still be observed. For example, when the
bandwidth is large enough, the density-profile Fxy will be a
vector with constant entry nxy

k , and so the distance between
two density profiles will approach k

√
|1/n1 − 1/n2|, which

would be zero if the two point-clouds have the same number
of nodes, i.e., n1 = n2. When n1 and n2 differ significantly,
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TABLE IV
SUMMARY OF DATA-SETS AND NETWORK STATISTICS.

Network #nodes #links link ratio avg degree clus. coeff.

Facebook 4039 88234 0.0108 43.69 0.6055
USAir 332 2126 0.0386 12.8 0.6252
Cora* 2708 5278 0.00144 3.90 0.2406
NetSci 1589 2742 0.00217 3.45 0.6377

Citeseer 3327 4552 0.00083 2.75 0.1414
PB 1222 16714 0.0224 27.4 0.3202

Pubmed 19717 44324 0.0023 4.50 0.0601
Yeast 2375 11693 0.00415 9.85 0.3057
PPI 3890 37845 0.005 19.5 0.1464

Router 5022 6258 0.0049 2.49 0.0115
Power 4941 6594 0.0054 2.70 0.0801
C.ele 297 2148 0.0487 14.5 0.2923
GRQ 5241 14484 0.00105 5.53 0.5297
BUP 105 441 0.080 8.40 0.4875
HPD 8756 32331 0.0084 7.38 0.1130
Email 1133 5451 0.0085 9.62 0.2203

the distance between the two point-cloud distributions will still
approach the constant, but it will be non-zero.
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(b) The distance ∥F1 − F2∥ between two distributions.

Fig. 9. The relation between ∥F1 − F2∥ and the bandwidth for two point-
clouds with different numbers of nodes and more complicated contributions.

In Figure 9, we provide an empirical example showing the
relation between ∥F1 − F2∥ and the bandwidth h for two
point-clouds with different numbers of nodes and distributions.
As shown in Figure 9(a), the two point-sets have more com-
plicated distributions than the example used in Theorem 2.1
(in that scenario there is only one non-overlapping pair of
points from the two point-sets and all the rest points do overlap
exactly). As can be seen in Figure 9(b), the distance still again
with the bandwidth h, but would converge to a non-zero value

when the bandwidth is large enough.

APPENDIX E
DETAILS OF THE MODELS

For SEAL model, the hop of the enclosing subgraph
is chosen as 1 or 2. An Adam optimizer with initial
learning rate 1e-5 is used. Each node is chosen as the latent
embedding of node2vec (128-dimensional), concatenated
with the hop distance to the two anchors of a target link
m (which equals to the number of unique structural roles
of the nodes to the two anchors, as computed by the
node labeling algorithm DRNL, and averagely m = 100).
Therefore the node features will have a dimension 128+m+1.
Altogether 4 GNN layers are used, with hidden dimension
(128+m+1, 32), (32,32), (32,32), (32,1). Finally, two 1D-
Convolutional layers are used, where the kernel size and
out-put dimensions are (97,16) and (5,32), respectively.
The dimension of the MLP is (352,128) and (128,2). In
case m is 100, the number of parameters of the model is
(128+100+1)*32+32*32+32*32+32*1+97*16+5*32+352*128
+128*2 = 56,432.

For Walk-Pooling model, the hop of the enclosing subgraph
is chosen as 2. An Adam optimizer with initial learning rate
5e-5 is used. The representation for each node is chosen
as 1, and a random-walk based on the graph topology is
adopted. Altogether 2 GNN layers are used, with hidden
dimension (32,32) and (32,32). Key matrices in attention
module have dimension (96,32) and (32,64), the same goes
for query matrices. The dimension of the MLP is chosen as
(72,1440),(1440,1440), (1440,720), (720,72), (72,1), which
is a large model. The number of parameters of the model is
32*32+32*32+96*32*2+32*64*2+72*1440+1440*1440+1440
*720+720*72+72*1=3,278,280.

For LGLP model, the hop of the enclosing subgraph is cho-
sen based on the validation set. An Adam optimizer with initial
learning rate 5e-3 is used. The representation for each node
is chosen as the latent embedding obtained through DRNL.
Altogether 3 GNN layers are used, with hidden dimension
*(2(m+1),32), (32,32), (32,32), where m is the number of
node-labeling obtained through DRNL as in [38]. The dimen-
sion of the MLP is chosen as (96,128) and (128,2). In case m
is chosen as 100, the number of parameters of the model is
2*(100+1)*32+32*32+32*32+96*128+128*2=21,056.

