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Abstract—Face verification in the presence of age progression
is an important problem that has not been widely addressed.
In this paper, we study the problem by designing and evaluating
discriminative approaches. These directly tackle verification tasks
without explicit age modeling, which is a hard problem by itself.
First, we find that the gradient orientation (GO), after discarding
magnitude information, provides a simple but effective represen-
tation for this problem. This representation is further improved
when hierarchical information is used, which results in the use of
the gradient orientation pyramid (GOP). When combined with
a support vector machine (SVM) GOP demonstrates excellent
performance in all our experiments, in comparison with seven
different approaches including two commercial systems. Our
experiments are conducted on the FGnet dataset and two large
passport datasets, one of them being the largest ever reported for
recognition tasks. Second, taking advantage of these datasets, we
empirically study how age gaps and related issues (including
image quality, spectacles, and facial hair) affect recognition
algorithms. We found surprisingly that the added difficulty of
verification produced by age gaps becomes saturated after the
gap is larger than four years, for gaps of up to ten years. In
addition, we find that image quality and eyewear present more
of a challenge than facial hair.

Index Terms—Face verification, age progression, gradient ori-
entation pyramid, support vector machine

I. INTRODUCTION

A. Background

Face verification is an important problem in computer
vision and has a very wide range of applications, such as
surveillance, human computer interaction, image retrieval, etc.
A thorough survey can be found in [42]. A large amount of
research effort has been focused on pursuing robustness to
different imaging conditions, including illumination change,
pose variation, expression, etc. Despite decades of study on
face image analysis, age related facial image analysis has not
been extensively studied until recently. Most of these works
focus on age estimation [14], [15], [30], [43], [41], [8], [10],
[11], [9], [24], [40] and age simulation [18], [35], [36], [38]. In

Copyright (c) 2008 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

H. Ling is with the Department of Computer and Information Science, Tem-
ple University, Philadelphia, PA, 19122 USA (e-mail: hbling@temple.edu).

S. Soatto is with the Computer Science Department, University of Califor-
nia, Los Angeles, CA, 90092 USA (e-mail: soatto@cs.ucla.edu.

N. Ramanathan is with Cernium Corporation, Reston, VA, 20191 USA (e-
mail: nramanathan@cernium.com).

D. W. Jacobs is with the Computer Science Department, University of
Maryland, College Park, MD 20742 USA (e-mail: djacobs@cs.umd.edu).

Manuscript received xxx, 2009; revised xxx, 2009.

addition, some researchers study the effect of age progression
on face profiles and appearances [31], [37], [32], [16].

Face verification across age has been subject to relatively
little attention. Some previous work applies age progression
for face verification tasks. When comparing two photos, these
methods either transform one photo to have the same age as the
other, or transform both to reduce the aging effects. One of the
earliest works appears in Lanitis et al. [18], where a statistical
model is used to capture the variation of facial shapes over age
progression. The model is then used for age estimation and
face verification. Ramanathan and Chellappa [31] use a face
growing model for face verification tasks for people under the
age of eighteen. This assumption limits the application of these
methods, since ages are often not available. A recent work in
Biswas et al. [4] studies feature drifting on face images at
different ages and applies it to face verification tasks. Other
studies using age transformation for verification include [9],
[34], [40], [25], [26].

The above methods can be roughly categorized as generative
methods since aging needs to be modeled. In fact, most of
them use verification to evaluate the age modeling algorithm.
While these methods explicitly address the aging issue, they
usually require additional information about the images being
compared, such as actual age. In addition, many landmark
points are often used for modeling age progression or building
statistical models. All the methods mentioned above use the
68 landmarks that are pre-labeled for each photo in the
FGnet dataset [1]. Furthermore, both age estimation and age
simulation are still open problems and may bring instabilities
to the generative methods. To avoid these problems, we study
discriminative methods that directly tackle the face verification
problem.

