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Light Mixture Intrinsic Image Decomposition Based on a Single RGB-D
Image

Guanyu Xing · Yanli Liu · Wanfa Zhang · Haibin Ling

Abstract We propose a novel intrinsic image decomposi-
tion method based on a single RGB-D image. We first sep-
arate the shading image into an illumination color compo-
nent, a distant shading component and a local shading com-
ponent, inducing a novel intrinsic image model that can en-
code color and spatial variation of scene illumination. Un-
like previous methods, which assume illumination color is
white, our light mixture model encodes scene illumination
with two different light types, and an automatical strategy
is proposed to calculate the color of the two light types. We
also adopt physical based illumination prior to infer the dis-
tant shading component. To do so, we firstly recover the il-
lumination distribution of the distant light sources through
solving a system of linear equations with sparse and non-
negative constraints. Then, the recovered illumination is used
to synthesize a coarse distant shading image jointly with
the depth map. Laterly, the synthetic image is employed as
an additional constraint of distant shading component. To
reduce noise disturbance from the synthetic distant shad-
ing image, a novel sampling strategy was proposed. Finally,
we consider the similarity of material locally and globally,
which gives reliable constrains to the reflectance compo-
nent. Experimental results demonstrate the validity and flex-
ibility of our approach.
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1 Introduction

Intrinsic image decomposition addresses the problem of sep-
arating a photo into the product of an illumination compo-
nent that represents lighting effects and a reflectance com-
ponent that is the color of the observed material. The decom-
position results are of importance in many computer graphic
and computer vision tasks, such as segmentation, re-lighting
and color constancy.

Since for each pixel, the number of the unknowns is
twice the number of measurements, intrinsic image decom-
position is essentially a highly ill-posed problem. A nature
and extensively adopted way is to incorporate some priors
including assumptions or constraints into illumination com-
ponent, reflectance component or both of them. Among vari-
ous priors, the Retinex model [13] which assumes that small
gradients correspond to illumination and large gradients cor-
respond to reflectance is a classical and widely used assump-
tion. However, although the Retinex works well in a Mon-
drian (i.e. piecewise constant) world, it is known to break
down in the presence of occlusions, shadows, and other phe-
nomena commonly encountered in real-world scenes [10].
More recently, researchers demonstrated that the basic Retinex
model can be improved by adopting non-local texture con-
straints [20] or global sparsity priors [9, 17]. Bell et al. pro-
posed a dense CRF (conditional random field) formulation
based method that achieves better decomposition than pre-
vious methods on the designed database which contains a
large amount of indoor images (Fig. 1(b)) [6]. Alternatively,
Sinha et al. searched for global consistency based on local
gray-level junction analysis to classify edges as illumina-
tion or reflectance, which can help recovering reflectance
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(a) input (b) Bell et al. [6] (c) Barron et al. [3] (d) Chen et al. [8] (e) our method

Fig. 1: A test scene from the NYU dataset [18]. (a) Input color and depth image, white pixels in depth image are incomplete areas whose depth
values are not recorded. ((b)∼(d)) reflectance and shading images estimated by three recent approaches for intrinsic decomposition of RGB-D
images and by our method. Our method can produce nearly uniform shading for points with similar lighting condition but different material (the
quilt and white fabric on the bed), and prevent the interference from the noise of the depth image.

and illumination in a world of painted polyhedra [19]. To
process real images, machine learning has also been used to
classify each image derivative [4,21]. Although these works
have made great progress in intrinsic image decomposition,
high quality decomposition for natural complex scenes is
still very challenging, in which the main difficulties include
(not limited to): firstly, real scenes are usually illuminated
by colored light sources, some of them even illuminated by
multiple colored light sources. None of the methods men-
tioned above considers this case. For colored image, they
usually process different channels separately, which is hard
to accurately recover shading images for scenes illuminated
by mixed color lights. Therefore, most shading results demon-
strated in previous papers are gray-scale images. Secondly,
the lack of enough scene information makes the above meth-
ods fail to accurately decompose images of scenes with com-
plex material, geometry or illumination condition.

Recently, facilitated by the development of commercial
depth sensors such as Kinect [12], the depth information of
scenes can be easily acquired and has been introduced into
intrinsic image decomposition. For example, Lee et al. [14]
tried to estimate intrinsic images from an RGB-D video cap-
tured by a moving camera based on the Retinex model. In
the approach, the depth map is used to enforce non-local
constraint among different surface points in the shading com-
ponents. However, the approach still ignores colored light
sources, and performs better for RGB-D videos instead of
RGB-D images. Another practical and important problem
of depth maps is: they are usually noisy and incomplete
due to sensor noise, dark objects, occlusion of the structured
lights, and so on, making the geometry information unreli-
able. Therefore, more intensive study on how to use depth
map to decompose accurate intrinsic images is required.

