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Abstract

We propose using the inner-distance between landmark
points to build shape descriptors. The inner-distance is de-
fined as the length of the shortest path between landmark
points within the shape silhouette. We show that the inner-
distance is articulation insensitive and more effective at
capturing complex shapes with part structures than Euclid-
ean distance. To demonstrate this idea, it is used to build a
new shape descriptor based on shape contexts. After that,
we design a dynamic programming based method for shape
matching and comparison. We have tested our approach on
a variety of shape databases including an articulated shape
dataset, MPEG7 CE-Shape-1, Kimia silhouettes, a Swedish
leaf database and a human motion silhouette dataset. In all
the experiments, our method demonstrates effective perfor-
mance compared with other algorithms.

1 Introduction

Classification of complex shapes with part structures is an
important problem in computer vision. However it is diffi-
cult to capture part structures. To attack this problem, we
propose using theinner-distance, defined as the length of
the shortest path within shape boundaries, to build shape de-
scriptors. We show that the inner-distance is insensitive to
shape articulations and it is often more discriminative than
the Euclidean distance for complex shapes. For example,
in Fig. 1, although points on (a) and (c) have similar spatial
distributions, they are quite different in their part structures.
On the other hand, (b) and (c) appear to be from same cat-
egory with different articulations. The inner-distances be-
tween the two marked points are quite different in (a) and
(b), while almost the same in (b) and (c).

The inner-distance is a natural replacement for the
Euclidean distance in shape descriptors. We use it to extend
shape contexts [2]. Based on the new descriptor, we de-
sign a dynamic programming method for silhouette match-
ing that is fast and accurate. The proposed method is tested
on a variety of shape databases. Excellent performance is
achieved on all of them compared to other algorithms.

The rest of the paper is organized as follows. Sec. 2 dis-

Figure 1: Three objects. The dashed lines denote shortest
paths within shape boundary that connect landmark points.

cusses related works. Sec. 3 first gives a model for articu-
lation and proves the articulation insensitivity of the inner-
distance. Then the inner-distance’s ability to capture part
structures and computational issues are addressed. Sec. 4
describes the extension of the shape context using the inner-
distance, and gives a framework for using dynamic pro-
gramming for silhouette matching and comparison. Sec. 5
presents and analyzes all experiments. Sec. 6 concludes.

2 Related Work

We will first discuss two works most closely related to this
paper. One is the use of geodesic distances for bending in-
variant representation of 3D objects [5]. The other is the
shape context [2] for 2D shapes. After that, some other
work that handles part structures is discussed.

Our work is partly motivated by Elad and Kimmel’s
work [5] of using geodesic distances for 3D surface com-
parison through multidimensional scaling (MDS). Their key
idea is that the geodesic distance is bending invariant, which
is quite similar to the 2D articulation invariance in which
we are interested. However, the direct counterpart of the
geodesic distance in 2D reduces to the distances along the
contours, which obviously is not useful. On the other hand,
the inner-distance may also be extended to 3D shapes.

The shape contextwas introduced by Belongie et al.
[2]. It describes the relative spatial distribution (distance
and orientation) of landmark points around feature points.
Combined with the thin-plate-spline [3], the shape context
is demonstrated to be very discriminative. [13] extended
the shape context by adding statistics of tangent vectors at
landmark points. [22] suggested including a figural conti-
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nuity constraint. [23] applied shape context and softassign
[4] for fast and effective shape matching. In this paper, we
extend the shape context by using the inner-distance to mea-
sure the spatial relations between points on shapes.

Roughly speaking, current methods for handling part
structures fall into two categories, supervised and unsuper-
vised. The supervised methods explicitly build models for
part structures through training. Then the models are used
for retrieval tasks. Examples can be found in [9, 6, 16].
The unsupervised methods do not depend on explicit part
models. For example, [1] showed that similarities of part
structure can be captured without the explicit computation
of part structure. [20, 18] used shock graphs for shape com-
parison. Some other related work can be found in [8].