Discriminative approaches have been used for face veri-
fication across age progression. The most related study to
our work is [30], where the probabilistic eigenspace frame-
work [22] is adapted for face identification across age pro-
gression. Instead of using a whole face, only a half face
(called a PointFive face) is used to alleviate the non-uniform
illumination problem. Then, eigenspace techniques and a
Bayesian model are combined to capture the intra-personal and
extra-personal image differences. An Eigenspace is also used
in [17] in combination with a statistical model on the FGnet
dataset [1] and in [33] on the MORPH dataset. We study the
same task as that studied in [30]. As will be clarified in the
following sections, our work differs from previous studies in
both the representation (we use gradient orientation pyramids)
and the classification frameworks (we use SVM). Part of this
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Fig. 1. Typical images with age differences. Top row: scanned passport or
visa photos. Bottom row: photos from the FG-NET Aging Database [1].

work was published in a preliminary conference version [19].

B. Tasks and challenges

The goal of our study is two-fold. The first is to investigate
representations and algorithms for verification. The second is
to study the effect of age gaps and related issues (including
image quality, spectacles, and facial hair) on verification
algorithms. We use three datasets in our study. Two of them are
passport datasets involving more than 1,800 subjects, which to
the best of our knowledge are the largest datasets ever studied
for the task. We also use the FG-NET Aging Database [1] that
is widely used for image based face aging analysis.

The challenges of face verification across age progression
are due to several sources. The first source is the biometric
change over years, including facial texture (e.g., wrinkles as
on the forehead in Fig. 1(i)), shape (e.g., weight gain, Fig.
1 d-f), facial hair (mustache and beard, e.g., Fig. 1(a-c,k-
l)), presence of glasses (e.g., Fig. 1(d-e)), scars, etc. The
second source is the change in the image acquisition conditions
and environment, including the illumination conditions, the
image quality change caused by using different cameras, etc.
In addition, for images converted from non-digital photos,
additional artifacts (e.g., saturation in Fig. 1(e)) sometimes
appear due to scanning processes and sometimes the original
photos are smudged. Some examples of these challenges are
shown in Fig. 1.

C. Contribution

We make several contributions in this study. First, we pro-
pose using the gradient orientation pyramid (GOP) for the task.
We show that, when combined with the support vector machine
(SVM) [39], GOP demonstrates excellent performance for face
verification with age gaps. This is mainly motivated by the
illumination insensitivity of gradient orientation as shown in
[6]. We conjecture in our preliminary work [19] that gradient
orientation is robust to aging processes under some flexible
conditions that are usually true in the context of face verifica-
tion. The pyramid technique is used to capture hierarchical
information that further improves the representation. Then,
given a face image pair, we use the cosines between gradient
orientations at all scales to build the feature vector. The feature
vector is then combined with an SVM for face verification in
a way similar to [27].

Our second contribution is thorough empirical experiments.
We evaluated nine different approaches, including two baseline
methods (l2 norm and gradient orientation), four different rep-
resentations with the same SVM-based framework (intensity
difference [27], gradient with magnitude, gradient orientation,
and GOP), the Bayesian face [30], and two commercial face
verification systems. The evaluations are conducted on the
three datasets mentioned above. To the best of our knowledge,
this is the largest reported evaluation in both the size of dataset
and the number of tested methods.

Our third contribution is the empirical study of how ver-
ification performance varies with increasing age gaps and
related issues. We found surprisingly that the added difficulty
of verification produced by age gaps becomes saturated after
the gap is larger than four years, for gaps of up to ten years.
This is observed with different image representations that have
been tested. In addition, on the FGnet dataset, we observed
that the image quality and presence of eye glasses bring more
challenges than facial hair.

The rest of the paper is organized as follow. In Section
II, we formulate the task of face verification using a support
vector machine framework. Then, we introduce the gradient
orientation pyramid in Section II-B. After that, Section III
describes our experiments on two passport image datasets
and the FG-NET dataset, which have large age separations.
Section IV presents our empirical study of how age gaps
affect verification algorithms. Section V reports the verification
experiments on face images from children. Finally, Section VI
concludes the paper.