The work most related to ours includes the methods pro-
posed in [3,8], which also decompose intrinsic images from

a single RGB-D image. In [3], Barron et al. presented the
scene-SIRF model to obtain an optimized depth image, a
reflectance image and a spatially varying model of illumina-
tion from a single RGB-D image. However, it needs to solve
a very complex non-convex optimization problem to get the
intrinsic components, making the method time-consuming.
Moreover, the method performs poorly for points with inac-
curate depth values, i.e., points whose depth values are miss-
ing or position outside the depth sensor’s range. As a result,
the shading image recovered by the method may contain un-
faithful areas (The wall lamps are illegible in the shading
image of Fig. 1 (c)). Chen’s method [8] considers both di-
rect and indirect illumination of a shading image, the color
of illumination is also modeled in their method. However, it
does not consider the mixture of different lights and only ex-
ploits the smoothness of illumination color as a constraint,
which is not reliable enough. The non-local shading con-
straint based on the depth information is also hard to guar-
antee surface points with accurate shading value, due to the
fact that shading of objects is decided jointly by geometry
and illumination (The white fabric on bed are too bright
comparing to its surrounding area in the shading image of
Fig. 1 (d)).

In this paper, we present a novel framework of intrin-
sic image decomposition from a single RGB-D image auto-
matically. Unlike previous work, our intrinsic image model
encodes the multiple light sources with different colors. To
account for the light mixture and spatial variation of illu-
mination condition, we first deduce a new intrinsic image
model which decomposes the shading into three constituent
components, i.e., an illumination color component, a distant
shading component and a local shading component. Then
we present an iterative strategy to estimate the illumina-
tion color automatically. To estimate the illumination dis-
tribution of distant light sources, the sparse and nonnegative
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constraints of illumination distribution are utilized. Then a
coarse shading image is synthesized jointly by recovered il-
lumination and depth map and further set as an additional
constraint when calculating the distant irradiance compo-
nent. A sampling strategy is proposed to reduce the noise
disturbance of the input depth map. For the reflectance im-
age, we introduce both the local and global material similar-
ity to give reliable constrains to the reflectance image.

The main contributions of the paper include: (1) a new
light mixture intrinsic image model for scenes with two light
types, enabling the method competent for practical complex
scenes; (2) a novel framework to infer intrinsic images with
physical based illumination prior; and (3) an effective strat-
egy to prevent the final shading image from noise distur-
bance of an input depth map. These contributions lead to an
efficient and accurate approach for intrinsic images decom-
position based on a single RGB-D image.

2 Model

The intrinsic image estimation is try to decompose the im-
age into the product of a reflectance image A and a shading
image. For an RGB image I we have:

Ip(c) = Sp(c)Ap(c), for c ∈ {R,G,B} (1)

where Ip is a 3 × 1 vector containing the observed RGB
color of pixel p, Sp and Ap are also 3× 1 vectors containing
shading and reflectance at pixel p respectively.

Our light mixture model assumes two light types in a
scene, which is consistent with practical scene configura-
tions involving indoor/outdoor or flash/ambient lighting [11],
therefore:

Sp(c) = S<1,p>L1(c) + S<2,p>L2(c)

where L1 and L2 are 3×1 vectors representing the illumina-
tion color, S<1,p> and S<2,p> are the values of p at the two
gray-scale shading images corresponding to different light
types, then we have:

Ip(c) = (S<1,p>L1(c) + S<2,p>L2(c))Ap(c) (2)

Many intrinsic image decomposition methods such as [2,
14] assume that the light sources are distant from the ex-
amined scene; consequently, points with the same normal
directions will share uniform shading value if unoccluded.
As there may be some local light sources and occlusions in
the real world, the scene’s illumination may vary spatially
in practice. Obviously, typical decomposition models can-
not handle these cases. Our approach considers all factors
described above. We use a distant shading image D to en-
code the scene illuminated only by distant light sources and
ignore occlusions, then Eq. 2 can be written as:

Ip(c) = (
S<1,p>

Dp
L1(c) +

S<2,p>

Dp
L2(c))DpAp(c)

denote S<1,p>

Dp
, S<2,p>

Dp
as k<1,p> and k<2,p> respectively,

Ip(c) = (k<1,p>L1(c) + k<2,p>L2(c))DpAp(c) (3)

Let Wp(c) =
k<1,p>+k<2,p>

k<1,p>L1(c)+k<2,p>L2(c)
(Wp is a 3×1 vector),

multiply Wp(c) in both sides of Eq. 3, we have Wp(c)Ip(c) =
(k<1,p> + k<2,p>)DpAp(c), therefore,

Ip(c) = (k<1,p> + k<2,p>)Dp
1

Wp(c)
Ap(c) (4)

Denote (k<1,p> + k<2,p>) and 1
Wp(c)

as Kp and Cp(c) re-
spectively, our final model is

Ip(c) = DpKpCp(c)Ap(c), for c ∈ {R,G,B} (5)

From the definition of the four items in the model, C en-
codes scene’s illumination color, we call it as the color im-
age; K encodes the spatial variation of illumination caused
by light sources near the examined scene and occlusions,
which is called as the local shading image; D and A are
the distant shading image and the reflectance image respec-
tively. We will discuss how to calculate them in the rest of
this article.

