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Abstract. We propose a fast algorithm, EMD-L1, for computing the
Earth Mover’s Distance (EMD) between a pair of histograms. Compared
to the original formulation, EMD-L1 has a largely simplified structure.
The number of unknown variables in EMD-L1 is O(N) that is signifi-
cantly less than O(N2) of the original EMD for a histogram with N bins.
In addition, the number of constraints is reduced by half and the objec-
tive function is also simplified. We prove that the EMD-L1 is formally
equivalent to the original EMD with L1 ground distance without ap-
proximation. Exploiting the L1 metric structure, an efficient tree-based
algorithm is designed to solve the EMD-L1 computation. An empirical
study demonstrates that the new algorithm has the time complexity of
O(N2), which is much faster than previously reported algorithms with
super-cubic complexities. The proposed algorithm thus allows the EMD
to be applied for comparing histogram-based features, which is practi-
cally impossible with previous algorithms. We conducted experiments
for shape recognition and interest point matching. EMD-L1 is applied
to compare shape contexts on the widely tested MPEG7 shape dataset
and SIFT image descriptors on a set of images with large deformation,
illumination change and heavy noise. The results show that our EMD-L1-
based solutions outperform previously reported state-of-the-art features
and distance measures in solving the two tasks.

1 Introduction

Histogram-based descriptors are used widely in various computer vision tasks
such as shape matching [1, 22, 23, 13], image retrieval [15, 8, 18, 16], texture analy-
sis [19, 9]. For comparing these descriptors, bin-to-bin distance functions, such as
Lp distance, χ2 statistics, and KL divergence, are most commonly used. These
approaches assume that the domain of the histograms are already aligned. How-
ever, in practice, such assumption can be violated due to various factors, such as
shape deformation, lighting variation, heavy noise, etc. The Earth Mover’s Dis-
tance (EMD) [20] is a cross-bin dissimilarity function that addresses the above
alignment problem by solving the transportation problem as a special case of



Distance d(a, b) d(b, c)

L1 1.0 0.875

L2 0.3953 0.3644

χ2 0.6667 0.6625

EMD 0.5 1.5625

(a) (b) (c) (d)

Fig. 1. An example where bin-to-bin distances meet problems. (a), (b) and (c) show
three shapes with log-polar bins on them and corresponding shape context histograms.
(d) lists the distances between them using different distance functions.

linear programming (LP). Beyond the color signature application proposed by
Rubner et al. [20] originally, we claim that EMD is useful for more general class
of histogram descriptors such as SIFT [15] and shape context [1].

Fig. 1 shows an example with shape context [1]. EMD correctly describes the
perceptual similarity of (a) and (b), while the three bin-to-bin distance func-
tions (L1, L2 and χ2) falsely state that (b) is closer to (c) than to (a). Despite
this favorable robustness property, EMD has seldom been applied to general
histogram-based local descriptors to our knowledge. The main reason lies in its
expensive computational cost, which is super-cubic3 for a histogram with N bins.

Rubner et al. [20] proposed using the transportation simplex (TS) [6] to
solve the EMD. They showed that TS has a super-cubic average time complex-
ity. In [20], EMD is applied to compact signatures instead of raw distributions
directly. This approach is efficient and effective especially for distributions with
sparse structures, e.g., color histograms in the CIE-Lab space in [20]. However,
the histogram-based descriptor is generally not sparse and can not be modelled
compactly. This forces the EMD algorithm to be applied to the raw distribution
directly. In real vision problems, the number of comparisons between these de-
scriptors is very large, which forbids the use of TS algorithm. Cohen and Guibas
[2] studied the problem of computing a transformation between distributions
with minimum EMD. Levina and Bickel [11] proved that EMD is equivalent to
the Mallows distance when applied to probability distributions. The L1 formu-
lation had been introduced by Wesolowsky [24] and then Cohen and Guibas [2].
In this paper we extended it to general histograms.