II. PROBLEM FORMULATION

A. Face Verification Framework

In this paper, we study face verification tasks as in [30].
In verification, one must determine whether two images come
from the same person, as opposed to recognition, in which
an individual is identified from a large gallery of individuals.
An advantage of this problem is that it does not require many
images for each subject, which is often difficult for collections
across aging. Furthermore, this problem directly relates to
the passport renewal task that is important for the passport
datasets in our experiments. In the task, a newly submitted
photo needs to be compared with an old one, to ensure that the
request is valid. Face verification as a two-class classification
problem has been studied for general face analysis tasks. For
example, Moghaddam et al. [23] used a Bayesian framework
for the intra-personal and extra-personal face classification.
Phillips [27] used SVM for face recognition problems and
observed good results on the FERET database [28] compared
to component based approaches. Jonsson et al. [13] used SVM
for face authentication problems. All of the above methods use
intensity (sometimes normalized intensity) as their representa-
tion. In comparison, we use the gradient orientation pyramid
and apply the framework for problems involving large age
differences.

As in [23], [27], [13], we model face verification as a two-
class classification problem. Given an input image pair I1 and
I2, the task is to assign the pair as either intra-personal (i.e. I1
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and I2 from the same people) or extra-personal (i.e. I1 and I2

from different individuals). We use a support vector machine
(SVM) [39]. Specifically, given an image pair (I1, I2), it is
first mapped onto the feature space as

x = F(I1, I2) , (1)

where x ∈ Rd is the feature vector extracted from the image
pair (I1, I2) through the feature extraction function F : I ×
I → Rd (F will be described in the following subsections),
I is the set of all images, and Rd forms the d-dimensional
feature space.

Then SVM is used to divide the feature space into two
classes, one for intra-personal pairs and the other for extra-
personal pairs. Using the same terminology as in [27], we
denote the separating boundary with the following equation

Ns∑

i=1

αiyiK(si,x) + b = ∆ (2)

where Ns is the number of support vectors and si is the i-th
support vector. ∆ is used to trade off the correct reject rate and
correct accept rate as described in (3) and (4). K(., .) is the
kernel function that provides SVM with non-linear abilities.
In our experiments, we use the LibSVM library [5].

For verification tasks, the correct reject rate (CRR) and the
correct acceptance rate (CAR) are two critical criteria,

CRR =
# correctly rejected extra-personal pairs

# total extra-personal pairs
, (3)

CAR =
# correctly accepted intra-personal pairs

# total intra-personal pairs
, (4)

where “accept” indicates that the input image pair are from the
same subject and “reject” indicates the opposite. In addition,
the equal error rate (EER), defined as the error rate when a
solution has the same CAR and CRR, is frequently used to
measure verification performance,

B. Gradient Orientation and Gradient Orientation Pyramid
Now we need to decide the representation for feature

extraction, i.e., F(., .). A natural choice is to use the intensity
difference between I1 and I2, which is called difference space
in [23] and also has been used in [30], [27]. The difference
space can be made robust to affine lighting changes by an ap-
propriate intensity normalization. However, the affine lighting
model is not always sufficient for face images, especially for
images taken at times separated by years.

Motivated by previous study of the robustness of gradient
orientation (GO) [2], [6], [3], [12], we propose to use GO
for face verification across age progression. Specifically, in
[6], GO is shown to be robust to illumination change and
successfully applied for face recognition tasks. Furthermore,
it has been shown in [37], [38] that the change of face color
across age progression can be factored to two components,
hemoglobin and melanin, according to skin anatomy. This
observation inspired our preliminary study [19], which shows
that the GO of each color channel of human faces is robust
under age progression. In addition, we collect gradient orien-
tation in a hierarchical way, which has been shown to retain
most visual information as in [2], [12].

(a) Image I (b) Pyramid P(I) (c) GOP (d) G(I)

Fig. 2. Computation of a GOP from an input image I . Note: In (c), the
figure is made brighter for better illustration.