3 Distant illumination recovery

For intrinsic image decomposition, a more reliable constraint
of shading can be established if we have known scene illu-
mination, due to the truth that shading value of a point in a
scene is decided jointly by geometry and lighting condition.
Therefore, this section will discuss the method of distant il-
lumination recovery.

The color of illumination is described as a separate com-
ponent in our intrinsic image model, so we only consider
light sources with white color in this section. The assump-
tion of white illumination indicates that recovering the inten-
sity of every light source is the primary goal of our lighting
estimation algorithm.

Denote the intensity and direction vector of a distant
light source Ld as L and d respectively. Then we can pro-
duce a shadow removed image Id of the examined scene
corresponding to Ld as following:

Idp (c) = max(0, LAp(c) < d,np >), for c ∈ {R,G,B},

where np is the reflectance and normal vector of point p,
<> is the dot product of two vectors. For convenience, we
call Id/L basis image, which is related to the light source
Ld. Obviously, an image can be written as a linear combina-
tion of basis images corresponding to different distant light
sources under the assumption that light sources are far away
from the examined scene. As an approximation, we sample
several directions of light sources, therefore:

Ip(c) =
∑
q∈ℵd

LqAp(c) ·max(0, < dq,np >), (6)



4 Guanyu Xing et al.

(a) RGB image I (b) original depth (c) normal map (d) initial shading D̄ (e) illumination

(f) light color C (g) distant shading D (h) local shading K (i) reflectance A (j) shading S

Fig. 2: The input RGB-D image is demonstrated in (a) and (b), white pixels in (b) are incomplete areas whose depth values are not recorded. (c)
shows the normal map recovered from the depth map. (d) is the initial distant shading image D̄ generated from the recovered distant illumination
distribution which is presented in (e). (f)∼(i) are the recovered illumination color image, distant shading image D, local shading image K and
reflectance image A respectively. (j) is the final shading image S which is the product of C, K and D.

where ℵd is the set of sampling light sources. We sample the
direction of light source as all combinations of polar angles
θ from [−π

2 ,
π
2 ] and azimuth angles φ from [0, 2π] , at inter-

vals of π/10. Divided by Ap(c) in both sides, Eq. 6 becomes∑
q∈ℵd

Lq ·max(0, < dq,np >)− Ip(c)
Ap(c)

= 0, (7)

Note that this is a linear equation with unknowns of Lq

and 1
Ap(c)

, if we choose n sample points in the scene, a sys-
tem of linear equations can be constructed. However, solv-
ing the linear equations may get zero solutions, to avoid this,
we let 1

Ap(c)
= 1+ ρp, where ρp is a non-negative value, for

the reason that Ap is the reflectance parameter which is less
than 1. Then, we have∑
q∈ℵd

Lq ·max(0, < dq,np >)− Ip(c)ρp = Ip(c), (8)

Unfortunately, this system of linear equations is still un-
deterministic, because there are n equations with n + |ℵd|
unknowns, which is under constrains. Fortunately, differ-
ent points in the scene may share the same material, this
will reduce the number of unknowns dramatically. To find
points with similar material, we cluster the input image by
mean shift in the chromaticity domain, and assume points
belonged to same cluster share similar material [8, 14].

Additional constraints are also employed to improve the
accuracy of the approximation. A non-negative constraint is
enforced. That is, Lq ≥ 0 for q ∈ ℵd and ρp > 0. An-
other constraint is the sparse representation saying that im-
ages produced by a Lambertian scene can be efficiently rep-
resented by a sparse set of images generated by directional
light sources [16].

Theoretically, we can select any channel of the image to
create the equations. We found by experiment that using the

shading image recovered by Retinex model [13] as the in-
put image I yields a better performance than other models.
Fig. 2 (e) demonstrates the estimated illumination distribu-
tion, from which we can see the estimated lighting parame-
ters are very sparse.