Indyk and Thaper [7] proposed a fast algorithm for image retrieval by em-
bedding the EMD metric into a Euclidean space. Grauman and Darrell [3] ex-
tended the approach for contour matching. The embedding is performed using
a hierarchical distribution analysis. A fast nearest neighbor retrieval is achieved
through locality-sensitive hashing. EMD can be approximated by measuring the
L1 distance in the Euclidean space after embedding. The time complexity of the
embedding is O(Nd log ∆), where N is the size of feature sets, d is the dimension

3 By super-cubic, we mean a complexity between O(N3) and O(N4)



of the feature space and ∆ is the diameter of the union of the two feature sets to
be compared. These approaches are efficient for retrieval tasks and global shape
comparison [7, 3]. However, they focused on the feature set matching rather than
the histogram comparison of our interest. In addition, they are approximative.
Thus the errors introduced by the embedding may reduce the performance for
the histogram-based descriptors. Recently, Grauman and Darrell [4] proposed
using the pyramid matching kernel (PMK) for feature set matching. PMK fur-
ther can be viewed as a further extension of the fast EMD embedding in that it
also compare the two distributions in a hierarchical fashion. PMK also handles
the partial matching through histogram intersections.

The contribution of this paper is twofold. First, we propose a new fast algo-
rithm, EMD-L1, to compute EMD between histograms with L1 ground distance.
The formulation of EMD-L1 is much simpler than the original EMD formulation.
It has only O(N) unknown variables, which is less than the O(N2) variables re-
quired in the original EMD. Furthermore, EMD-L1 has only half the number of
constraints and a more concise objective function. Unlike previous approximative
algorithms, we formally prove that EMD-L1 is equivalent to the original EMD
with L1 ground distance. An efficient tree-based algorithm is designed to solve
EMD-L1 and an empirical study shows that the time complexity of EMD-L1 is
O(N2), which significantly improves the previous super-cubic algorithm.

Second, the speedup gained by EMD-L1 enables us to compute the exact
EMD directly for histograms without reducing the discriminability. For the first
time, EMD is applied to compare histogram-based local descriptors. We tested
EMD-L1 in two experiments. First, it is applied to the inner-distance shape con-
text [13] for shape matching on the widely tested MPEG7 shape dataset, where
EMD-L1 achieves a better score than all previously reported results. Second,
EMD-L1 is applied to the SIFT [15] descriptors for feature matching on images
with large distortion. Again, EMD-L1 demonstrates excellent performance. In
addition, it also shows that EMD-L1 performs similar to the original EMD with
L2 ground distance, while the latter is much slower.

The rest of the paper is organized as follows. Sec. 2 reviews the EMD and
derives its formulation for histograms. Sec. 3 first gives the formulation of EMD-
L1. Then, the equivalence between EMD-L1 and EMD with L1 ground distance
is proved. Finally a fast algorithm for EMD-L1 is proposed, followed by an
empirical study of time complexity. Sec. 4 describes the experiments of applying
the EMD-L1 to shape recognition and interest point matching. Sec. 5 concludes.

2 The Earth Mover’s Distance (EMD)

2.1 The EMD between Signatures

The Earth Mover’s Distance (EMD) is proposed by Rubner et al. [20] to measure
the dissimilarity between signatures. Signatures are extracted from distributions
via clustering. A signature of size N is defined as a set S = {sj = (wj ,mj)}N

j=1.
Where mj is the position of the j-th element and wj is its weight.



Given two signatures P = {(pi, ui)}m
i=1 and Q = {(qj , vj)}n

j=1 with size m,n
respectively, the EMD between them is modeled as a transportation problem.
The elements in P are treated as “supplies” located at ui’s and element in
Q as “demands” at vj ’s. pi and qj indicate the amount of supply and demand
respectively. The EMD is the minimum (normalized) work required for this task.
It is defined as

EMD(P, Q) = min
F={fij}

∑
i,j fijdij∑

i,j fij

such that
∑

j fij ≤ pi,
∑

i fij ≤ qj ,
∑

i,j fij = min{∑i pi,
∑

j qj} and fij ≥ 0.
F = {fij} is the set of flows. fij represents the amount transported from the
i-th supply to the j-th demand. dij is a distance between the position ui and vj

called the ground distance.

2.2 The EMD between Histograms

Histograms can be viewed as a special type of signatures in that each bin cor-
responding to an element in a signature. Specifically, the histogram values are
treated as the weights wj in a signature S, and the grid locations (indices of
bins) are treated as positions mj in S.

In the following we will discuss two dimensional histograms which are widely
used for shape and image descriptors. Higher dimensional cases can be derived
similarly. Wlog, we use the following assumptions and notations.