Note that gradient-based representations are recently widely
used in computer vision and pattern recognition tasks, such as
the scale invariant feature transfer (SIFT) [20] for object and
category classification and the histogram of orientation (HOG)
[7]. In these works, the gradient directions were weighted
by gradient magnitudes. In contrast, we discard magnitude
information and use only orientations, which demonstrates
significant improvement in our experiments (Sec. III). Further-
more, the gradient directions at different scales are combined
to make a hierarchical representation.

Given an image I(p), where p = (x, y) indicates pixel loca-
tions, we first define the pyramid of I as P(I) = {I(p; σ)}s

σ=0

with:

I(p; 0) = I(p) ,

I(p; σ) = [I(p; σ − 1) ∗ Φ(p)] ↓2 σ = 1, ..., s , (5)

where Φ(p) is the Gaussian kernel (0.5 is used as the standard
deviation in our experiments), ⊗ denotes the convolution
operator, ↓2 denotes half size downsampling, and s is the
number of pyramid layers. Note that in (5) the notation I
is used both for the original image and the images at different
scales for convenience.

Then, the gradient orientation at each scale σ is defined by
its normalized gradient vectors at each pixel.

g(I(p;σ)) =





∇(I(p,σ))
|∇(I(p,σ))| if |∇(I(p, σ))| > τ

(0, 0)> otherwise
, (6)

where τ is a threshold for dealing with “flat” pixels. The
gradient orientation pyramid (GOP) of I , is naturally defined
as G(I) = stack({g(I(p, σ))}s

σ=0) ∈ Rd×2 that maps I to
a d × 2 representation, where stack(.) is used for stacking
gradient orientations of all pixels across all scales and d is the
total number of pixels. Fig. 2 illustrates the computation of a
GOP from an input image.

C. Kernels Between GOPs

Given an image pair (I1, I2) and corresponding GOPs
(G1 = G(I1), G2 = G(I2)), the feature vector x = F(I1, I2)
is computed as the cosines of the difference between gradient
orientations at all pixels over scales.

x = F(I1, I2) = (G1 ¯G2)
[

1
1

]
, (7)

where ¯ is the element-wise product. Next, we apply the
Gaussian kernel to the extracted feature x to be used with
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the SVM framework. Specifically, our kernel is defined as

K(x1,x2) = exp(−γ|x1 − x2|2) , (8)

where γ is a parameter determining the size of RBF kernels
(γ = 1

d is used in our experiments). In the rest of the paper,
we use SVM+GOP to indicate the proposed approach.

The proposed SVM+GOP approach demonstrates excellent
performance in our experiments (Section III). In the following
we summarize its advantages:
• Being a discriminative method, SVM+GOP tackles face

identification problem directly. This way, it not only
avoids the potential instability brought by age estimation
and simulation, but also requires less prior informa-
tion about photos under comparison. Consequently, the
proposed approach is more applicable than previously
proposed generative methods (see the Introduction).

• GOP is insensitive to illumination changes [6]. As a
result, no normalization is needed on the input images.

• As shown in the preliminary study [19] using anatomic
studies of skin color over age, gradient orientation is
fairly robust across age progression for face verification
tasks where high resolution images are avoided.

• The pyramid technique provides a natural way to perform
face comparison at different scales.

• As demonstrated in our experiments (Sec. III), the pro-
posed GO+SVM and GOP+SVM significantly outper-
form most of its competitors. The performances of two
commercial systems are similar to our proposed methods.
However, our methods are much simpler than these
commercial systems and have potential to be combined
with other approaches to further boost the performance.

III. FACE VERIFICATION EXPERIMENTS

A. Experimental Setup

Datasets. We conduct face verification experiments on three
databases: two passport databases, named Passport I and Pass-
port II, and the FGnet database [1]. All datasets are dominated
by Caucasian descendants. Details of these databases are given
in the following subsections.

In our experiments, the images are preprocessed using the
same scheme as in [30]. This includes manual eye location
labelling, alignment by eyes and cropping with an elliptic
region. For computational reasons, image sizes are reduced
to 96× 84 for Passport I, 72× 63 for Passport II, and 96× 84
for the FGnet database. To alleviate the alignment problem, we
tried different alignments with small shifts (up to two pixels),
using the shift that led to greatest image similarity. In our
experiments this improved performance by around 0.5% (equal
error rate). A similar technique is used by [21].

