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Abstract
Graph matching aims at establishing correspon-
dence between node sets of given graphs while
keeping the consistency between their edge sets.
However, outliers in practical scenarios and equiva-
lent learning of edge representations in deep learn-
ing methods are still challenging. To address
these issues, we present an Edge Attention-adaptive
Graph Matching (EAGM) network and a novel de-
scription of edge features. EAGM transforms the
matching relation between two graphs into a node
and edge classification problem over their assign-
ment graph. To explore the potential of edges,
EAGM learns edge attention on the assignment
graph to 1) reveal the impact of each edge on
graph matching, as well as 2) adjust the learn-
ing of edge representations adaptively. To allevi-
ate issues caused by the outliers, we describe an
edge by aggregating the semantic information over
the space spanned by the edge. Such rich infor-
mation provides clear distinctions between differ-
ent edges (e.g., inlier-inlier edges vs. inlier-outlier
edges), which further distinguishes outliers in the
view of their associated edges. Extensive exper-
iments demonstrate that EAGM achieves promis-
ing matching quality compared with state-of-the-
arts, on cases both with and without outliers. Our
source code along with the experiments is available
at https://github.com/bestwei/EAGM.

1 Introduction
Aiming at establishing node correspondence between graphs
while keeping the consistency between their edges, graph
matching has been widely applied in computer vision, e.g.,
shape matching, object recognition, and tracking, etc. From
finding node correspondence in pure cases (i.e., all nodes are
inliers), to establishing matches between inliers while over-
coming interference caused by outliers, there are many open
issues to be solved in this field. Actually, the outliers are
common in practical scenarios. In this paper, we focus on
addressing the general graph matching problem with outliers.

∗Contact Author

As a classical combinatorial optimization problem, graph
matching is NP-hard and generally solved by acceptable sub-
optimal solutions. Early methods [Gold and Rangarajan,
1996; Leordeanu et al., 2009; Cho et al., 2010; Egozi et
al., 2012; Liu and Qiao, 2013] propose approximate algo-
rithms with some relaxations. Then machine learning meth-
ods [Torresani et al., 2008; Caetano et al., 2009; Leordeanu
et al., 2011; Leordeanu et al., 2012; Cho et al., 2013] com-
pute node and edge affinities by simple and shallow para-
metric models, while the accuracy promotion is limited. Re-
cently, encouraged by the successes of deep neural networks
in many research areas, deep learning methods [Zanfir and
Sminchisescu, 2018; Wang et al., 2019; Yu et al., 2020a;
Wang et al., 2020] are introduced for learning the combina-
torial solver in graph neural networks (GNN). Point positions
and object appearance in visual matching tasks provide rich
geometric and semantic features for these methods. However,
two important challenges remain unsolved.

First, the outliers bring inevitable interference to the
matching process in practical scenarios. Previous methods
usually propose enhanced node features to reduce interfer-
ence of outliers, but devote insufficient discrimination on
the features of associated edges. Second, the initial graph
structure in visual matching tasks is generally constructed in
heuristic ways (e.g., Delauney triangulation or k-nearest), and
the obtained edges are all utilized during the learning process.
Some edges thus generated are necessary, but others may be
noisy. In fact, the impact of each edge on graph matching is
different. Besides, different from links in social networks and
bonds in molecular graphs, features of these edges are typi-
cally constructed by simple combinations (e.g., concatenation
or element-wise multiplication) over features from their asso-
ciated nodes. Thus reasonable and informative descriptions
of edges are worth exploring.

To address the two challenges mentioned above, we pro-
pose an Edge Attention-adaptive Graph Matching (EAGM)
network (as illustrated in Figure 1), and a novel descriptive
approach of edge features. Given a pair of graphs to be
matched, EAGM transforms the matching between them into
a node and edge classification problem over their assignment
graph. The geometric features and semantic features of the
assignment graph are fused to encode jointly position and ap-
pearance information. Then EAGM learns the edge attention
on the assignment graph with fused features, which indicates
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the impact of each edge on graph matching. The edge atten-
tion is imposed into the learning of node and edge classifica-
tion on the assignment graph, which adjusts the learning of
edge representations adaptively. The final predicted labels in-
dicate whether the two original nodes or edges are matched
in the graph matching problem.