– The histogram has m rows and n columns and N = m× n bins.
– The index set for bins is defined as I = {(i, j) : 1≤i≤m, 1≤j≤n}. We use

(i, j) to denote a bin or a node corresponding to it.
– The index set for flows is defined as J = {(i, j, k, l) : (i, j) ∈ I, (k, l) ∈ I}.
– P = {pij : (i, j) ∈ I} and Q = {qij : (i, j) ∈ I} are the two histograms to be

compared.
– Histograms are normalized to 1, i.e.,

∑
i,j pij = 1,

∑
i,j qij = 1.

Now the EMD between two histograms P and Q becomes

EMD(P, Q) = min
F={fi,j;k,l:(i,j,k,l)∈J}

∑

J
fi,j;k,ldi,j;k,l (1)

s.t.





∑
(k,l)∈I fi,j;k,l = pij ∀(i, j) ∈ I∑
(i,j)∈I fi,j;k,l = qkl ∀(k, l) ∈ I

fi,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J
(2)

Where F is the flow from P to Q, i.e., fi,j;k,l is a flow from bin (i, j) to (k, l).
Note that we use “flow” to indicate both the set of flows in a graph and a single
flow between two nodes, when there is no confusion. A flow F satisfying (2) is
called feasible. The ground distance di,j;k,l is usually defined by Lp distance

di,j;k,l = ‖(i, j)> − (k, l)>‖p = (|i− k|p + |j − l|p)1/p (3)



Fig. 2. Decompose an f-flow fi,j;k,l, k = i + 1, l = j + 2. Only related flows are shown.

3 EMD-L1

This section presents the EMD-L1, a more efficient formulation of the EMD
between histograms. We first show that, by using L1 or Manhattan distance
as the ground distance, the EMD-L1 is drastically simplified compared to the
original one. Then, we prove that EMD-L1 is equivalent to the original EMD with
L1 ground distance. Finally an efficient algorithm and an empirical complexity
study are presented.

3.1 EMD with L1 Ground Distance

As shown later in Sec. 4.2 and Fig. 7(b), EMD’s with L1 and L2 ground distances
performs similarly for our purpose, while the former is much faster. Therefore,
we are interested in L1 ground distance. In the rest of the paper, L1 ground
distance is implicitly assumed. With L1 ground distance, formula (3) becomes

di,j;k,l = |i− k|+ |j − l| .
Note that the ground distance now takes only integer values. For convenience
of discussion, the flow index set J is divided into three disjointed parts J =
J0

⋃J1

⋃J2, each of them corresponds to one of three flow types.

– J0 = {(i, j, i, j) : (i, j) ∈ I} is for flows between bins at same location. We
call this kind of flow s-flows for the short of self-flow.

– J1 = {(i, j, k, l) : (i, j, k, l) ∈ J , di,j;k,l = 1} is for flows between neighbor
bins. We call this kind of flow n-flows.

– J2 = {(i, j, k, l) : (i, j, k, l) ∈ J , di,j;k,l > 1} is for other flows which are
called f-flows because of their far distances.

An important property of the L1 ground distance is that each positive f-flow
can be replaced with a sequence of n-flows. This is because L1 distance forms
a shortest path system along the integer lattice. For example, given an f-flow
fi,j;k,l, i≤k, j≤l, the L1 ground distance has the following decomposition

di,j;k,l = di,j;i,l + di,l;k,l =
∑

j≤x<l di,x;i,x+1 +
∑

i≤y<k dy,l;y+1,l .
Accordingly, the shortest path from (i, j) to (k, l) can be decomposed into neigh-
bor edges. It follows that, without changing the total weighted flow

∑
f∈F fd,

fi,j;k,l can be set to zero by first increasing all n-flows along the path [(i, j), (i, j+
1), . . . , (i, l), (i + 1, l), . . . , (k, l)] by fi,j;k,l. This is illustrated in Fig. 2



S-flows are also redundant due to their zero ground distances. With these
intuitions, we propose a new formulation of EMD, EMD-L1, as below

EMDL1(P,Q) = min
G={gi,j;k,l:(i,j,k,l)∈J1}

∑

J1

gi,j;k,l (4)

s.t.
{∑

k,l:(i,j,k,l)∈J1
(gi,j;k,l − gk,l;i,j) = bij ∀(i, j) ∈ I

gi,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J1
(5)

Where bij = pij − qij is the difference between the two histograms. We call a
flow G satisfying (5) a feasible flow analogous to that in the original EMD.

EMD-L1 has large simplifications over the original EMD (1), including

1. There are only about O(N) variables in (4), one order of magnitude less than
that in (1). This is critical for speedup since the number of variables is a
dominant factor in the time complexity of all LP algorithms [6]. In addition,
the space efficiency gained by this is very favorable for large histograms.