3 The Inner-Distance

Now we describe the inner-distance. Consider two points
x, y ∈ O, whereO is a shape defined as a connected and
closed subset ofR2. The inner-distance betweenx, y, de-
noted asd(x, y; O), is defined as the length of the shortest
path connectingx andy within O. WhenO is convex, the
inner-distance reduces to the Euclidean distance. However,
this is not always true for non-convex shapes (e.g., Fig. 1).
This suggests that the inner-distance is influenced by part
structure to which the concavity of contours is closely re-
lated. In the following subsections, we will first show the
inner-distance’s insensitivity to articulation. Then, through
examples and experiments, we show the inner-distance’s
ability to capture part structure.

3.1 A Model of Articulated Objects

Before discussing the articulation insensitivity of the inner-
distance, we need to give a model of articulated objects.
Intuitively, when a shapeO is said to have articulated parts,
it means 1)O can be decomposed into some parts, say,
O1, O2, ..., On; 2) The junctions between parts are very
small compared to the parts they connect; 3) The articu-
lation onO as a transformation is rigid when limited to any
partOi, but can be non-rigid on the junctions; 4) The new
shapeO′ achieved from articulation ofO is again an artic-
ulated object and can articulatebackto O.

Based on the above intuition, we define an articulated
objectO ⊂ R2 of n parts together with an articulationf as:
O = {⋃n

i=1 Oi}
⋃{⋃i 6=j Jij}, where

1. ∀i, 1≤i≤n, partOi⊂R2 is connected and closed, and
Oi

⋂
Oj = Ø, ∀i6=j, 1≤i, j≤n.

2. ∀i6=j, 1≤i, j≤n, Jij⊂R2, connected and closed, is the
junction betweenOi and Oj . If there is no junc-
tion betweenOi andOj , thenJij = Ø. Otherwise,
Jij

⋂
Oi 6=Ø, Jij

⋂
Oj 6=Ø.

3. diam(Jij)≤ε, where diam(P ) is defined as
diam(P ) .=maxx,y∈P {d(x, y; P )} for a point set
P⊂R2. And ε≥0 is very small compared to the size
of the articulated parts. A special case isε = 0, which
means all junctions degenerate to single points andO
is called anideal articulated object.

The articulation of objectO is a one-to-one mappingf
from O to O′ = f(O) ⊂ R2, such that:

1. O′ is also an articulated object, with the decomposition
O′ = {⋃n

i=1 O′i}
⋃{⋃i 6=j J ′ij}. Furthermore,O′i =

f(Oi), ∀i, 1≤i≤n are parts ofO′ andJ ′ij = f(Jij),
∀i6=j, 1≤i, j≤n are junctions inO′. This preserves
the topology between the articulated parts.

2. f is rigid (rotation and translation only) onOi,
∀i, 1≤i≤n. This means inner-distances within each
part will not change.

Notes: 1) In the above and following, we use notation
f(P ) .= {f(x) : x ∈ P} for short. 2) It is obvious from the
above definitions thatf−1 is an articulation which mapsO′

to O, together with the parts and junctions.
Fig. 2 gives some examples of articulated shapes.

Figure 2: Examples of articulated objects. The separated
yellow segments are parts and the blue ones are junctions.

3.2 Articulation Insensitivity of the Inner-
Distance

We are interested in how the inner-distance varies under ar-
ticulation. From Sec. 3.1 we know that changes of the inner-
distance are due to deformations of junctions. Intuitively,
this means the change is very small compared to the size
of parts. Since most pairs of points have inner-distances
comparable to the sizes of parts, the relative change of the
inner-distances during articulation are small. This roughly
explains why the inner-distances are articulation insensitive.

We use the following notation: 1)C(x1, x2; P ) denotes
a shortest path fromx1∈P to x2∈P for a closed and con-
nected point setP⊂R2 (so d(x1, x2;P ) is the length of
C(x1, x2; P )). 2) ′ indicates the image of a point or a point
set underf , e.g.,P ′ .=f(P ) , p′ .=f(p) . 3) “[” and “]” de-
note the concatenation of paths.