To alleviate the interference caused by outliers, we design
the edge semantic features to distinguish outliers from the as-
pect of their adjacent edges, rather than enhancing the node
features only. We consider each edge as consisting of discrete
points, i.e., its passing pixel points in visual matching tasks.
Then we describe its semantic features by involving the con-
volutional features of all passed pixel points. Compared with
the previous approaches relying on features of the associated
nodes, such edge features are more informative and indepen-
dent. It can provide strong distinctions between inlier-inlier
and inlier-outlier edges. Since the information of associated
nodes is also included, the differences between the two kinds
of edges further enhance the discrimination between inliers
and outliers.

In summary, the main contributions of this paper include:

• We propose an Edge Attention-adaptive Graph Match-
ing network, EAGM, which adjusts edge attention adap-
tively during learning graph matching. The impact of
each edge on graph matching is described by the learned
edge attention. The final predicted node and edge labels
of the assignment graph indicate the matching relations
between the two original graphs.

• We devise a novel edge feature by encoding semantic-
aware information distributed spatially around edge pix-
els. Such feature not only provides reasonable and inde-
pendent description for edges in visual matching tasks,
but also distinguishes outliers by their adjacent edges.

• EAGM achieves promising performance on three popu-
lar benchmarks, on experiments both with and without
outliers.

2 Related Work
Graph matching has received significant attention in decades.
Readers are referred to [Yan et al., 2020] for a comprehensive
acquaintance. Early methods [Gold and Rangarajan, 1996;
Leordeanu et al., 2009; Cho et al., 2010; Egozi et al., 2012;
Zhou and De la Torre, 2012; Liu and Qiao, 2013; Wang et
al., 2018] usually search acceptable sub-optimal solutions via
heuristics. [Leordeanu et al., 2009] utilizes original discrete
constraints to optimize graph matching with climbing and
convergence properties. Recently, [Yu et al., 2020b] proposes
a determinant regularization technique on the correspondence
matrix to perform gradient-efficient continuation optimiza-
tion. However, being limited by handcrafted affinities, these
methods still lack robust ability on real-work matching tasks.

Inspired by growing data and features, some methods [Tor-
resani et al., 2008; Caetano et al., 2009; Leordeanu et al.,
2011; Leordeanu et al., 2012; Cho et al., 2013] devote atten-
tion to learn parameters of the corresponding affinity matrix,
rather than the handcrafted affinities. [Cho et al., 2013] uti-
lizes structured SVM to parameterize a graph model, and ap-

ply its structural attributes to visual matching. Weight param-
eters can also be learned via semi-supervised [Leordeanu et
al., 2011] or unsupervised [Leordeanu et al., 2012] models.
Although the affinity weights are learnable, the node repre-
sentations and structural information are still to be mined.

Recent deep learning methods [Zanfir and Sminchisescu,
2018; Wang et al., 2019; Yu et al., 2020a; Wang et al., 2020]
utilize features extracted by convolutional neural networks
(CNN) or geometric information to initialize graph features,
and learn a combinatorial solver by GNN. The pioneer work
[Zanfir and Sminchisescu, 2018] computes unary and pair-
wise node affinities by CNN features, and adopts spectral
matching [Leordeanu and Hebert, 2005] as a differentiable
(but fixed) combinatorial solver. [Wang et al., 2019] adopts
GNN to aggregate graph structure information into node rep-
resentations, and a Sinkhorn net is introduced as the com-
binatorial solver on node affinities. [Yu et al., 2020a] de-
vises a channel-independent embedding method, and utilizes
Hungarian attention to smooth objective learning for graph
matching. [Wang et al., 2020] converts matching between
two graphs into a node classification problem in their assign-
ment graph, and learns the affinity functions and combinato-
rial solver simultaneously.