With the estimated illumination, we can produce an ini-
tial distant irradiance image D̄. For a pixel p, we have:

D̄p =
∑
q∈ℵd

Lq ·max(0, < dq,np >), (9)

In fact, D̄ will be the distant shading image if using
the precise normal map, unfortunately, the depth map cap-
tured by current commercial sensor is noisy and incomplete,
which makes D̄ imperfect. Fig. 2 (d) demonstrates the shad-
ing image produced by the original depth map. Our method
try to combine the Retinex model and the synthetic shading
image D̄ to produce a better decomposition result.

4 Intrinsic components recovery

Our intrinsic image decomposition method contains two steps.
The first step is to estimate the color image C; the second
step solves K, D and A.

4.1 Color image estimation

We first discuss how to estimate the color image C. Adopt-
ing all symbols defined in Sec. 2, for a pixel p in channel
c ∈ {R,G,B}, Cp(c) =

k<1,p>L1(c)+k<2,p>L2(c)
k<1,p>+k<2,p>

, denote
k<1,p>

k<1,p>+k<2,p>
as αp which is called as light mixture param-

eter, we have:

Cp = αpL1 + (1− αp)L2, (10)
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The estimation of color image is converted to a prob-
lem of solving αp and illumination color L1, L2. The simi-
lar problem has been discussed in Hsu’s paper, however, the
illumination color is indicated by user [11]. We seek an au-
tomatic way in this paper.

4.1.1 Illumination color calculation

We use a simple method to give a coarse estimation of L1

and L2, then refine them by an iteration procedure.
Illumination color initialization. We initialize illumi-

nation color based on real life experiences. We set L1 =
(1, 1, 1)T , due to the fact that white light sources are very
common in our life. We also notice that the specular reflec-
tion has less effect in changing the color of incident light
than that of diffused reflection, therefore we adopt pixels
belonging to highlight areas to calculate L2, we first get
the principal components of all highlight pixels’ RGB value
vector by PCA (Principal component analysis), then set L2

as the first principal component. The highlight pixels are de-
tected by Zhai’s method [22]

Illumination color refinement. We use a two step iter-
ative strategy to refine the initial illumination color.

Step1: We adopt the method described in [11] to esti-
mate material colors of the scene, a voting scheme is pro-
posed to decide the final material of pixels in the image.
This method cannot distinguish albedos differing only by a
scale factor, i.e. two albedo values (a, b, c) and (ka, kb, kc)

will be treated as the same. Therefore, Eq. 2 can be wrote
as:

Ip(c) = (
S<1,p>

k̃p
L1(c) +

S<2,p>

k̃p
L2(c))(k̃pAp(c)),

where c ∈ {R,G,B}, k̃p is the factor to make two albedo
values differed by a scale have the same value. Let Ãp =

k̃pAp, k
′

<1,p> =
S<1,p>

k̃p
and k

′

<2,p> =
S<2,p>

k̃p
, we have:

Ip(c) = (k
′

<1,p>L1(c) + k
′

<2,p>L2(c))Ãp(c) (11)

Obviously, k
′

<1,p> and k
′

<2,p> can be also calculated
if known illumination and material color. In addition, this
method cannot get material color of all pixels in the image,
but it will not influence the calculating of illumination color.

Step2: We sample n pixels randomly from the image,
for the ith pixel, we set ( Ipi (R)

Ãpi
(R)

,
Ipi (G)

Ãpi
(G)

,
Ipi (B)

Ãpi
(B)

) as the ith

row of an n × 3 matrix Ĩ. According to Eq. 11, Ĩ = K̃ · L̃,
where K̃ is an n × 2 matrix with (k

′

<1,pi>, k
′

<2,pi>) as its
ith row, L̃ is a 2 × 3 matrix which records the illumination
colors. The two matrix K̃ and L̃ can be solved by NMF (non-
negative matrix factorization) [5], the results from step1 are
used as the initialization of the NMF procedure.

4.1.2 Calculation of light mixture parameter

We follow Hsu’s method [11] in this section, and get the
expression below:

I
′

p = αpA
′

p ∗ L
′

1 + (1− αp)A
′

p ∗ L
′

2, (12)

where αp is the light mixture parameter, I
′

p = [
Ip(R)
Ip(B) ,

Ip(G)
Ip(B) ]

′
,

A
′

p = [
Ap(R)
Ap(B) ,

Ap(G)
Ap(B) ]

′
and L

′

i = [Li(R)
Li(B) ,

Li(G)
Li(B) ]

′
(i ∈ {1, 2}),

the symbol ∗ is the Hadamard product.
Note that the solving of αp is similar to the classical

foreground/backgroud mixture problem in matting, there-
fore, we adopt the matting algorithm proposed by Levin et.
al [15] to solve this problem.