Let us first point out two facts about the inner-distance
within a part or crossing a junction. Both facts are direct
results from the definitions in sec. 3.1.

d(x, y; Oi) = d(x′, y′; O′i), ∀x, y∈Oi, 1≤i≤n (1)

|d(x, y; O)− d(x′, y′;O′)| ≤ ε, ∀x, y ∈ Jij ,
∀i 6=j, 1≤i, j≤n, Jij 6= Ø (2)
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Note that (2) does not require the shortest path between
x, y to lie within the junctionJij . Now for general cases,
x, y∈O, we have the following theorem:
Theorem: Let O be an articulated object andf be an artic-
ulation of O as defined in sec. 3.1.∀x, y∈O, suppose the
shortest pathC(x, y; O) goes throughm different junctions
in O andC(x′, y′;O′) goes throughm′ different junctions
in O′, then

|d(x, y;O)− d(x′, y′; O′)| ≤ max{m,m′}ε (3)

Proof: The proof uses the intuition mentioned above. First
we decomposeC(x, y;O) into segments. Each segment is
either within a part or across a junction. Then, applying (1)
and (2) to each segment leads to the theorem. In the proof
we assume all shortest paths are unique. This does not affect
the result since only lengths of paths are concerned.

First,C(x, y;O) is decomposed intol segments:

C(x,y;O)=[C(p0,p1;R1),C(p1,p2;R2),...,C(pl−1,pl;Rl)]

by point sequencep0p1, ..., pl and regionsR1, ..., Rl

achieved via the following steps:
1)p0←x, i←0
2)WHILE pi 6=y, DO

i←i + 1
Ri ← the region (a part or a junction)C(x, y; O)

enters afterpi−1

IF Ri = Ok for somek (Ri is a part):
Setpi as a point inOk such that:
1) C(pi−1, pi; Ok) ⊆ C(x, y; O)
2) C(x, y;O) enters a new region (a part or a

junction) afterpi or terminate atpi (= y)
ELSERi = Jrs for some r,s (Ri is a junction):
Setpi as the point inJrs

⋂
C(x, y; O) such that

C(x, y; O) never reentersJrs afterpi.
Ri ← the union of all the parts and junctions

C(pi−1, pi;O) passes through (noteJrs⊆Ri).
3) l←i

An example of this decomposition is shown in Fig. 3 (a).
With this decomposition,d(x, y;O) can be written as:

d(x, y; O) =
∑

1≤i≤l
d(pi−1, pi; Ri)

Supposem1 of the segments cross junctions (i.e., not con-
tained in any single part), then obviouslym1≤m.

In O′, we construct a path fromx′ to y′ corresponding to
C(x, y;O) as follows (e.g. Fig. 3 (b)):

C̃(x′,y′;O′)=[C(p′0,p′1;R′1),C(p′1,p′2;R′2),...,C(p′l−1,p
′
l;R

′
l)]

Denoted̃(x′, y′; O′) as the length of̃C(x′, y′; O′), it has the
following property due to (1), (2):

|d(x, y; O)− d̃(x′, y′;O′)| ≤ m1ε ≤ mε (4)

Figure 3: (a) Decomposition ofC(x, y;O) (the dashed line)
with x = p0, p1, p2, p3 = y. Note that a segment can go
through a junction more than once (e.g.p1p2). (b) Con-
struction ofC̃(x′, y′;O′) in O′ (the dashed line). Note that
C̃(x′, y′; O′) is not the shortest path.

On the other hand, sinceO can be articulated from
O′ through f−1, we can constructC̃(x, y; O) from
C(x′, y′; O′) in the same way as constructing̃C(x′, y′; O′)
from C(x, y;O). Then, similar to (4), there is

|d(x′, y′; O′)− d̃(x, y;O)| ≤ m′ε (5)

Combining (4) and (5),

d(x, y; O)−m′ε≤d̃(x, y; O)−m′ε≤d(x′, y′;O′)

≤d̃(x′, y′;O′)≤d(x, y; O) + mε

This implies (3).#
From (3) we can make the following remarks con-

cerning the changes of inner-distances under articulation:
1. The inner-distance is strictly invariant for ideal articu-

lated objects. This is obvious sinceε = 0.
2. Sinceε is very small, for most pairs ofx, y, the relative

change of inner-distance is very small. This means the
inner-distance is insensitive to articulations.

3.3 Inner-Distances and Part Structures

In addition to articulation insensitivity, we believe that
the inner-distance captures part structures better than the
Euclidean distance. This is hard to prove because the de-
finition of part structure remains unclear. Instead we sup-
port the idea with examples and experiments. Figures 1, 4
and 7 show examples where the inner-distance distinguishes
shapes with parts while the Euclidean distance meets trou-
ble.

