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A Deep Network Solution for Attention and
Aesthetics Aware Photo Cropping
Wenguan Wang, Jianbing Shen, Senior Member, IEEE , and Haibin Ling

Abstract—We study the problem of photo cropping, which aims to find a cropping window of an input image to preserve as much as
possible its important parts while being aesthetically pleasant. Seeking a deep learning-based solution, we design a neural network
that has two branches for attention box prediction (ABP) and aesthetics assessment (AA), respectively. Given the input image, the ABP
network predicts an attention bounding box as an initial minimum cropping window, around which a set of cropping candidates are
generated with little loss of important information. Then, the AA network is employed to select the final cropping window with the best
aesthetic quality among the candidates. The two sub-networks are designed to share the same full-image convolutional feature map,
and thus are computationally efficient. By leveraging attention prediction and aesthetics assessment, the cropping model produces
high-quality cropping results, even with the limited availability of training data for photo cropping. The experimental results on
benchmark datasets clearly validate the effectiveness of the proposed approach. In addition, our approach runs at 5 fps, outperforming
most previous solutions.

Index Terms—Photo cropping, attention box prediction, aesthetics assessment, deep learning.
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1 INTRODUCTION

1.1 Problem Statement and Motivation

G IVEN an input photo, what is the best way to crop it?
The answer, not surprisingly, varies from person to

person, and even from time to time for the same person.
In this paper, we study the problem in the general setting
without prior knowledge of specific applications. In such
setting, it is natural to expect a good cropping window to
have two properties: keeping most of the important portion
and being aesthetically pleasant. The idea can be viewed
from the example in Figure 1.

The above general idea naturally inspires a photo crop-
ping strategy through determining-adjusting. That is, one can
first define a cropping window that covers the important
region, and then adjust (iteratively) the position, size and
ratio of the initial cropping until the satisfying result is
achieved. This cropping strategy brings two advantages: (1)
consideration of both image importance and aesthetics in
a cascaded way; and (2) high computation efficiency since
the searching space of the best cropping is limited to the
neighborhood of the initial one.

Interestingly, however, most previous cropping ap-
proaches work differently. They usually generate a large
number of sliding windows by varying sizes and aspect
ratios over all the positions, and find the optimal cropping
window by computing attention scores for all windows [1],
[2], [3], or by analyzing their aesthetics [4], [5]. This sliding-
judging strategy, as depicted in Figure 1 (d), is of high
computation load, since its searching space spans all pos-
sible sub-windows of the entire photo. By contrast, the
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Fig. 1. (a) An input photo to be cropped. (b) The predicted attention
box (red) and cropping candidates generated from it (yellow). (c) The
final cropping with the maximum estimated aesthetic value. (d) Conven-
tional image cropping methods with sliding-judging cropping strategy,
which is time-consuming and violates natural cropping procedure. (e)
Our algorithm as a cascade of attention-aware candidate generation
and aesthetics-based cropping selection, which handles photo cropping
more naturally via a unified neural network.
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determining-adjusting strategy is more efficient by arrang-
ing the two key components sequentially and reduce the
size of searching space.

Different than many previous approaches, in this paper,
we design a deep learning-based photo cropping algorithm
following the determining-adjusting strategy. Our algorithm
models photo cropping as a cascade of attention bounding
box regression and aesthetics classification. In particular, our
model first determines an attention box that covers the most
visually important area (the red rectangle in Figure 1 (b)),
thus provides an initial cropping to cover important region.
Then, a set of cropping candidates (the yellow rectangles in
Figure 1(b)) are generated around the attention box and the
one with the highest aesthetics value is selected as the final
cropping (Figure 1(c)).