Approaches. We compared the following approaches.
1) SVM+GOP: the approach proposed in this paper. 2)
SVM+GO: this is similar to SVM+GOP, except that only the
gradient orientation (GO) at the finest scale is used without a
hierarchical representation. 3) SVM+G: this one is similar to
SVM+GO, except that the gradient (G) itself is used instead
of gradient orientation. It can also be viewed as weighting
gradient orientations with gradient magnitudes. 4) SVM+diff

[27]. As in [27], we use the differences of normalized images
as input features combined with SVM. 5) GO: this is the
method using gradient orientation proposed in [6]. 6) l2: this
is a baseline approach that uses the l2 norm to compare
two normalized images. 7) Bayesian+PFF [30]. This is the
approach combining Bayesian framework [22] and PointFive
Face (PFF) [30]. In addition, two commercial systems are
tested on the datasets, which we will name Vendor A and
Vendor B1.

The first four approaches use exactly the same configura-
tions and the same SVM framework, but different representa-
tions. The purpose is to study the value of the proposed GOP
representation. The other five approaches are different from
our method in both representations and classification frame-
works. For intensity based representations (i.e., l2, SVM+G,
SVM+diff), the image intensities are first normalized (by
subtracting mean intensities and dividing by the standard
deviation of intensities) to achieve affine invariance.

Experimental evaluation. The performance of algorithms
is evaluated using the CRR-CAR curves that are usually
created by varying some classifier parameters. We used three-
fold cross validation in our experiments. For each experiment,
the CRR-CAR curve is created by adjusting parameter ∆ in
(2). The total performance is evaluated as the average of the
output CRR-CAR curves of three folds. For Vendor A and
B, all original color images are input to their systems. To
compare with Bayesian+PFF, we also test SVM+GOP in the
experimental setup according to [30], i.e., we use 200 positive
and 200 negative pairs as a training set. We also use equal
error rates for evaluation.

B. Experiments with Passport Datasets

We tested the proposed approach on two real passport image
datasets, which we will refer to as Passport I and Passport II
respectively. Passport I is the dataset used in [30]. It contains
452 intra-personal image pairs (several duplicate pairs were
removed) and 2,251 randomly generated extra-personal image
pairs. Passport II contains 1,824 intra-personal image pairs
and 9,492 randomly generated extra-personal image pairs. The
extra-personal pairs are generated in the way such that there
is no overlapping of subjects between training and testing sets
(during cross validation), as in [30]. Images in both datasets
are scanned passport images. They are in general frontal im-
ages with small pose variations. The lighting condition varies,
and can be non-uniform and saturated. The age differences
between image pairs are summarized in Table I. It shows
that both datasets have significant age gaps for intra-personal
images. Fig. 3 further shows the distribution of age differences
of intra-personal pairs in the datasets. Intuitively, Passport
II is more challenging than Passport I for verification tasks
because of the relatively larger age differences. Furthermore,
we observed that the image resolution change in Passport II
is also larger than that in Passport I.

Fig. 4 and Fig. 5 show the CRR-CAR curves for the
experiments. In addition, Table II lists the equal error rates

1Anonymous due to agreements with the companies.
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TABLE I
PASSPORT DATASETS FOR FACE VERIFICATION TASKS. “STD.” IS SHORT

FOR STANDARD DEVIATION.

Dataset # intra pair mean age std. age mean age diff. std. age diff.
Pass. I 452 39 10 4.27 2.9
Pass. II 1824 48 14.7 7.45 3.2
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Fig. 3. Distribution of age differences in the passport image databases. Left:
Passport I. Right: Passport II.

(i.e. when CRR=CAR). There are several observations from
the experimental results.

First, among the SVM-based approaches, GOP works the
best. The gradient direction obviously plays a main role in
GOP’s excellent performance, since both SVM+GOP and
SVM+GO largely outperform SVM+G, which includes the
gradient magnitude information. In comparison, the use of a
hierarchical structure in GOP further improves upon GO.