During retrieval experiments using several shape data-
bases, the inner-distance based descriptors all achieve ex-
cellent performance. Through observation we have found
that some databases (e.g., MPEG7) are difficult for retrieval
mainly due to the complex part structures in their shapes,
though they have little articulation. These experiments
show that the inner-distance is effective at capturing part
structures (see Sec. 5.2 and Figures 7 and 10 for details).
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Figure 4: With the same sample points, the distributions of
Euclidean distances between all pair of points are virtually
indistinguishable for the four shapes, while the distributions
of the inner-distances are quite different.

Figure 5: With about the same number of sample points, the
four shapes are virtually indistinguishable using Euclidean
distances, as in Fig. 4. However, their distributions of the
inner-distances are quite different except for the first two
shapes. Note: 1) None of the shapes has (explicit) parts. 2)
More sample points will not affect the above statement.

Aside from part structures, examples in Fig. 5 show cases
where the inner-distance can better capture the topology of
shapes without parts. We expect further studies on the rela-
tionship between inner-distances and shape in the future.

3.4 Computing the Inner-Distance

A natural way to compute the inner-distance is using short-
est path algorithms. This consists of two steps: 1) Build a
graph on the sample points. For each pair of sample points
x, y, if the line segment connectingx andy falls entirely
within the object, then build an edge betweenx andy with
the weight equal to the Euclidean distance‖x− y‖. 2) Ap-
ply a shortest path algorithm to the graph.

4 Matching and Retrieval

Now that the inner-distance is ready, we apply it to extend
the shape context [2] for shape matching and comparison.
There are other ways to use the inner-distance of course.
One way is to apply MDS as in [5]. Another way is to use
the shape distribution[14]. We choose shape context be-
cause it is highly discriminative and it is naturally extended
with the inner-distance.

4.1 Previous Work on Shape Context

Givenn sample pointsx1, x2, ..., xn on a shape, the shape
context [2] at pointxi is defined as a histogramhi of the
relative coordinates of the remainingn− 1 points

hi(k) = #{xj : j 6= i, xj − xi ∈ bin(k)} (6)

Figure 6: The inner-angleθ between two boundary points.

Where the bins uniformly divide the log-polar space. The
distance between two shape context histograms is defined
using theχ2 statistic as in (9).

For shape comparison, [2] used a framework combining
shape context and thin-plate-spline[3] (SC+TPS). Given the
points on two shapesA andB, first the point correspon-
dences are found through a weighted bipartite matching.
Then, TPS is used iteratively to estimate the transformation
between them. After that, the similarityD betweenA and
B is measured as a weighted combination of three parts

D = 1.6Dac + Dsc + 0.3Dbe (7)

WhereDac measures the appearance difference.Dbe mea-
sures the bending energy. TheDsc term, named theshape
context distancein [2], measures the average distance be-
tween a point onA and its most similar counterpart onB (in
the sense of (9)). The SC+TPS is shown to be very effec-
tive for shape matching by tests [2] on the MNIST database
[11], MPEG7 CE-Shape-1, and others.

4.2 Extension of Shape Context

To extend the shape context defined in (6), we redefine the
bins with the inner-distance. The Euclidean distance is di-
rectly replaced by the inner-distance. For the orientation
bins, the relative orientation between two points can be de-
fined as the tangential direction at the starting point of the
shortest path. However, this tangential directionis sensi-
tive to articulation. Fortunately, for boundary points, the
angle between the contour tangent at the start point and the
tangential direction of the shortest path from it is insensi-
tive to articulation (invariant to ideal articulation). We call
this angle theinner-angle(e.g., see Fig. 6) and use it for
the orientation bins. This is equivalent to using the relative
frame, i.e., the local coordinate system is rotated to align
with the tangent at the sample point. This is suggested in
[2] to get rotation invariance. Fig. 7 shows examples of the
shape context computed by the two different methods.

In the following the shape context in [2] is called SC and
the extension with inner-distance IDSC.