Despite the satisfactory progress achieved, the above meth-
ods are still sensitive to common outliers in practical scenar-
ios, or lack impact adjustment of each edge on graph match-
ing. In this paper, we overcome these problems by learning
the edge attention-adaptive graph matching and by designing
a novel edge semantic description.

3 Definition of Graph Matching
An undirected graph is represented by G = (V,E,V, E),
• V = {v1, . . . , vn} denotes the node set, |V| = n,
• E ⊆ V× V denotes the edge set, |E| = m,
• V = {vi|vi ∈ Rdv , i = 1, . . . , n} denotes the node

feature set,
• E = {ei|ei ∈ Rde , i = 1, . . . ,m} denotes the edge

feature set.
Given two graphs G1 = (V1, E1, V1, E1) and G2 = (V2,

E2, V2, E2) with1 |V1| = |V2| = n, the graph matching prob-
lem is to find a node correspondence X ∈ {0, 1}n×n between
G1 and G2. Xia = 1 iff vi ∈ V1 corresponds to va ∈ V2.
Graph matching is generally formulated by a quadratic as-
signment programming (QAP) problem [Loiola et al., 2007].

x∗ = arg maxx x
>Kx

x = vec(X) ∈ {0, 1}n2

, X1n = 1n, and X>1n = 1n

The vector x∗ denotes the desired node correspondence. The
required one-to-one constraint is described by X1n = 1n and
X>1n = 1n ( 1n denotes a vector of n ones). K ∈ Rn2×n2

is the corresponding affinity matrix,

Kia,jb =

 sv
ia, if i = j & a = b,
se
iajb, else if A1

ijA
2
ab > 0,

0, otherwise.
(1)

1We assume the two graphs have the same size n, and definitions
can be extended to varied sizes, e.g., by adding dummy nodes.
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Figure 1: Architecture of EAGM. The assignment graph GA is firstly generated for graphs G1 and G2. Its geometric features {Vg
A, E

g
A}

and semantic features {Vs
A, Es

A} are further fused, and the fused features {VA, EA} are fed into the edge attention and classification modules.
Next, the edge attention Θ is learned, and utilized to adjust the impact of each edge. Finally, the node and edge labels of GA are predicted by
the classification module to indicate the matching results between G1 and G2.

where A ∈ Rn×n is a symmetric adjacency matrix describ-
ing node connections, and Aij = 1 iff there is an edge
ei,j = (vi, vj) ∈ E. sv

ia measures the affinity between the
node features vi ∈ V1 and va ∈ V2. se

iajb measures the affin-
ity between edge features ei,j ∈ E1 and ea,b ∈ E2.

4 Edge Attention-Adaptive Graph Matching
In the proposed EAGM (Figure 1), graph matching is learned
by four modules:

• Edge Semantic Description. This module classifies
node and edge features of the two given graphs G1 and
G2 into the geometric features and the semantic features.
The edge semantic features are designed emphatically.

• Assignment Graph Generation. This module gener-
ates the assignment graph GA for G1 and G2, and fuses
its geometric features and semantic features. The origi-
nal graph matching between G1 and G2 is converted into
the node and edge binary classification in GA.

• Edge Attention. The edge attention module is the core
component of EAGM. It takes GA with fused features
as input, and learns the attention for each edge of GA to
adjust its impact on learning graph matching. This mod-
ule adopts an encoder-decoder architecture, along with a
convolution sub-module. The coupled encoder and de-
coder sub-modules transform fused features of GA into
latent representations, and predict the edge attention Θ
based on the final graph state, respectively. The convolu-
tion sub-module consists of l1 coupled edge convolution
layers and node convolution layers, which learns node
and edge representations for learning attention Θ.

• Classification. This module combines GA with fused
features and the edge attention Θ, and predicts final node
and edge labels. It has similar autoencoder architec-
ture with the former module. Its decoder outputs the
predicted node and edge labels. The convolution sub-
module consists of l2 coupled edge convolution layers
and weighted-node convolution layers, and utilizes the

VGG16

Pooling

Unified size Various size 

......