2. The number of equality constraints is reduced by half. This is another im-
portant factor for the efficiency of the LP algorithms.

3. All the ground distances involved in the EMD-L1 are ones. This is practically
useful, because it saves multiplications during computation and allows the
use of integer operations to handle the coefficients.

Note that these simplifications can be extended to higher dimensional cases.
For example, the unknown variables for 3D histograms is 6N thus still of O(N)
complexity. These simplifications are used to design a fast tree-based algorithm.

3.2 Equivalence between EMD-L1 and Original EMD

We now prove the equivalence between the EMD-L1 and the original EMD with
L1 ground distance. The equivalence is in the sense of the weighted total flows.
That is, a flow G for EMD-L1 and a flow F in the original EMD is said to be
equivalent if

∑
J1

gi,j;k,l =
∑
J di,j;k,lfi,j;k,l, i.e., they have same total weighted

flow. The following proposition states the equivalence in which we are interested.
Proposition Given two histograms P and Q as defined above

EMD(P, Q) = EMDL1(P, Q) . (6)

The discussion in the last subsection hints that, for any flow F for the original
EMD, an equivalent flow G for EMD-L1 can be created by eliminating f-flows
and s-flows. This implies EMD(P, Q) ≥ EMDL1(P, Q). Now we need to verify
the other direction. Given a flow G for EMD-L1, find an equivalent F for the
original EMD. The key issue is how to satisfy the constraints (2) in the original
EMD. To do this, we use a “merge” procedure instead of the decomposition.
The idea is to merge input and output flows at each bin such that either input
or output flow survives as a result. This is demonstrated in Fig. 3. Notice that
we only need an F to have a total weight not greater than that of G. This makes



the merge procedure much simpler, since we can just merge any pair of input
and output flows.
Proof It suffices to prove

EMD(P, Q)≥EMDL1(P,Q) and EMD(P,Q)≤EMDL1(P, Q).
Part I Proof of EMD(P,Q)≥EMDL1(P, Q).

It suffices to prove that for any feasible flow F = {fi,j;k,l : (i, j, k, l) ∈ J }
for the original EMD, there exists an equivalent feasible flow G = {gi,j;k,l :
(i, j, k, l) ∈ J1} for EMD-L1, i.e.

∑

J
fi,j;k,ldi,j;k,l =

∑

J1

gi,j;k,l (7)

For any F satisfying (2), we create an auxiliary flow F ′ = {f ′i,j;k,l:(i,j,k,l)∈J }.
First, F ′ is initialized by F . F ′ has three properties which will be maintained
during its evolution





∑
J f ′i,j;k,ldi,j;k,l =

∑
J fi,j;k,ldi,j;k,l∑

k,l(f
′
i,j;k,l − f ′k,l;i,j) = bij ∀(i, j) ∈ I

f ′i,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J
(8)

Then, we evolve F ′ to make all f-flows vanish. For every positive f-flow f ′i,j;k,l

in F ′, we decompose it into a sequence of n-flows as illustrated in Fig. 2. In
detail, assume i≤k, j≤l (other cases are similar), the three modifications to F ′

are conducted in the given order




f ′i,x;i,x+1 ← f ′i,x;i,x+1 + f ′i,j;k,l ∀x, j≤x < l

f ′y,l;y+1,l ← f ′y,l;y+1,l + f ′i,j;k,l ∀y, i≤y < k

f ′i,j;k,l ← 0
(9)

It is clear that (8) always holds because (9) does not change it. After all the
f-flows vanish, we build G from F ′

gi,j;k,l = f ′i,j;k,l , ∀(i, j, k, l) ∈ J1 (10)

From (8) it follows that G satisfies (5) and (7).
Part II Proof of EMD(P,Q)≤EMDL1(P, Q).

It suffices to prove that, for any G = {gi,j;k,l : (i, j, k, l) ∈ J1} satisfying (5),
there exists F = {fi,j;k,l : (i, j, k, l) ∈ J } satisfying (2), such that

∑

J
fi,j;k,ldi,j;k,l ≤

∑

J1

gi,j;k,l (11)

For any G satisfying (5), we create an auxiliary flow G′ = {g′i,j;k,l : (i, j, k, l) ∈
J }. G′ is first initialized by G

g′i,j;k,l =
{

gi,j;k,l ∀(i, j, k, l) ∈ J1

0 ∀(i, j, k, l) ∈ J0

⋃J2



Fig. 3. Flow merging, where bij > 0, g′i,j;k′,l′ > g′k,l;i,j > 0.