4.2 Shading and reflectance components estimation

Divide the estimated color image in both sides of Eq. 5. For
convenience, we still denote Ip(c)/Cp(c) as Ip(c) for c ∈
{R,G,B} , therefore:

Ip(c) = KpDpAp(c), (13)

As is common in intrinsic image decomposition, we con-
duct decomposition in the logarithmic domain. Taking loga-
rithms on both sides yields:

ip(c) = kp + dp + ap(c), (14)

Then we formulate the decomposition as a problem of
minimizing the following energy function:

E(k, d, a) = Edata(k, d, a) + EA(a) + ED(d) + EK(k),

(15)

We call Edata as data term, EA as reflectance term, ED the
distant shading term, while EK the local shading term. They
are described in detail in the next few sections.

4.2.1 Data term

This term is to make sure that the original image I can be
reconstructed by the recovered components. Our data term
is defined as:

Edata(k, d, a) =
∑

c∈{R,G,B}

∑
p∈ℵI

(ip − kp − dp − ap(c))
2,

(16)

where ℵI is the set of all pixels in image I .
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4.2.2 Reflectance term

We consider both local and global similarity of material in
our method. The reflectance term is defined as:

EA(a) = λl
AE

l
A(a) + λg

AE
g
A(a), (17)

where λl
A and λg

A are weight parameter, El
A(a) and Eg

A(a)
are local constraint term and global constraint term respec-
tively.

Local constraint term. This term comprises pairwise
terms that penalize differences between adjacent pixels in I:

El
A(a) =

∑
c∈{R,G,B}

∑
p∈ℵI

∑
q∈Np

αl
p,q(ap(c)− aq(c))2, (18)

where ℵI is the set of all pixels in image I , Np is the 5 × 5
neighborhood of pixel p, αl

p,q is calculated by:

αl
p,q = e−1·κ1·∥ch(Ip)−ch(Iq)∥)min(1,

√
κ2 · lum(Ip)lum(Iq)),

(19)

where ch(Ip) and lum(Ip) denote the chromaticity and lu-
minance of p, κ1, κ2 are two parameters, the luminance and
chromaticity values of pixels are calculated in the HSV color
space. The left term in this equation expresses the truth that
pixels with similar chromaticity value are likely to have sim-
ilar material. κ1 can adjust the sensitivity to pixels’ chro-
maticity variation of our method, we set it as 200 for most
cases in this paper, a larger value should be adopted for
scenes with complex texture. The right term is used to pe-
nalize pixels with low luminance value, due to the fact that
much noise exists in dark areas. κ2 can control the strength
of the punishment, we set it as 1 for photos of real scenes,
while 100 for virtual scenes, because there is little noise in
rendered images.

Global constraint term. This term tries to keep non-
adjacent pixels but with similar material share the same value
in the estimated reflectance image. To reduce the dimension-
ality of the problem, we only select one matched pixel for
each pixel in the image. The material similarity of two non-
neighbored areas can be maintained by the local constraint
by setting the weight parameter λg

A a very big value. Next
we will describe the strategy of matched pixel selection.

In Sec. 4.1.1, we have recovered material color of part
pixels in the image, for these pixels, we select pixel with
similar material color and chromaticity value but farthest
distance in the image plane as the matched pixel p

′
; for other

pixels, we only use small difference in chromaticity value
and the farthest distance as the judgements. The definition
of the global constraint term Eg

A(a) is:

Eg
A(a) =

∑
c∈{R,G,B}

∑
p∈ℵI

αg

p,p′ (ap(c)− ap′ (c))2, (20)

where αg

p,p′ = e
−20∥Ip−I

p
′ ∥. This weight parameter is used

to make sure that pixel pairs with similar RGB, chromatic-
ity and material color contribute more to the global material
similarity.

4.2.3 Distant shading term

The distant shading term comprises two components: one
for smoothness, the other for keeping the recovered shad-
ing image close to the synthetic shading D̄. Denote them as
smoothness term Es

D and initial constraint term Ei
D respec-

tively.

ED(d) = λs
DEs

D(d) + λi
DEi

D(d), (21)

where λs
D and λi

D are weight parameters. We now describe
these two terms.

Smooth term. Note that our distant shading image D
ignores occlusions and highlight in the scene, so if two ad-
jacent points have similar normals, we expect them to have
similar shading. The smooth term is designed to model the
angular coherence of distant illumination, it has the follow-
ing form:

Es
D(d) =

∑
p∈ℵI

∑
q∈Np

βs
p,q(dp − dq)

2, (22)

The definition of ℵI and Np is similar as them in Eq. 18.
The weight βs

p,q is defined as:

βs
p,q = e(−100∥np−nq∥), (23)

This weight function is used to penalize pixels with different
normals.