Second, SVM+GO greatly outperforms GO. Note that, for
face verification, SVM+diff is previously used in [27] and GO
is previously used in [6]. This shows that our method, as a
combination of these two, greatly improves both of them.

Third, SVM+GOP outperforms the Bayesian approach [30]
on both datasets. In addition, from Fig. 5 it is obvious that
SVM+GOP is more suitable for passport verification tasks
because it performs much better at a high correct reject rate,
which is desired as mentioned in Sec. II-A. Furthermore, given
an image pair, our approach does not require the information
of which one is older, which is used in the Bayesian approach
as a prior.

Fourth, on Passport I, SVM+GOP performs similarly to
Vendor A while much better than Vendor B, while on Passport
II, SVM+GOP outperforms Vendor A but performs worse than
Vendor B (interestingly, the ranks of Vendor A and Vendor B
alternate). This observation shows that, though very simple,
our approach performs close to commercial systems, which
combine many additional heuristic techniques and are well
tuned. Furthermore, only low resolution gray images are used
in our approach, while the original color images are used in
both commercial systems.

C. Experiments on the FGnet Database

The FGnet Aging Database [1] is widely used for research
of age related facial image analysis. The database contains
1002 images from 82 subjects, over large age ranges. Conse-
quently, there is an average of 12 images per subject in the
FGnet database, which is much more than that in the passport
databases (only two images per subject). This property makes
the FGnet very useful for age progression study such as
estimation and simulation. All images in the database are
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Fig. 5. CRR-CAR curves for experiments with 200 intra- and 200 extra-pairs
for training.
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Fig. 6. Distribution of age differences in the FGnet dataset.

annotated with landmark points, age information, and pose
information.

We use a subset of the FGnet database that contains only
images that are taken above age 18 (including 18) and roughly
frontal, which is consistent with the study on the passport
databases and in [30]. The effects of aging in children are
quite different, and we discuss them in Section V. For no-
tational convenience, we still call this subset FGnet in the
following. The subset contains 272 images from 62 subjects.
Age statistics of FGnet are shown in Table III and Fig. 6.

We emphasize the importance of experiments on FGnet due
to the following reasons:
• FGnet is very challenging for our task in two ways. First,

it contains much larger age gaps. The largest gap is 45
years in FGnet, compared to 12 years in the passport
databases. Second, the number of subjects is very limited,
which makes learning very difficult.

• Since FGnet is a publicly available dataset, experiments
on FGnet will serve as a benchmark/baseline for future
studies on the topic.

TABLE III
FGNET DATABASE USED IN FACE VERIFICATION TASKS. “STD.” IS SHORT

FOR STANDARD DEVIATION.

# subject # intra pair mean age std. age mean age diff. std. age diff.
62 665 29.5 11.3 12.3 9.7

For verification tasks, we generate 665 intra-personal pairs
by collecting all image pairs from same subjects. Extra-
personal pairs are randomly selected from images from dif-
ferent subjects. Three-fold cross validation is used, such that
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Fig. 4. CRR-CAR curves for three-fold cross validation experiments. Top: on Passport I. Bottom: on Passport II. This figure is better viewed in color.

TABLE II
EQUAL ERROR RATES. LEFT TABLE: EXPERIMENTS OF THREE-FOLD CROSS VALIDATION. RIGHT TABLE: EXPERIMENTS USING 200 INTRA- AND 200

EXTRA-PAIRS AS TRAINING, AS IN [30].

GO [6] SVM+diff [27] SVM+G SVM+GO SVM+GOP Vendor A Vendor B
Pass. I 17.6% 16.5% 17.8% 9.5% 8.9% 9.5% 11.5%
Pass. II 20.7% 18.8% 17.4% 12.0% 11.2% 13.5% 8.0%

SVM+GOP Bayesian [30]
5.1% 8.5%
10.8% 12.5%

in each fold images from the same subject never appear in
both training and testing pairs. Each fold contains about 220
intra-personal pairs and 2,000 extra-personal pairs.