G′ has three properties which will be maintained during its evolution




∑
J g′i,j;k,ldi,j;k,l ≤

∑
J1

gi,j;k,l∑
k,l∈I(g

′
i,j;k,l − g′k,l;i,j) = bij ∀(i, j) ∈ I

g′i,j;k,l ≥ 0 ∀(i, j, k, l) ∈ J
(12)

Note that in the first equation of (12) “≤” is used instead of “=”.
Now we will evolve G′ targeting the equality constraints (2) in the original

EMD. This is done by the following procedure.
Procedure: Merge G′

FOR each grid node (i, j)
WHILE exists flow g′k,l;i,j > 0 AND flow g′i,j;k′,l′ > 0 DO





δ ← min{g′i,j;k′,l′ , g′k,l;i,j}
g′k,l;k′,l′ ← g′k,l;k′,l′ + δ

g′k,l;i,j ← g′k,l;i,j − δ

g′i,j;k′,l′ ← g′i,j;k′,l′ − δ

(13)

END WHILE
END FOR

Fig. 3 shows an example of merging. The four steps in (13) need to be applied
in the order as given. Moreover, each run of (13) removes at least one non-zero
flow, so the procedure is guaranteed to terminate.

Because of the triangle inequality dk,l;k′,l′ ≤ dk,l;i,j + di,j;k′,l′ , (13) will only
decrease the left hand side of the first inequality in (12) and hence will not
change it. The second equation in (12) also holds because (13) changes the input
and output flows of a node with the same amount (δ). The third condition in
(12) is obvious.

An important observation due to (12) and the procedure is
{

g′i,j;k,l = 0 ∀(i, j, k, l) ∈ J if bij ≤ 0
g′k,l;i,j = 0 ∀(i, j, k, l) ∈ J if bij ≥ 0 (14)

Now we build F from G′:

fi,j;k,l =
{

min{pij , qkl} ∀(i, j, k, l) ∈ J0

g′i,j;k,l ∀(i, j, k, l) ∈ J1

⋃J2
(15)

From (14), (12) and (15), we have that F satisfies (2) and (11). ¥



Fig. 4. The EMD-L1 as a network flow problem for 3× 5 histograms.

3.3 Algorithmic Solution for EMD-L1

EMD-L1 is clearly a LP problem by its definition. The simplex algorithm be-
comes a natural solution. In addition, EMD-L1 also has a very special structure
similar to the original EMD. Therefore, a fast simplex algorithm can be designed
analogous to the transportation simplex used for the original EMD [20, 6]. We
propose an even faster tree-based algorithm, Tree-EMD. The algorithm can be
derived from the fast simplex algorithm. It takes the benefit of the simplex
while exploiting a tree structure for further speedup. In addition, Tree-EMD has
a more intuitive interpretation. Finally, the tree structure also makes coding easy
for different dimensions. Due to the space limitation, we only briefly describe the
outlines of the algorithm and left the details to its longer version [14].

To gain intuition, EMD-L1 is modeled as a graph G =< V,B, G > as il-
lustrated in Fig. 4. V = {vij : (i, j) ∈ I} is the set of nodes in the graph.
B = {bij : (i, j) ∈ I} is the weights associated to V ,

∑
I bij = 0. G is the set of

flows between neighbor nodes. The task is to find the minimum flow such that
all nodes have zero weights after applying the flow.

Before describing Tree-EMD, we give some definitions derived from the classic
simplex algorithm [6]. A flow G is called feasible if (5) holds. A feasible flow G
is called a basic feasible tree (BFT) if G has only mn−1 elements that can be
non-zero and they form a tree. Such elements are called basic variable(BV) flows.

Notes: 1) The loops and trees in this paper are undirected, although flows do
have directions. 2) A BFT is actually a spanning tree since there are mn nodes
in the graph.

The task becomes to find a feasible flow G with minimum total flow
∑

g∈G g.
It can be shown that there exists an optimal BFT G [14]. Therefore, the search
space of the optimum solution can be restricted within the set of BFT’s.