Initial constraint term. In Sec. 3, we have generated an
initial distant shading image D which can be used as a con-
straint term in the energy function. To minimize the distur-
bance from D, we just let the unknown shading image close
to the initial image D in several sampling pixels, the value
of rest pixels can be estimated according to the smoothness
of shading and reflectance. The initial constraint term is de-
fined as:

Ei
D(d) =

∑
p∈ℵd

init

βi
p(dp − d̄p)

2, (24)

where dp is the logarithm of D̄p, ℵd
init is the set of sampling

pixels. The value of the weighting parameter βi
p is calculated

as:

βi
p =


depp

dismin
depp < dismin

0.8 + 0.2
dismax−depp

dismax−dismin
dismin ≤ depp ≤ dismax

0.8− 0.8
depp−dismax

dismax
dismax ≤ depp ≤ 2dismax

0 depp ≥ 2dismax

(25)
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where depp is the depth value of p, dismin and dismax to-
gether decide the effective range of the depth sensor. Eq. 25
penalize points outside the effective range, because their depth
value are very inaccurate. Our approach sets dismin, dismax

as 1.2m and 4.0m, which correspond to the range of Kinect
sensor.

To get the pixel set ℵd
init, we propose a sampling strat-

egy. We first remove pixels belonging to incomplete areas of
the depth image, then using the weight parameter βi

p calcu-
lated by Eq. 25 to decide whether a pixel should be sampled
or not. For a pixel p, let ηp = e−5(1−βi

p), and generate a
random variable σp in the range of [0, 0.7] according to the
uniform distribution, p will be add into ℵd

init, if ηp > σp.
The sampling result is demonstrated in Fig. 3 (a). It shows
that points with accurate depth value have higher sampling
rate, while lower rate for points far away from the camera.
Fig. 3 demonstrates the calculated distant shading images
with (Fig. 3. (b)) and without (Fig. 3. (c)) using the proposed
sampling strategy, which proves that our sampling strategy
can reduce noise of the captured depth map effectively.

(a) sampling result (b) without sampling (c) with sampling

Fig. 3: Comparison between the calculated distant shading images of
the scene demonstrated in Fig. 1 with and without using our sampling
strategy. (a) exhibits the result of our sampling strategy. (b) and (c)
demonstrate the calculated distant shading images with and without
using the proposed sampling strategy.

4.2.4 Local shading term

Similar as the distant shading term, our local shading term
contains two components: a smooth component and an ini-
tial constraint component. Therefore,

EK(k) = λs
KEs

K(k) + λi
KEi

K(k), (26)

Smooth term. This term tries to keep the coherence of
local illumination, adopting the symbols used in previous
sections, Es

K(k) is defined as:

Es
K(k) =

∑
p∈ℵI

∑
q∈Np

(kp − kq)
2, (27)

Initial constraint term. This term helps to capture the
occlusion and highlight in the scene. First, we need to get an
initial local shading image K̄. According to Eq. 11, k

′

<1,p>+

k
′

<2,p> = (S<1,p>+S<2,p>)/k̃p, note that S<1,p>+S<2,p>

is p’s final shading value. We make an approximation and let
our initial local shading image K̄ be:

K̄p =

k
′
<1,p>+k

′
<2,p>

D̄p
p ∈ ℵl

init

0 otherwise
(28)

where D̄ is the initial distant shading image described in
Sec. 3, ℵl

init is the set of pixels whose material color can be
recovered and depth value is recorded by the depth sensor.

The initial constraint term is defined as:

Ei
K(k) =

∑
p∈ℵl

init

(kp − k̄p)
2, (29)

where k̄p = ln(K̄p). Since K̄ is just an approximation of
the real local shading image, we set λi

K to a small value
comparing to other weight parameters.

5 Experiments

We use the MPI-Sintel dataset [7] to evaluate our intrinsic
image decomposition algorithm, the weight parameters are
set as λl

A = 15, λg
A = 200, λs

D = 1, λi
D = 1, λs

K =
0.5, λi

K = 0.01 in our experiments. We select 8 different
scenes, and obtain reflectance and shading images using our
approach with the whole pipeline, our approach but with-
out considering illumination color (denoted as NC), the ap-
proach of Chen et al. [8], the approach of Barron et al. [3]
and the approach of Bell et al. [6]. For comparison, we make
a quantitative evaluation of the results obtained by the differ-
ent approaches. The calculated LMSE (Local mean square
error) [10] of these methods are demonstrated in Tab. 1,
from which we can see that our approach performs better
than other methods, and the adopting of illumination color
makes the algorithm more accurate. Note that the LMSE of
the bamboo scene is smaller when we do not consider illu-
mination color, it is mainly caused by the bamboo, which
makes our recovered illumination color a little green. Fig. 4
demonstrates the comparison results between the recovered
intrinsic images and the ground truth of two test scenes (left
is the market scene and right is the bamboo scene), we find
that the intrinsic components produced by our method are
very close to the ground truth, although the colors of intrin-
sic images of the bamboo scene are a little different from the
ground truth, there are inter-reflections between the green
bamboos, our results are still reasonable.