The experimental results are shown in Fig. 7 and Table
IV2. Examples of correct as well as incorrect classification for
intra-personal pairs are shown in Fig. 8. The results indicate
that, again, the proposed approach outperforms all others.
In addition, we also tried combining SVM+GOP with the
PointFive Face approach [30] but observed no improvement.
This confirms to some degree that our method is insensitive
to illumination change, because PointFive Face is designed to
be robust to illumination variations.

TABLE IV
EQUAL ERROR RATES FOR EXPERIMENTS ON THE FGNET DATABASE [1].

l2 GO SVM+diff SVM+G SVM+GO SVM+GOP
EER 40.6% 32.3% 31.2% 28.5% 25.2% 24.1%

IV. EFFECTS OF AGE PROGRESSION ON VERIFICATION
PERFORMANCE

In this section we empirically study how verification per-
formance is affected by age gaps and related issues, including
image quality, presence of eye glasses, and facial hair.

A. Effects of Age Gaps

We are interested in how age differences affect the perfor-
mance of machine verification algorithms. Taking advantage
of the large number of image pairs in Passport II, an empirical
study of this problem is conducted.

2The commercial systems were not available for testing in this experiment.
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Fig. 7. CRR-CAR curves for three-fold cross validation experiments on
FGnet dataset. This figure is better viewed in color.

First, intra-personal image pairs are grouped into four
classes according to their age gaps. Specifically, these are
groups with age gaps from 0 to 2 years, 3 to 5 years, 6 to
8 years, and 9 to 11 years. The goal is to test verification
performance for different groups. Specifically, we use the
average equal error rates as a criterion. For each group, 80
intra pairs and 80 extra pairs are randomly selected as the
training set. Testing sets are created similarly but with 15 intra
pairs and 15 extra pairs. There is no overlap between training
and testing sets. After that, four SVM-based approaches are
tested on the data sets and equal error rates are recorded. To
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(a) 18 years (b) 31 years (c) 7 years

(d) 35 years (e) 23 years (f) 32 years
Fig. 8. Example results of SVM+GOP on the FGnet datasets at the equal
error rate. (a-c) Three correctly accepted intra-personal pairs. (d-f) Three
incorrectly rejected intra-personal pairs. The listed years indicate age gaps
in the corresponding pairs.
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Fig. 9. Effect of aging on verification performance. The curves are shifted
a bit along the x axis for better illustration.

reduce the variance caused by the lack of training samples,
20 different training/testing sets are generated and the average
equal error rates are recorded. The above experiments have
been run 50 times with randomly chosen training/testing sets
(i.e., 50 × 20 training/testing sets). Finally, the mean and
standard deviation of equal error rates are summarized to
evaluate the performance.

Fig. 9 shows the performance of the experiments on all four
groups. From the plots, we found that faces separated by more
than a year are more difficult than those within one year. What
surprised us is that the difficulty becomes saturated after the
age gap is larger than four years. This phenomenon is observed
on all four different representations tested in the experiments.

B. Effects of Age Related Issues

When comparing two images of the same person taken at
different years, several non-anatomic issues often happen in
practice. The FGnet dataset has detailed descriptions associ-
ated with each image. Using these descriptions, we analyze
the verification results on the FGnet dataset to study the
effects of the following three issues: 1) Quality, photos taken
a long time ago sometimes have poor quality due either to
the photographic environment or scanning artifacts. An intra-
personal pair is treated as high quality if both photos have
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Fig. 10. Error analysis of face verification experiments on the FGnet dataset.

good image quality and low otherwise. 2) Glasses: an intra-
personal pair is treated as different if one photo has spectacles
and the other does not. Otherwise, the pair is treated as same.
3) Facialhair: an intra-personal pair is treated as without facial
hair if none of photos has facial hair (including mustache and
beard). Otherwise, the pair is treated as with facial hair.

Once we have assigned each intra-pair with the above labels,
we can compare the error verification rate for each label and
then compare how related issues affect verification algorithms.
For example, the error rate of high (quality) inner-pairs is
calculated as

1− # correctly classified high quality intra-pairs
# high quality intra-pairs

.