Tree-EMD is an iterative algorithm for searching the optimum BFT tree.
First, an initial BFT tree G is built using the greedy algorithm. Then, G is
iteratively replaced by a better BFT tree with smaller flow until the optimum
is reached. In each iteration, an entering flow gi0,j0;k0,l0 is found and added
to G. Accordingly, a leaving BV flow gi1,j1;k1,l1 is picked to avoid loops. G is
then modified by adding gi0,j0;k0,l0 and removing gi1,j1;k1,l1 and adjusting flow



values to keep it as a BFT. The iteration is guaranteed to terminate at a global
minimum due to its underlying simplex algorithm.

The most important variables in Tree-EMD are uij ’s for nodes vij ’s and
ci,j;k,l for flows gi,j;k,l’s. They have following relations

ci,j;k,l = 1− ui,j + uk,l ∀(i, j, k, l) ∈ J1 (16)
ci,j;k,l = 1− ui,j + uk,l = 0 if gi,j;k,l is a BV flow (17)

We now discuss several key issues in the algorithm.

1. Optimality test : A BFT G is optimum iff ci,j;k,l ≥ 0, ∀(i, j, k, l) ∈ J1.
2. Finding gi0,j0;k0,l0 : (i0, j0, k0, l0) = argmin(i,j,k,l)∈J1

ci,j;k,l.
3. Finding gi1,j1;k1,l1 : First, find the loop formed by adding gi0,j0;k0,l0 into G.

Then gi1,j1;k1,l1 is the flow in the loop with minimum flow value and reversed
direction of gi0,j0;k0,l0 .

4. Updating G: First, adding gi0,j0;k0,l0 in G. Then modify flow values along the
loop mentioned above (gi1,j1;k1,l1 becomes zero). After that, remove gi1,j1;k1,l1

and adjust the links in G accordingly.
5. Updating uij’s: Fix uij of the root to zero. Other uij ’s can be computed

starting from the root by using (17). In fact, only a small amount of uij ’s in
a subtree need to be updated in more iterations.

6. Updating ci,j;k,l’s: When uij ’s determined, use formula (16).

A brief description of Tree-EMD is given in Table 1.

3.4 Empirical Study for Time Complexity

To study the time complexity of the proposed algorithm, we conduct an empirical
study similar to that in [20]. First, two sets of 2D random histograms for each
size n × n, 2 ≤ n ≤ 20 are generated. For each n, 1000 random histograms
are generated for each set. Then, the two sets are paired and the average time
to compute EMD for each size n is recorded. We compare EMD-L1 (with tree-
EMD) and the original EMD (with TS4). In addition, EMD-L1 is tested for 3D
histograms with similar settings, except 2 ≤ n ≤ 8. The results are shown in
Fig. 5. From (a) it is clear that EMD-L1 is much faster than the original one. (b)
shows that EMD-L1 has a complexity around O(N2), where N is the number of
bins (n2 for 2D and n3 for 3D).

4 Experiments

4.1 Shape Matching with Shape Context

EMD-L1 is tested for shape matching by applying it to the inner-distance shape
context (IDSC)[13]. IDSC is an extension of shape context (SC)[1] by using
the shortest path distances. These studies used χ2 distance for comparing the
4 With Rubner’s code, http://ai.stanford.edu/∼rubner/emd/default.htm



Table 1. Tree-EMD

Step 0 /*Define some key variables*/
r: the root of the tree
p∗: the root of the subtree to be updated

Step 1 /*Initialization*/
Initialize BFT by a greedy initial solution
p∗←r

Step 2 /*Iteration*/
WHILE(1)

/*Recursively update u in the subtree rooted at p∗) */
FOR any child q of p∗

Update uij at node q according to (17)
Recursively update q’s children

END FOR
/*Optimality test*/
Compute ci,j;k,l’s
IF (optimum is reached) goto Step 3 END IF
/*Find a new improved BF solution*/
Find entering BV flow gi0,j0;k0,l0

Find loop by tracing from vi0,j0 and vk0,l0 to their common ancestor
Find the leaving BV gi1,j1;k1,l1

Update flow values in G along the loop
Maintain the tree, include removing gi1,j1;k1,l1 , adding gi0,j0;k0,l0

and updating links.
Set p∗ as the root of subtree where uij ’s need to be updated.

END WHILE
Step 3 Compute the total flow as the EMD distance.
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Fig. 5. Empirical time complexity study of EMD-L1 (Tree-EMD). Left: In comparison
to the original EMD (TS). Right: Average running time vs. square of histogram sizes.

shape descriptors. In [13], IDSC is used for contour comparison with a dynamic
programming (DP) scheme. We use the same framework, except for replacing
the χ2 distance with the EMD-L1. In addition, the lower bound of EMD [20] is
used for speeding up the dynamic programming.