We also test our algorithm on the NYU-date set which
contains RGB-D images captured by Kinect. Original raw
sensor depth maps without any repairing are adopted in all
of our experiments. The estimated intrinsic components are
compared with the intrinsic images produced by Bell’s [6],
Chen’s [8] and Barron’s [3] methods. The comparison re-
sults are demonstrated in Fig. 1 and Fig. 5, from which we
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Fig. 4: Comparison between intrinsic images estimated by different methods and the ground truth.

Scene Bell [6] Barron [3] Chen [8] NC Ours
allry1 0.0597 0.0550 0.0615 0.0399 0.0397
allry2 0.0459 0.0506 0.0435 0.0317 0.0242

ambush 0.1470 0.1147 0.1439 0.1664 0.1423
bamboo 0.0480 0.0869 0.0835 0.0669 0.0692
bandage 0.0762 0.0804 0.0783 0.0744 0.0727
market 0.0572 0.1254 0.0795 0.0403 0.0381
shaman 0.1122 0.1554 0.1420 0.1058 0.1019
sleeping 0.0300 0.0438 0.0323 0.0348 0.0248

Table 1: Quantitative evaluation of the albedo and shading images es-
timated by different approaches on the MPI-Sintel dataset. We adopt
LMSE as our error metric.

can see the reflectance images recovered by Bell’s method
are too smooth to make the shading image accurate; Chen’s
method makes objects with small RGB value too dark while
objects with large RGB value too bright in the recovered
shading image; Barron’s method produces unfaithful areas
in the decomposed images. For example, the ornaments on
the wall in Fig. 1 are hard to be recognized according to
the shading image. Our method can produce nearly uniform
reflectance for points with similar albedo, and the shading

image still conforms with common sense. The color image
can capture the light mixture of scene’s illumination, take
the first scene in Fig. 5 for example, the light color of the
area out of the restroom is white, while the restroom is a
little blue, which is consistent with our recovered color im-
age. Decomposition results of three additional scenes are
presented in Fig. 6, we can find that our color image of
the second scene can capture both the colors of indoor light
source (orange) and the light from the window (white).

Our algorithm is implemented on a PC with Core i7-
4790 4.0GHz CPU and 16GB RAM. The average time cost
of our method and Bell’s method is nearly 4 minutes (for
image with 561× 427 resolution), while it takes 10 minutes
for Chen’s method and 40 minutes for Barron’s. We only
need to solve several optimization problems and the num-
ber of unknown parameters is much less than that in Chen’s
and Barron’s methods, which makes our algorithm more ef-
ficient.
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input I distant shading D reflectance A reflectance reflectance reflectance

color C local shading K shading S shading shading shading

(a) our method (b) Bell [6] (c) Barron [3] (d) Chen [8]

Fig. 5: Three test scenes from the NYU dataset [18]: (a) demonstrates the results of our method including: illumination color image C, the distant
irradiance image D, the local irradiance image K, the reflectance image A and the shading image S. (b)∼(d) show the reflectance and shading
image produced by other there intrinsic image algorithms.

6 Conclusions and future work

We have presented a new method to decompose an RGB-
D image into its intrinsic components. We first propose a
novel four-component intrinsic image model, which sepa-
rates the shading image into illumination color component,
distant shading component and local shading component.
This model can describe the light mixture and spatial vari-
ation of illumination condition. A new iterative strategy is
proposed to calculate the illumination color component au-
tomatically, then we estimate the other three intrinsic com-
ponents through solving an energy minimization problem.
Unlike previous methods, Our algorithm estimates the il-
lumination distribution of the distant light sources through

solving a system of linear equations. The recovered illumi-
nation can produce an initial distant shading image based on
the depth map. To decrease the disturbance from noise of
the original depth map, we adopt a sampling strategy which
can ensure that pixels with accurate depth value will have
higher possibility to be selected. We also employ both local
and global constraints of the reflectance component, which
makes the decomposed intrinsic images reliable.

Although our method runs faster than most of previous
methods, the efficiency still cannot meet the practical appli-
cation. Our recovered distant illumination still has error, and
the accuracy of decomposition results for scenes with dark
objects and complex texture can also be improved. These
limitations indicate our future work.
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input I color C distant shading D local shading K reflectance A shading S

Fig. 6: The decomposition results of three other scenes, which include: input RGB image, the color image C,the distant shading image D, the
local shading image K, the reflectance image A and the shading image S.