Figure 2: Edge semantic feature. The differences between edge
semantic features es

i,j and es
a,b enhance the discrimination on the

outlier va.

edge attention Θ to parameterize the aggregation in the
weighted-node convolution layers. Besides, we propose
a binary cross-entropy loss for guiding learning of edge
representations and edge attention.

4.1 Edge Semantic Description
We categorize the node and edge features into two types, ge-
ometric feature and semantic feature,
• V = {Vg,Vs}, Vg = {vgi |v

g
i ∈ Rdgv , i = 1, . . . , n}

and Vs = {vsi |vsi ∈ Rdsv , i = 1, . . . , n} denote the node
geometric and semantic feature set, respectively,
• E = {Eg, Es}, Eg = {egi |e

g
i ∈ Rdge , i = 1, . . . ,m} and

Es = {esi |esi ∈ Rdse , i = 1, . . . ,m} denote the edge
geometric and semantic feature set, respectively.

Specifically, we utilize the 2D Cartesian coordinates of
each node vi as its geometric feature vgi = [xi, yi], and con-
catenate the geometric features of head node vhi

and tail node
vti associated with each edge ei to form its geometric feature
egi = [vghi

; vgti ].
For the node semantic feature, we extracted CNN feature

maps from the input images, and interpolate them as the size
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of images. The spatially corresponding feature vector located
at (xi, yi) for each node is selected as its semantic feature
vsi ∈ Rdsv . The node semantic features are L2 normalized.

To clearly explain the design of edge semantic feature, we
take an edge ei,j = (vi, vj) in Figure 2 as an example. We
firstly adopt Bresenham’s line algorithm [Bresenham, 1965]
to compute the pixel points passed by the edge ei,j , and
collect them as a point set P = {vi, p1, . . . , pk, vj}. Then
the semantic features of these points are constructed by the
above operations of node semantic features, and form a fea-
ture set VsP = {vsi |vsi ∈ Rdsv , i = 1, . . . , k + 2}. Next we
stack these features, and obtain the initial edge semantic fea-
ture esi,j ∈ Rk×dsv . Notably, different edges pass different
amounts of pixel points (e.g., ei,j and ea,b), but the size of
all edge features should be unified in a GNN. Thus we finally
adopt the max pooling operation on the initial edge semantic
features to obtain the unified size dse, e.g., esi,j ∈ Rdse . The
edge semantic features are also L2 normalized.

4.2 Assignment Graph Generation
Inspired by the successful assignment graph in [Leordeanu
and Hebert, 2005; Cho et al., 2010; Wang et al., 2020],
we transform the graph matching problem between the two
graphs G1 and G2 into a node and edge binary classification
problem in the assignment graph GA = (VA,EA,VA, EA).
GA describes all candidate node and edge correspondences
between G1 and G2. For structure generation of GA, each
candidate node correspondence vi ∈ V1 and va ∈ V2 gener-
ates a node via ∈ VA. An edge eia,jb = (via, vjb) ∈ EA is
constructed iff there are two edges ei,j ∈ E1 and ea,b ∈ E2.

For feature initialization of GA, we concatenate the initial
geometric and semantic features of G1 and G2 respectively.

vgia = [vgi ;vga] ∈ R2dgv , vsia = [vsi ;v
s
a] ∈ R2dsv

egia,jb = [egi,j ; e
g
a,b] ∈ R2dge , esia,jb = [esi,j ; e

s
a,b] ∈ R2dse

To enable the following modules to learn about both position
and appearance jointly, we further fuse the geometric and se-
mantic features of GA by two multilayer perceptrons (MLPs)
ωv and ωe. They embed a node geometric feature and an edge
geometric feature into their semantic features respectively:

VA = VsA + ωv(VgA), EA = EsA + ωe(EgA) (2)

where ωv(VgA) and ωe(EgA) denote the embedded node geo-
metric features and edge geometric features, by applying ωv

and ωe to each node and each edge respectively. Then the up-
dated graph GA with fused features is passed to the following
edge attention module and classification module as input.