4.3 Shape Matching Through Dynamic Pro-
gramming

We are interested in contour matching in this paper. The
matching problem is formulated as follows: Given two
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Figure 7: Shape context (SC) and inner-distance shape con-
text (IDSC). The top row shows three objects from the
MPEG7 database (Sec. 5.2), with two marked pointsp, q
on each shape. The next rows show (from top to bottom),
the SC atp, the IDSC atp, the SC atq, the IDSC atq. Both
the SC and the IDSC use local relative frames. In the his-
tograms, the x axis denotes the orientation bins and the y
axis denotes log distance bins.

shapesA andB, describe them by point sequences on their
contour, say,p1p2...pn for A with n points, andq1q2...qm

for B with m points. Without loss of generality, assume
n ≥ m. The matchingπ betweenA andB is a mapping
from 1, 2, ..., n to 1, 2, ..., m, wherepi is matched toqπ(i) if
π(i) 6= 0 and otherwise left unmatched.π should minimize
the match costH(π) defined as

H(π) =
∑

1≤i≤n
C(i, π(i)) (8)

whereC(i, 0) = τ is the penalty for leavingpi unmatched,
and for1 ≤ j ≤ m, C(i, j) is the cost of matchingpi to qj .
This is measured using theχ2 statistic as in [2]

C(i, j)≡1
2

∑
1≤k≤K

[hA,i(k)− hB,j(k)]2

hA,i(k) + hB,j(k)
(9)

HerehA,i andhB,j are the shape context histograms ofpi

andqj respectively, andK is the number of histogram bins.
Since the contours provide orderings for the point se-

quencesp1p2...pn andq1q2...qm, it is natural to restrict the
matchingπ with this order. To this end, we use dynamic
programming to solve the matching problem. Dynamic pro-
gramming is widely used for contour matching. Details can
be found in [1, 15] for example.

By default, the above method assumes the two contours
are already aligned at their start and end points. With-
out this assumption, one simple solution is to try different
alignments at all points on the first contour and choose the
best one. The problem with this solution is that it raises
the matching complexity fromO(n2) to O(n3). Fortu-
nately, for the comparison problem, it is often sufficient to
try aligning a fixed number of points, say,ns points. Usu-
ally ns is much smaller thanm andn (with n,m = 100,

our experiments show thatns = 4 or 8 is good enough and
larger ns does not demonstrate significant improvement).
The complexity is stillO(nsn

2) = O(n2).
Bipartite graph matching is used in [2] to find point cor-

respondenceπ. Bipartite matching is more general since
it minimizes the matching cost (8) without additional con-
straints. For example, it works when there is no ordering
constraint on the sample points (while dynamic program-
ming is not applicable). For sequence points along silhou-
ettes, however, dynamic programming matching is more ef-
ficient and accurate since it uses the ordering information.

4.4 Shape Distances

Once the matching is found, we use the matching cost
H(π) as in (8) to measure the similarity between shapes.
One thing to mention is that dynamic programming is
also suitable for shape context. In the following, we use
IDSC+DP to denote the method of using dynamic program-
ming matching with the IDSC, and use SC+DP for the sim-
ilar method with the SC.

In addition to the excellent performance demonstrated in
the experiments, the IDSC+DP framework is simpler than
the SC+TPS framework (7) [2]. First, besides the size of
shape context bins, IDSC+DP has only two parameters to
tune: 1) The penaltyτ for a point with no matching, usu-
ally set to 0.3, and 2) The number of start pointsns for
different alignments during the DP matching, usually set to
4 or 8. Second, IDSC+DP is easy to implement, since it
does not require the appearance and transformation model
as well as the iteration and outlier control. Furthermore,
the DP matching is faster than bipartite matching, which is
important for shape retrieving in large shape databases.

The time complexity of the IDSC+DP consists of three
parts. First, the computation of inner-distances can be
achieved inO(n3) with Johnson or Floyd-Warshall’s short-
est path algorithms, wheren is the number of sample
points. Second, the construction of the IDSC histogram
takesO(n2). Third, the DP matching costsO(n2), and only
this part is required for all pairs of shapes. In our experiment
using partly optimized Matlab code on a regular Pentium IV
2.8G PC, a single comparison of two shapes withn = 100
takes about 0.31 second.