Fig. 6. Typical shape images from the MPEG7 CE-Shape-1, one image per class.

Table 2. Retrieval rate (bullseye) of different methods for the MPEG7 CE-Shape-1.

Alg. CSS[17] Vis. Parts[10] SC[1] Curve Edit[21]Gen. Mod.[23] IDSC[13]EMD-L1

Score 75.44% 76.45% 76.51% 78.17% 80.03% 85.40% 86.56%

The MPEG7 CE-Shape-1 [10] database is widely used for benchmarking dif-
ferent shape matching algorithms. The data set contains 1400 silhouette images
from 70 classes. Each class has 20 different shapes (e.g. Fig. 6). The performance
is measured by the Bullseye test. Every image in the database is matched with all
other images and the top 40 most similar candidates are counted. At most 20 of
the 40 candidates are correct hits. The Bullseye score is the ratio of the number
of correct hits of all images to the highest possible number of hits (20x1400).

We use the same experimental setup as [13]. The bullseye score is listed in
Tab. 2 with previously reported results. The excellent performance, outperform-
ing the previous best scores, demonstrates the effectiveness of EMD-L1.

4.2 Image Feature Matching

This subsection describes our experiment using the EMD-L1 for interest point
matching. The experiment was conducted on a set of ten image pairs containing
synthetic deformation, noise and illumination change. Some testing images are
shown in Fig. 7 (a).
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Fig. 7. (a) Some testing images with synthetic deformation, illumination change and
noise. (b) ROCs for EMD-L1 and other dissimilarity functions on SIFT.

Interest point. We use Harris corners [5] for the matching experiments. The
reason for this choice is that, due to the large deformation, noise and lighting



change, it is hard to apply other interest point detectors. Furthermore, we focus
more on comparing descriptors than the interest points. For each image, we pick
300 points with the largest cornerness responses.
Descriptors. We use the SIFT proposed by Lowe [15] as the descriptors. SIFT
is a very popular histogram-based descriptor. In our case, since scale invariant
detectors are not available, a fixed support region is used (with diameter 41, sim-
ilar to the setting used in [16]. SIFT is a three dimensional weighted histogram,
4 for each spatial dimensions and 8 for gradient orientation.
Evaluation criterion. For each pair of images together with their interest
points, we first automatically obtained the ground truth correspondence from
the synthesis procedure. Then, every interest point in Image 1 is compared with
all interest points in Image 2 by comparing the SIFT extracted on them. An
interest point p1 in Image 1 is treated as a correct match of another point p2 in
Image 2 if the displacement of p1 is within a fixed distance of p2. The detection
rate among the top N matches is used to study the performance. The detection
rate is defined as: r = # correct matches

# possible matches = # correct matches
# points in Image 1 .

Experiment results. We tested the EMD-L1 along with several bin-to-bin dis-
tance measures, including χ2, KL-divergence (symmetric), Jensen-Shannon(JS)
divergence [12], L2, etc. The EMD with L2 ground distance is also tested for com-
parison. A Receiver Operating Characteristic (ROC) based criterion is used to
show the detection rates versus N , which is the number of most similar matches
allowed. The ROC curves for the experiment are shown in Fig. 7 (b). The EMD-
L1 outperforms all other bin-to-bin metrics. In addition, EMD-L1 and EMD
with L2 ground distance have very similar performance, though the former takes
about 25 seconds per pair while the latter takes about 2100 seconds.

5 Conclusion

We propose a fast algorithm, EMD-L1 for computing Earth Mover’s Distance
(EMD) between histograms with L1 ground distance. The new algorithm re-
formulates the EMD into a drastically simplified version by using the special
structure of L1 metric on histograms. We proved that EMD-L1 is equivalent to
the EMD with L1 ground distance for histograms. We then designed an efficient
tree-based algorithm to solve the EMD-L1. An empirical study shows that EMD-
L1 is significantly faster than previous EMD algorithms. The speedup allows the
EMD to be applied to 2D/3D histogram-based features for the first time. Exper-
iments on both shape descriptors (shape context [1]) and image features (SIFT
[15]) show the superiority of EMD-L1 for handling the matching tasks with large
deformation, noise and lighting change, etc.
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