Therefore, the original graph matching between G1 and G2

is converted into the binary classification problem in GA, i.e.,
positive and negatives nodes or edges are equivalent to the
two original nodes or edges being matched or not.

4.3 Edge Attention Learning
The edge attention module takes the updated graph GA with
fused features as input, and learns the attention θi of each
edge ei ∈ EA for graph matching. It consists of three sub-
modules, encoder, convolution, and decoder sub-module.

The encoder sub-module embeds the fused features VA
and EA into latent representations by two MLPs ρv

a and ρe
a,

respectively. The updated graph GA = (VA, EA, ρv
a(VA),

ρe
a(EA)) is fed into the following convolution sub-module.
The convolution sub-module consists of l1 coupled edge

convolution layers and node convolution layers, which up-
dates latent representations of GA. Overall, the edge convolu-
tion layer aggregates the representations of the two associated
nodes of each edge to update the representation of this edge.
The following node convolution layer aggregates the repre-
sentations of all the edges adjacent to each node to update the
node representation.
Edge convolution. The edge convolution layer updates the
edge representations of GA by firstly aggregating the repre-
sentations vhi

and vti of head and tail nodes of each edge
ei ∈ EA to produce an intermediate edge representation êi.

êi = ψe(vhi
◦ vti) (3)

where the operation ◦ denotes the Hadamard product between
two vectors. Then the edge representation is updated by trans-
forming the concatenation of the aggregated representation êi
and the original edge representation ei.

e′i = ηe([êi; ei]) (4)

Node convolution. The node convolution layer updates the
node representations of GA by firstly aggregating the repre-
sentations of associated edges E iA for each node vi ∈ VA to
generate an intermediate node representation v̂i.

v̂i = ψv(E iA) =
∑

ek∈EiA
ek (5)

Then the node representation is updated by a similar way in
the edge convolution layer.

v′i = ηv([v̂i;vi]) (6)

The three functions ψe, ηe, and ηv are implemented by MLPs.
The decoder sub-module predicts the edge attention Θ by

the final graph state to indicate the impact of each edge on
graph matching. Since we focus on learning attention for
edges, this sub-module is implemented by only one MLP φe

a.

Θ = φe
a(EA), Θ ∈ Rm1m2 (7)

4.4 Classification
The classification module accepts GA with fused features and
the learned edge attention Θ as input, and predicts node and
edge labels of GA to reason whether the two original nodes
and edges are matched respectively. The edge attention Θ
is imposed into the learning of edge representations. This
module has three similar sub-modules with the edge attention
module. The encoder also embeds fused features of GA into
latent representations by two MLPs ρv

c and ρe
c respectively.

The convolution sub-module consists of l2 coupled edge
convolution layers and weighted-node convolution layers.
Weighted-Node convolution. Different from the node con-
volution layer in the edge attention module, the aggregation
in the weighted-node convolution layer is parameterized by
the attention of associated edges Θi for each node vi ∈ VA.

v̂i = ψwv(E iA,Θi) =
∑

ek∈EiA,θk∈Θi
exp(−θk)ek (8)
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Method aero bike bird boat bottle bus car cat chair cow d.table dog horse m.bike person plant sheep sofa train tv Avg.

IPFP 25.1 26.4 41.4 50.3 43.0 32.9 37.3 32.5 33.6 28.2 26.9 26.1 29.9 32.0 28.8 62.9 28.2 45.0 69.3 33.8 36.6
RRWM 30.9 40.0 46.4 54.1 52.3 35.6 47.4 37.3 36.3 34.1 28.8 35.0 39.1 36.2 39.5 67.8 38.6 49.4 70.5 41.3 43.0
PSM 32.6 37.5 49.9 53.2 47.8 34.6 50.1 35.5 37.2 36.3 23.1 32.7 42.4 37.1 38.5 62.3 41.7 54.3 72.6 40.8 43.1
GNCCP 28.9 37.1 46.2 53.1 48.0 36.3 45.5 34.7 36.3 34.2 25.2 35.3 39.8 39.6 40.7 61.9 37.4 50.5 67.0 34.8 41.6
ABPF 30.9 40.4 47.3 54.5 50.8 35.1 46.7 36.3 40.9 38.9 16.3 34.8 39.8 39.6 39.3 63.2 37.9 50.2 70.5 41.3 42.7