1.2 Contribution

Compared with previous arts, we treat the photo cropping
task in a more natural and efficient way, with the following
major contributions:
(1) A deep learning framework to combine attention
and aesthetics components for photo cropping. We model
photo cropping with a determining-adjusting process,
where attention-guided cropping candidates generation is
followed by aesthetics-aware cropping window selection,
as shown in Figure 1 (e). Both tasks are achieved via a
unified deep learning model, where attention information is
exploited to avoid discarding important information, while
the aesthetics assessment is employed for ensuring the high
aesthetic value of the cropping result. The deep learning
model is extended from the fully convolutional neural net-
work, which naturally supports input images of arbitrary
sizes, thus avoiding undesired deformation for evaluating
aesthetic quality.
(2) High computation efficiency. Three ingredients are
introduced in our approach for enhancing computational
efficiency. First, instead of exhaustively searching all sub-
windows in the sliding window fashion (e.g. [6]), our ap-
proach directly regresses the attention box and generates
far less cropping candidates around the visually important
areas. Second, the sub-networks for attention box prediction
and for aesthetics assessment share several initial convolu-
tional layers, and thus largely boost the efficiency by reusing
the computation in these layers. Third, inheriting the advan-
tage of recent object detection algorithms [7], [8], [9], our
algorithm is trained to share convolutional features among
cropping candidates. Regardless of the number of cropping
candidates, these convolutional layers are calculated only
once over the entire image, thus avoiding applying the net-
work to each cropping candidate for repeatedly computing
features. All these techniques help our approach to achieve
a run time speed of 5 fps, significantly faster than previous
solutions.
(3) Learning without cropping annotation. Use of deep
leaning for vision problems typically requests a large
amount of training data, which, for photo cropping, means a
large amount of manually annotated cropping results. Such
request is however very challenging, since photo cropping
is very time consuming, and more importantly, is very
subjective since it is difficult to offer a clear answer to

what is a “groundtruth” cropping. Thus, training a net-
work to directly output a cropping window is difficult
and practically infeasible. We bypass this issue to use rich
public data for human gaze prediction and photo aesthetics
assessment. It is worth noting that, despite the absence of
photo cropping data for training, our approach has shown
great performance on the cropping task as shown in our
thorough experiments.

These contributions together bring both effectiveness
and efficiency to our proposed photo cropping algorithm.
As described in Section 4, the thorough evaluations on
popular benchmarks show clearly the advantage of our
algorithm in comparison with state-of-the-art solutions.

2 RELATED WORK

In this section, we first summarize representative works in
visual attention prediction and aesthetics assessment (Sec-
tion 2.1 and 2.2), respectively. Then, in Section 2.3, we give
an overview of related works in photo cropping.

2.1 Visual Attention Prediction
Visual attention prediction is a classic computer vision prob-
lem that aims to predict scene locations where a human
observer may fixate. This task, sometimes referred as eye
fixation prediction or visual saliency detection, is for simulating
human’s ability of selectively paying attention to parts of the
image instead of processing the whole scene in its entirety.
A large amount of research effort has been devoted to this
topic with many applications, such as image recognition
[11], object segmentation [12], [13], [14], [15], image cropping
[6], [16], etc. The output of attention prediction algorithms
is usually a saliency map indicating the visual importance
of each pixel.

Early visual attention models [17], [18] in the vision
community are inspired by the studies in visual psychology
and psychophysics of human attention. Those models can be
further broadly classified into bottom-up approaches and top-
down ones. Most of early models are based on the bottom-up
mechanism, which is stimulus-driven and estimate human
attention based on visual stimuli themselves without the
knowledge of the image semantics. Such models [18], [19],
[20], [21], [22] typically generate saliency cues based on
various low-level features (e.g., color, intensity, orientation)
and heuristics (e.g., center-surround contrast [23]) on limited
human knowledge of visual attention, and combine them at
multiple scales to create the final saliency map. By contrast
to the bottom-up task-independent models, some top-down
task-driven approaches [24], [25] are proposed that explore
explicitly the understanding of the scene or task context.
These approaches employ high-level features, such as per-
son or face detectors learned from specific computer vision
tasks. We refer readers to two recent surveys [26], [27] for
more details of early attention models.

Deep learning-based attention models [28], [29], [31],
[30], [32], [33] become increasingly popular in recent years,
driven by the success of deep learning in object recognition
and large-scale visual attention dataset (e.g., SALICON [32]).
Most of these models are variants of the fully convolutional
network and generally produce more impressive results than
non-deep learning competitors.
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Traditional visual attention models concentrate on en-
couraging the consistency between the distribution of the
predicted saliency and that of the real human fixations.
Differently, in our approach, we are concerned more on
predicting an attention bounding box, which covers the
most informative regions of the image.

Another related topic in parallel is salient object detection
[34], [39], [36], which can be dated to [35], [37] and has been
extensively studied in computer vision in the past decade.
Different from visual attention prediction, salient object
detection specially focuses on detecting and uniformly high-
lighting one (multiple) salient object(s) in its (their) entirety.
However, as stated in many literatures [38], [40], unlike
fixation datasets, most salient object detection datasets are
heavily biased to few objects. Therefore, for the sake of
generalization capability and applicability, we choose visual
attention prediction for photo cropping and use correspond-
ing datasets (e.g., [32]), instead of the datasets of salient
object detection.