5 Experiments

5.1 Articulated Database

To show the articulation insensitivity of the inner-distance,
we test the proposed method IDSC+DP on an articulated
shape data set we collected. The dataset contains 40 im-
ages from 8 different objects. Each object has 5 images
articulated to different degrees (see Fig. 8). The dataset is
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Figure 8: Articulate shape database. This dataset contains
40 images from 8 objects with articulation. Each column
contains five images from the same object.

Table 1: Retrieval result on the articulate dataset.
Distance Type Top 1 Top 2 Top 3 Top 4

SC+DP 20/40 10/40 11/40 5/40
IDSC+DP 40/40 34/40 35/40 27/40

very challenging because of the similarity between different
objects (especially the scissors). The holes of the scissors
make the problem even more difficult.

For each image, we sample 200 points along its outer
contour. For the SC and IDSC, 5 log-distance bins and 12
orientation bins are used. Since all the objects are at the
same orientation, we align the contours by forcing them to
start from the bottom-left points and then setns = 1 for
DP matching. For comparison, we also applied the SC+DP
method with the same parameters.

For each image, the 4 most similar matches are chosen
from other images in the dataset. The retrieval result is sum-
marized as the number of 1st, 2nd, 3rd and 4th most similar
matches that come from the correct object. Table 1 shows
the retrieval results. It demonstrates that our method is very
effective for objects with articulated parts, while the shape
context is not very suitable for this data set.

5.2 MPEG7 Shape Database

The widely tested MPEG7 CE-Shape-1 [10] database con-
sists of 1400 silhouette images from 70 classes. Each class
has 20 different shapes (see Fig. 9 for some examples). The
recognition rate is measured by the so called Bullseye test:
For every image in the database, it is matched with all other
images and the top 40 most similar candidates are counted.
At most 20 of the 40 candidates are correct hits. The score
of the test is the ratio of the number of correct hits of all im-
ages to the best possible number of hits (which is 20x1400).

In our experiment, we use 5 distance bins and 12 ori-
entation bins as in [2], but only 100 sample points (300
were used in [2]) on each contour. 8 different start points

Figure 9: Typical shape images from the MPEG7 CE-
Shape-1, one image from each class.

Table 2: Retrieval rate (bullseye) of different methods for
the MPEG7 CE-Shape-1.
Algorithm CSS [12] Visual Parts[10] SC+TPS[2]

Score 75.44% 76.45% 76.51%

Algorithm Curve Edit[17] Gen. Model[23] IDSC+DP
Score 78.17% 80.03% 85.40%

(ns = 8) are used in the DP matching and the penalty fac-
tor τ is set to be 0.3. To handle mirrored shapes, we com-
pare two point sequences (corresponding to shapes) with the
original order and reversed order. Table 2 lists reported re-
sults from different algorithms. It shows that our algorithm
outperforms all the alternatives. The speed of our algorithm
is in the same range as those of shape contexts [2], curve
edit distance [17] and generative model [23].

To help understand this performance, we did two other
experiments in the same settings where the only difference
is the descriptors used: one uses SC, another IDSC. The
parameters in both experiments are: 64 sample points on
each silhouette, 8 distance bins and 8 orientation bins. To
avoid the matching effect, shapes are compared using the
simple shape context distance measureDsc (see Sec. 4.1 or
[2]). The Bullseye score with SC is 64.59%, while IDSC
get a higher score of 68.83%. Fig. 10 shows some retrieval
results, where we see that the IDSC is good for objects
with parts while the SC favors global similarities. Exam-
ination of the MPEG7 data set shows that the complexity
of shapes are mainly due to the part structures but not artic-
ulations, so the good performance of IDSC shows that the
inner-distance is more effective at capturing part structures.

5.3 Kimia’s database

The IDSC+DP is tested on two shape databases provided
by Kimia’s group [19, 18]. The first database [19] contains
25 images from 5 categories (Fig. 11). It has been tested by
[2, 19, 7]. In our experiment, 100 sample points are used for
each silhouette, 5 distance bins and 12 orientation bins are
used in IDSC, andns = 4, τ = 0.3 are used in DP match-
ing. The retrieval result is summarized as the number of 1st,
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Figure 10: Two retrieval examples for comparing SC and
IDSC on the MPEG7 data set. The left column show two
shapes to be retrieved: a beetle and an octopus. The four
right rows show the top 1 to 9 matches, from top to bottom:
SC and IDSC for the beetle, SC and IDSC for the octopus.