GMN 31.9 47.2 51.9 40.8 68.7 72.2 53.6 52.8 34.6 48.6 72.3 47.7 54.8 51.0 38.6 75.1 49.5 45.0 83.0 86.3 55.3
PCA 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 65.5 63.6 61.3 68.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8
CIE 51.2 69.2 70.1 55.0 82.8 72.8 69.0 74.2 39.6 68.8 71.8 70.0 71.8 66.8 44.8 85.2 69.9 65.4 85.2 92.4 68.9
LCSGM 46.9 58.0 63.6 69.9 87.8 79.8 71.8 60.3 44.8 64.3 79.4 57.5 64.4 57.6 52.4 96.1 62.9 65.8 94.4 92.0 68.5

EAGM 49.4 62.1 64.6 75.3 90.9 80.9 71.1 61.3 48.7 65.9 87.5 58.4 66.3 60.1 56.3 97.1 64.7 60.6 96.0 93.0 70.5

Table 1: Comparison of matching accuracy (%) on Pascal VOC. All results, except ours, are taken from [Yu et al., 2020a; Wang et al., 2020].
Numbers in red indicate the best performance.

To learn the more effective intermediate node representation
v̂i, the edge attention Θi adjusts the learning of edge repre-
sentations E iA adaptively.

The decoder predicts the node labels x̄ and edge labels ȳ
by the final graph state, and is implemented by two MLPs φv

c
and φe

c.
x̄ = φv

c (VA), x̄ ∈ Rn2

ȳ = φe
c(EA), ȳ ∈ Rm1m2

(9)

4.5 Loss
The ground-truth node-to-node and edge-to-edge correspon-
dences are utilized to guide the training of our EAGM.
We firstly define that the two edges ei ∈ E1 and ea ∈
E2 are matched iff their associated node pairs (vhi

, vha
)

and (vti , vta) are matched respectively. Then we build
the ground-truth edge-to-edge correspondence matrix Y ∈
{0, 1}m1×m2 between G1 and G2, where each element
Yia = 1 iff ei ∈ E1 corresponds to ea ∈ E2.

To guide the learning of edge representations and edge at-
tention, we measure a binary cross-entropy loss Le between
the predicted edge labels ȳ and the ground-truth edge binary
labels y = vec(Y) ∈ {0, 1}m1m2 .

Le = −
∑m1m2

i
(yi log ȳi + (1− yi) log(1− ȳi)) (10)

Besides, we compute the binary cross-entropy loss Lv be-
tween the predicted node labels x̄ and the ground-truth node
labels x, and the one-to-one matching constraint loss Lc,

Lv = −
∑n2

i (xi log x̄i + (1− xi) log(1− x̄i))
Lc = ‖B(z̄− x)‖2

(11)

where B ∈ {0, 1}2n×n2

is an auxiliary matrix, and z̄ ∈
{0, 1}n2

is an index vector (please refer to [Wang et al., 2020]
for the details of Lv and Lc).

Finally, we combine the three losses to jointly guide the
training of our EAGM,

L = Lv + λeLe + λcLc (12)
where λe, λc ≥ 0 control the relative importance of Le and
Lc respectively.

5 Experiments
5.1 Implementation & Evaluation Benchmarks
In our implementation, we build up our EAGM based on
the state-of-the-art method [Wang et al., 2020], which learns

affinities and the combinatorial solver simultaneously. For all
experiments, optimization is achieved via ADAM optimizer
[Kingma and Ba, 2015] with initial learning rate 1 × 10−3,
and exponential decaying 2% per 2000 iterations. The CNN
features in Sec. 4.1 are the concatenated feature maps of
relu4 2 and relu5 1 of a VGG16 [Simonyan and Zis-
serman, 2014] network pre-trained on ImageNet [Deng et al.,
2009]. We empirically set the number of convolutional layers
l1 = 3 and l2 = 10 in the edge attention module and clas-
sification module respectively. The weights in Eq. 12 are set
as λe = λc = 0.1 during training. All experiments are run
on a single GTX-1080Ti GPU, and around 25 image pairs are
processed per second.