APPENDIX F
AVERAGE LINK PREDICTION AUC ON NETWORKS WITH

NODE ATTRIBUTES.

TABLE V
AVERAGED AUC USING BOTH GRAPH TOPOLOGY AND NODE ATTRIBUTE.

Data Citeseer Cora Pubmed PPI

SEAL 87.61±1.12 88.72±1.36 96.13±0.31 91.81±0.36
W-P 92.39±0.64 95.14±0.21 98.64±0.04 93.09±0.45
LGLP 90.89±0.88 94.63±0.97 98.12±0.22 91.10±0.24
DSDN 92.46±0.70 95.43±0.65 98.77±0.61 93.25±0.27

Table V we report the link prediction results on 4 networks
with node attributes. We can see that our model has a very



17

competitive performance when compared with GNN based
methods. This shows that it has a strong advantage in com-
bining both the network structure and attribute information.

APPENDIX G
NETWORK-LEVEL SIMILARITY AND GROUPING

With a fixed-dimensional link representation, we can model
the link pattern distribution of different networks and examine
their similarity as follows. Let we have L networks Gp’s each
with np links whose representation or embedding is denoted
as z

(p)
j for j = 1, 2, ..., nl. Then the similarity between two

networks can be assessed by the distance of their respective
link-pattern distributions. To achieve this, We first compute
the link-level distance between the np and nq links of the two
networks, Gp and Gq , as an Rnp×nq distance matrix Wpq

[i,j] =

∥z(p)i − z
(q)
j ∥2. Then we compute the average distance of the

k-smallest entries in each row and column of Wpq , separately,
and sum them up together, as

Dis(Gp,Gq) =
1

2

(
1

np

np∑
i=1

Wpq
[i,:](k) +

1

nq

nq∑
j=1

Wpq
[:,j](k)

)
(10)

The resultant Dis(Gp,Gq) is the averaged k-nearest neighbor
distance from one link in Gp to the links in Gq , plus the
averaged k-nearest neighbor distance from one link in Gq
to the links in Gp. The larger the value, the more different
the link-pattern distributions of the two networks. The link-
pattern distribution is a stable statistical measure to quantify
the similarity between networks in terms of how their links
are organized collectively.

APPENDIX H
DETAILS OF THE EXTRA NETWORKS

The extra networks included are listed as follows: ca-
HepTh [64]: collaboration network from researchers of high
energy physics theory in arXiv (Jan. 1993 to Apr. 2003); ca-
HepPh [64]: collaboration network of high energy physics
phenomenology researchers in arXiv (Jan. 1993 to Apr. 2003);
ca-CondMat [57]: collaboration network from researchers of
condense matter physics in arXiv (Jan. 1993 to Apr. 2003);
ADV [65]: social network from advogato with 5155 users
and 39285 edges; PB [66]: network of 16714 hyperlinks
between 1222 political blogs in the United States of America;
ogbl-citation2 [67]: citation network between a subset of
papers extracted from MAG [68]; ogbn-proteins [69]: protein-
protein interaction network extracted from 8 species; fm-
social [70]: social network from LastFM with 7624 users and
27806 edges; ogbl-collab [67]: a subset of the collaboration
network between authors in MAG [68]; S1Anonymized [71]:
anonymized social network with 320 users and 2368 edges;
S2Anonymized [71]: anonymized social network with 165
users and 725 edges; M1Anonymized [71]: anonymized social
network with 1429 users and 19357 edges; M1Anonymized
[71]: anonymized social network with 1300 users and 9662
edges; Github [72]: social network collected from github with
37700 users and 289003 edges; ogbl-ddi [73]: a drug-drug
interaction network in which each node represents an FDA-
approved or experimental drug; Ecoli [74]: pairwise reaction

relation of metabolites in E.coli with 1805 nodes and 15660
edges; KHN: collaboration network with 3772 nodes and
12718 edges (https://noesis.ikor.org/datasets).

https://noesis.ikor.org/datasets/link-prediction
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