Acknowledgements

This research is supported by National Natural Science Foun-
dation of China (Grant No.61402081, 61572333), 863 Pro-
gram of China (Grant No.2015AA016405), Fundamental Re-
search Funds for the Central Universities (Grant No.
ZYGX2014J059), China Scholarship Council (Grant No.
[2015]3012) and the Oversea Academic Training Funds,
UESTC. Ling was supported in part by National Science
Foundation (Grant No.1449860, 1218156 and 1350521).

References

1. Barron, J.T., Malik, J.: Shape, albedo, and illumination from a
single image of an unknown object. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 334–341
(2012)

2. Barron, J.T., Malik, J.: Intrinsic scene properties from a single rgb-
d imag. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 17–24 (2013)

3. Bell, M., Freeman, W.T.: Learning local evidence for shading and
reflectance. In: Proc. of the Int. Conference on Computer Vision,
pp. 670–677 (2001)

4. Bell, S., Bala, K., Snavely, N.: Learning the parts of objects by
non-negative matrix factorization. Nature 401, 788–791 (1999)

5. Bell, S., Bala, K., Snavely, N.: Intrinsic images in the wild. ACM
Trans. on Graphics (SIGGRAPH) 33(4) (2014)

6. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic
open source movie for optical flow evaluation. In: A. Fitzgibbon
et al. (Eds.) (ed.) European Conf. on Computer Vision (ECCV),
Part IV, LNCS 7577, pp. 611–625. Springer-Verlag (2012)

7. Chen, Q., Koltun, V.: A simple model for intrinsic image decom-
position with depth cues. In: Proc. of The International Confer-
ence on Computer Vision (2013)

8. Gehler, P., Rother, C., Kiefel, M., Zhang, L., Schölkopf, B.:
Recovering intrinsic images with a global sparsity prior on re-
flectance. In: Advances in Neural Information Processing Systems
(NIPS), pp. 765–773 (2011)

9. Grosse, R., Johnson, M.K., Adelson, E.H., Freeman, W.T.:
Ground-truth dataset and baseline evaluations for intrinsic image
algorithms. In: International Conference on Computer Vision, pp.
2335–2342 (2009)

10. Hsu, E., Mertens, T., Paris, S., Avidan, S., Durand, F.: Light mix-
ture estimation for spatially varying white balance. In: Proc. SIG-
GRAPH 2008, pp. 70:1–7. Los Angeles, California, USA (2008)

11. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R.,
Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A.,
Fitzgibbon, A.: Kinectfusion: real-time 3d reconstruction and in-
teraction using a moving depth camera. In: Proc. UIST, pp. 559–
568 (2011)

12. Land, E.H., McCann, J.J.: Lightness and retinex theory. Journal
of the Optical Society of America 61(1), 1–11 (1978)

13. Lee, K.J., Zhao, Q., Tong, X., Gong, M., Izadi, S., Lee, S.U.,
Tan, P., Lin, S.: Estimation of intrinsic image sequences from im-
age+depth video. In: Proc. of The 12th European Conference on
Computer Vision, pp. 327–340 (2012)

14. Levin, L., Weiss, Y.: A closed form solution to natural image mat-
ting. In: In IEEE Computer Vision and Pattern Recognition, pp.
61–68 (2006)

15. Mei, X., Ling, H., Jacobs, D.W.: Sparse representation of cast
shadows via l1-regularized least squares. In: Proc. ICCV, pp. 583–
590. Kyoto, Japan (2009)

16. Shen, L., Yeo, C., Hua, B.S.: Intrinsic images decomposition using
a local and global sparse representation of reflectance pp. 2904–
2915 (2011)

17. Silberman, N., D. Hoiem, P.K., Fergus, R.: Indoor segmentation
and support inference from rgbd images. In: Proc. ECCV, pp.
746–760 (2012)

18. Sinha, P., Adelson, E.: Recovering reflectance and illumination in
a world of painted polyhedra. In: Proc. of the Fourth Int. Conf. on
Computer Vision, pp. 156–163 (1993)

19. Tappen, M.F., Adelson, E.H., Freeman, W.T.: Estimating intrin-
sic component images using non-linear regression. In: Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition, pp.
1992–1999 (2006)

20. Tappen, M.F., Freeman, W.T., Adelson, E.H.: Recovering intrinsic
images from a single image. IEEE Trans. Pattern Anal. Mach.
Intell. 27(9), 1459–1472 (2005)

21. Zhai, Y., Shah, M.: Visual attention detection in video sequences
using spatiotemporal cues. In: Proceedings of the 14th ACM in-
ternational conference on Multimedia, pp. 815–824 (2006)