Our EAGM is compared with the state-of-the-arts, includ-
ing IPFP [Leordeanu et al., 2009], RRWM [Cho et al., 2010],
PSM [Egozi et al., 2012], GNCCP [Liu and Qiao, 2013],
ABPF [Wang et al., 2018], HARG [Cho et al., 2013], DetGM
[Yu et al., 2020b], GMN [Zanfir and Sminchisescu, 2018],
PCA [Wang et al., 2019], CIE [Yu et al., 2020a], and LCSGM
[Wang et al., 2020] (the last four are deep learning methods).
The experiments are performed on two cases with and with-
out outliers, including three benchmarks for keypoint match-
ing: Pascal VOC [Everingham et al., 2010] with Berkeley an-
notations [Bourdev and Malik, 2009], Willow Object [Cho et
al., 2013], and CMU House Sequence [Caetano et al., 2006].
Graph edges are built between keypoints by Delaunay trian-
gulation [Cignoni et al., 1998]. Matching accuracy is evalu-
ated by the number of correctly matched keypoint pairs aver-
aged by the total number of keypoint pairs.

5.2 Evaluation Results without Outliers
Pascal VOC. This dataset contains images with labeled ob-
ject bounding boxes and keypoints of 20 classes. We follow
the standard protocol [Wang et al., 2019]: (1) each object
is cropped by its corresponding bounding box and scaled to
256 × 256, the number of inliers ranges from 6 to 23; (2)
7,020 images for training and 1,682 for testing. We generate
100,000 training samples for each class by randomly choos-
ing two images. As shown in Table 1, EAGM outperforms the
state-of-the-arts with the highest matching accuracy 70.5%.
This dataset is difficult due to variations in object scale, ap-
pearance, pose, and background clutter. Compared with deep
learning methods GMN, PCA, CIE, and LCSGM with equiv-
alent edges, our EAGM learns edge attention to adjust the
impact of different edges, and achieves more promising per-
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Method car duck face m.bike w.bottle Avg.

IPFP 74.8 60.6 98.9 84.0 79.0 79.5
RRWM 86.3 75.5 100 94.9 94.3 90.2
PSM 88.0 76.8 100 96.4 97.0 91.6
GNCCP 86.4 77.4 100 95.6 95.7 91.0
ABPF 88.4 80.1 100 96.2 96.7 92.3

HARG 71.9 72.2 93.9 71.4 86.1 79.1
GMN 74.3 82.8 99.3 71.4 76.7 80.9
PCA 84.0 93.5 100 76.7 96.9 90.2
CIE 82.2 81.2 100 90 97.6 90.2
LCSGM 91.2 86.2 100 99.4 97.9 94.9

EAGM 94.4 89.7 100 99.3 99.2 96.5

Table 2: Comparison of matching accuracy (%) on Willow.

formance. The informative and reasonable edge semantic fea-
tures also enhance the robustness of EAGM.

Willow Object. This dataset includes images of 5 classes,
and each contains at least 40 images. Each image is labeled
with 10 distinctive keypoints on its target object. Follow-
ing [Cho et al., 2013; Wang et al., 2019], (1) each image
is scaled to 256 × 256; (2) 20 images from each class are
randomly selected for training, and 1000 pairs from the rest
of each class are randomly chosen for testing. This dataset
is easier than Pascal VOC with keypoints, due to aligned
pose of images from the same class and lack of object scale
variations. As shown in Table 2, both non-learning methods
and learning-based methods achieve acceptable performance.
The distinguishing edge features and learned edge attention
of EAGM support it to achieve the best performance with ac-
curacy 96.5%.