Figure 11: Kimia dataset 1 [19]: this dataset contains 25
instances from 5 categories.

Table 3: Retrieval result on Kimia dataset 1 [19] (Fig. 11).
Method Top 1 Top 2 Top 3

Sharvit et. al [19] 23/25 21/25 20/25
Gdalyahu and Weinshall[7] 25/25 21/25 19/25

Belongie et. al [2] 25/25 24/25 22/25
IDSC+DP 25/25 24/25 25/25

Table 4: Retrieval result on Kimia dataset 2[18] (Fig. 12).
Gen. model is due to [23] and shock edit is due to [18].

Algorithm 1st 2nd 3rd 4th 5th 6th 7th 8th 9th10th
SC [18] 97 91 88 85 84 77 75 66 56 37

Gen. Model99 97 99 98 96 96 94 83 75 48
Shock Edit 99 99 99 98 98 97 96 95 93 82
IDSC+DP 99 99 99 98 98 97 97 98 94 79

2nd and 3rd closest matches that fall into the correct cate-
gory. Our result is 25/25,24/25,25/25, which outperforms
the other three reported results shown in Table 3.

The second database [18] contains 99 images from 9 cat-
egories (Fig. 12) and has been tested by [18, 23]. In our
experiment, 300 sample points are used for silhouettes, 8
distance bins and 12 orientation bins are used in IDSC, and
ns = 4, τ = 0.3 are used in DP matching. Similar to results
described above, the retrieval result is summarized as the
number of top 1 to top 10 closest matches (the best possible
result for each of them are 99). Table 4 lists the numbers of
correct matches of several methods, which shows that our
approach performs a little better than others.

Figure 12: Kimia dataset 2 [18]: this dataset contains 99
instances from 9 categories.

Figure 13: Typical images from Swedish leaf data base, one
image per species. Note that some species are quite similar,
e.g. the 1st, 3rd and 9th species.

5.4 Swedish Leaf Database

Recently, foliage image retrieval has started to attract re-
search efforts in computer vision and related areas. The
large variation of leaf shapes and texture make the problem
very challenging. We use the Swedish leaf dataset from a
leaf classification project at Linköping University and the
Swedish Museum of Natural History [21]. The dataset con-
tains isolated leaves from 15 different Swedish tree species,
with 75 leaves per species. Fig. 13 shows some silhouette
examples. Some initial classification work has been done
in [21] by combining simple features like moments, area
and curvature etc. Using 25 training samples and 50 testing
samples per species, an average classification rate of 82%
is reported. We tested with Fourier descriptors, SC+DP and
IDSC+DP with the same size of training and testing set and
128 points on each silhouette. For SC and IDSC, we use
8 log-distance bins and 12 orientation bins; for DP match-
ing, we setns = 1 andτ = 0.3. With 1-nearest-neighbor,
the classification rates are 89.60% using Fourier descriptors,
88.12% using SC+DP and 94.13% using IDSC+DP.

5.5 Human body matching

In this experiment, we demonstrate the potential for using
the proposed method on human body matching, which is
important in human motion analysis. The dataset is a hu-
man motion sequence from a stationary camera (from the
Keck lab). Silhouettes are extracted with background sub-
traction. Our task is to match the silhouettes from different
frames. For adjacent frames, IDSC+DP performs very well,
as demonstrated in the left of Fig. 14. For two silhouettes
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Figure 14: Human silhouettes matching. Left: between ad-
jacent frames. Right: silhouettes separated by 20 frames.
Only half of the matched pairs are shown for illustration.

separated by 20 frames, the articulation turns out to be large
and the matching becomes challenging. The IDSC+DP also
gives promising result, see the right part in Fig. 14 for ex-
ample.

6 Conclusions

We proposed using the inner-distance to build shape
descriptors. We show that the inner-distance is articula-
tion insensitive and is good for complicated shapes with
part structures. We extended the shape context with the
inner-distance to form a new descriptor, and designed a
dynamic programming based method for shape matching
and comparison. In retrieval experiments on several data
sets, our approach demonstrated excellent retrieval results
in comparison with several other algorithms. In addition,
the test on sequential human silhouettes matching shows
the potential of using inner-distances in tracking problems.
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