Fig. 10 shows the error rates of different labels. These error
rates are computed using SVM+GOP on the FGnet dataset
and taken at the equal error rates (see Section III). From the
figure, we see that low quality and spectacles do increase
the difficulties for face verification. However, the proposed
SVM+GOP seems to be robust to the presence of facial
hair. One reason to this observation is, though facial hair
sometimes adds difficulties to verification tasks, they often
provide discriminative cues as well. For example, some people
have similar beard styles over the years.

V. FACE VERIFICATION ACROSS AGING IN CHILDREN

The appearance changes of human faces are very different
in children than in adults [29]. In this paper we mainly
focus on face images taken above age 18, after which face
profiles remain stable [29]. However, it is helpful to understand
the performance of the above tested methods on faces from
children as well. In this section, we report our experiments on
the children face images from the FGnet dataset.

We first extract two face datasets from FGnet, in the same
way as in Sec. III-C. One dataset, named FGnet-18, contains
311 face images from 79 subjects, taken at ages in the range
[8 18]. The other dataset, named FGnet-8, contains 290 face
images from 74 subjects, taken at ages in the range [0 8].

For verification tasks, we follow the same scheme as in
Sec. III-C; we generate 577 intra-personal pairs and 6,000
extra-personal pairs for FGnet-18, and 580 intra-personal pairs
and 6,000 extra-personal pairs for FGnet-8. Three-fold cross
validations are conducted for each dataset. Then, the average
EERs and CRR-CAR curves are reported in Table V and Fig.
11.

From these experiments, we have the following observa-
tions. First, the verification tasks for childrens’ faces are much
harder than for adult faces. This is clear when we compare
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(a) FGnet-18 (age range [8 18]). (b) FGnet-8 (age range [0 8]).
Fig. 11. CRR-CAR curves for three-fold cross validation experiments on the children images of the FGnet dataset. These figures are better viewed in color.

TABLE V
EQUAL ERROR RATES FOR EXPERIMENTS ON THE CHILDREN IMAGES OF

FGNET DATABASE [1].

l2 GO SVM+diff SVM+G SVM+GO SVM+GOP
FGnet-18 42.9% 40.9% 32.3% 36.1% 30.7% 30.5%
FGnet-8 44.0% 44.6% 36.2% 40.0% 39.8% 38.6%

results in Table V and Table IV. Second, gradient orientation
based methods still work well for age changes of teenagers,
though the hierarchical information does not help much any
more. Third, the task becomes extremely difficult for small
children with ages from 0 to 8, where all methods work poorly.

The major challenge of verifying children faces across aging
comes from the alignment problem, because face profiles un-
dergo large variations before age 18. This explains why the in-
tensity (after normalization) based method, SVM+diff, works
relatively better. Generative approaches can provide helpful
guidance here, though age information is often requested. It
is an interesting future direction to combine generative and
discriminative approaches for this task.

VI. CONCLUSION AND DISCUSSION

In this paper we studied the problem of face verification
with age variation using discriminative methods. First, we
proposed a robust face descriptor, the gradient orientation
pyramid, for face verification tasks across ages. Compared to
previously used descriptors such as image intensity, the new
descriptor is more robust and performs well on face images
with large age differences. In our experiments with comparison
to several techniques, the new approach demonstrated very
promising results on two challenging passport databases and
the FGnet dataset. In addition, being a discriminative ap-
proach, the proposed method requires no prior age knowledge
and does not rely on age estimation and simulation algorithms.

Second, the effect of the aging process on verification algo-
rithms are studied empirically. In the experiments we observed
that the difficulty of face verification algorithms saturated after
the age gap is larger than four years (up to ten years). We
also studied the effects of age related issues including image
quality, presence of spectacles, and facial hair.

We plan to investigate several directions in our future work.
First of all, testing on a large public dataset will be conducted
for deeper understanding of the proposed approaches. We
plan to work on the MORPH dataset [33] for this purpose.
Second, we plan to apply other discriminative approaches (e.g.,
boosting) for simultaneous feature analysis and classification.
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