5.3 Evaluation Results with Outliers
Pascal VOC with outliers. To further demonstrate the ef-
fectiveness of our EAGM, we perform the comparison exper-
iments on Pascal VOC with outliers. We adopt the pre-trained
model in the experiments on Pascal VOC without outliers, but
evaluate on the testing samples with outliers. Specifically, we
randomly generate outliers in the area 256 × 256, and add
them to the second image of each testing pair. The number
of outliers ranges from 1 to 5. As illustrated in Table 3, al-
though both of LCSGM and our EAGM achieve decreasing
accuracy with the increasing outliers, our EAGM is more ro-
bust as keeping superiority.

CMU House Sequence. This dataset consists of 111
frames of image sequences, which contains the same house
object with transformation cross sequence gaps. 30 key-
points are manually labeled and tracked across all frames.
Each training sample is formed by two randomly selected
frames, and 300,000 random training samples are generated.
n1 (10 ≤ n1 ≤ 30) inliers are randomly chosen from the
30 keypoints for one frame of a training pair, and the other
frame contains n2 = 30 nodes, i.e., there are 30−n1 outliers.
We compare the matching accuracy under two cases: (1) fol-
lowing the standard protocol [Cho et al., 2010], i.e., fixing
n1 = 20, n2 = 30 and testing under varying sequence gap

Outlier 0 1 2 3 4 5

LCSGM 68.5 59.3 51.9 45.8 41.4 36.6
EAGM 70.5 60.6 53.3 47.6 42.6 38.4

Table 3: Matching accuracy (%) on Pascal VOC with outliers.
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Figure 3: Comparison of matching accuracy (%) on CMU House.

{10, 20, . . . , 100} with 560 image pairs (Figure 3(a)), where
increasing gaps indicates deeper deformation; (2) fixing the
gap as 50 and evaluating under varying n1 = 30, 29, . . . , 20
(Figure 3(b)), i.e., increasing outliers from 0 to 10. It is obvi-
ous that the performance of non-learning methods degrades as
the increasing deformation and outliers, but the deep learning
methods show relatively stable accuracy. However, only our
EAGM is still robust against 100 gaps. On the whole, EAGM
outperforms other methods with at least 97.3% accuracy.

These experiments demonstrate that our EAGM with the
informative edge semantic features is effective on graph
matching with outliers. The fused features also make EAGM
more robust, which involves geometric and semantic infor-
mation jointly.

6 Conclusion
In this paper, we design an edge attention-adaptive graph
matching network for graph matching with outliers, named
EAGM, to effectively capture the novel edge semantic infor-
mation that is robust to outliers. EAGM adjusts the impact of
each edge on graph matching adaptively, and predicts node
and edge binary labels of the associated assignment graph
to indicate the matching relations between the two original
graphs. Moreover, our novel edge semantic feature not only
provides reasonable and independent description for edges,
but also distinguishes outliers in the view of their associated
edges. The experiments with and without outliers demon-
strate that our EAGM achieves promising performance.

Acknowledgments
This work was supported by National Key Research and De-
velopment Program of China (No. 2019YFB1406303), Na-
tional Natural Science Foundation of China (No. 61876003),
and Beijing Natural Science Foundation (No. L192024). It
is also a research achievement of Key Laboratory of Science,
Technology and Standard in Press Industry (Key Laboratory
of Intelligent Press Media Technology).

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

971



References
[Bourdev and Malik, 2009] Lubomir Bourdev and Jitendra

Malik. Poselets: Body part detectors trained using 3d hu-
man pose annotations. In ICCV, pages 1365–1372, 2009.

[Bresenham, 1965] Jack E Bresenham. Algorithm for com-
puter control of a digital plotter. IBM Systems Journal,
4(1):25–30, 1965.

[Caetano et al., 2006] Tiberio S Caetano, Terry Caelli, Dale
Schuurmans, and Dante Augusto Couto Barone. Graphical
models and point pattern matching. IEEE Trans. Pattern
Anal. Mach. Intell., 28(10):1646–1663, 2006.
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