2.2 Image Aesthetics Assessment
The main goal of aesthetics assessment is to imitate human’s
interpretation of the beauty of natural images. Many meth-
ods have been proposed for this topic, as surveyed in [41].
Traditionally, aesthetic quality analysis is viewed as a binary
classification problem of predicting high- or low- quality of
an image, or a regression problem of producing aesthetics
scores. A common pipeline is to first extract visual features
and then employ various machine learning algorithms to
predict photo aesthetic values.

Early methods are mainly concerned on manually de-
signing good feature extractors, which require a consider-
able amount of engineering skills and domain expertise.
Some works [42], [43], [44], [45], [46] use hand-crafted
aesthetics features according to photographic rules or ex-
periences, such features include lighting, contrast, global
image layout (rule-of-thirds), visual balance, typical objects
(human, animals, plants), etc. These rule-based approaches
are intuitive in that they explicitly model the criteria used
by humans in evaluating the aesthetic quality of photos.
Instead of using hand-crafted features, another option [47],
[48] for image quality assessment is to leverage more generic
image descriptors, such as the Fisher vector and bag of
visual words, which are previously designed for image clas-
sification but also capable of capturing aesthetic properties.

More recently, deep learning-based solutions [49], [50],
[51], [52], [53] have shown that image aesthetics represen-
tation may be better learned in an end-to-end data-driven
manner. This trend is more and more popular with the
growth of available training data, i.e., from hundreds of
images to millions of images. Such deep learning-based
methods have greatly advanced the frontier of this topic.

2.3 Photo Cropping
Photo cropping is an important operation for improving
visual quality of digital photos. Many methods have been
proposed towards automating this task, and they can be
roughly categorized into attention-based or aesthetics-based.

Attention-based approaches [1], [2], [3], [54] focus on
preserving the main subject or visually important area in

the scene after cropping. These methods usually choose
the cropping window according to certain attention scores
or object-level saliency map. These methods are usually
good for removing unimportant content of an image, while
sometimes fail to produce visually pleasant results due to
the lack of consideration in image aesthetics.

Aesthetics-based approaches, by contrast, emphasize
the general attractiveness of the cropped image. Those
approaches [4], [5], [55], [56] are centered on composition-
related image properties and low-level image features. Tak-
ing various aesthetical factors into account, they attempt to
find the cropping candidate with the highest quality score.
These methods are in favor of preserving visually attractive
solutions, while at the risk of missing important area and
generally suffer from expensive computation due to the
need of evaluating a large amount of cropping candidates.

In general, conventional cropping methods search the
region with the highest attention/aesthetics score in a num-
ber of candidate cropping windows. In this paper, we con-
sider both attention and aesthetics information, and treat
photo cropping as a cascade of first generating cropping
candidates, via attention box prediction, and then selecting
the best cropping window, via the aesthetics criteria. Our
method shares the spirit of recent object detection algo-
rithms [7], [8], [9]. In fact, a branch of our network learns
to predict the bounding box covers visually important area,
while the other branch estimates aesthetic value.

This paper extends a preliminary version appears in
ICCV 2017 [57]. The improvements are multiple folds. First,
we give a deeper insight into the proposed determining-
adjusting based cropping protocol, with the comparison of
previous sliding-judging strategy. This brings a new view
into the rationale behind photo cropping. Second, we ex-
tend our attention box prediction network with supervised
attention mechanism, outlining a complete model for better
capturing the visual importance of input image and generat-
ing more accurate attention box prediction. It also improves
the interpretability of our model and leads to an implicit
deep supervision. Third, we offer a more in depth dis-
cussion of the proposed algorithm, including motivations,
network structures and implementation. Forth, extensive
experiments and user studies are conducted for thoroughly
and insightfully examination. Last but not least, based on
our experiments, we draw several important conclusions,
which are expected to inspire future works in this direction.

3 DEEP LEARNING-BASED PHOTO CROPPING

We model photo cropping in a determining-adjusting frame-
work, which first creates an initial cropping as a bounding
box covering the most visually important area (attention-
aware determining), and then selects the best cropping
with the highest aesthetic quality from cropping candidates
generated around the initial cropping (aesthetic-based ad-
justing). The cropping algorithm is decomposed into two
cascaded stages, namely, attention-aware cropping candi-
dates generation (Section 3.1) and aesthetics-based cropping
selection (Section 3.2). A deep learning framework is thus
designed with two sub-networks: an Attention Box Prediction
(ABP) network and an Aesthetics Assessment (AA) network.
Specifically, the ABP network is responsible for inferring
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Fig. 2. Architecture of our deep cropping model. It consists of two
sub-networks: Attention Box Prediction (ABP) network and Aesthetics
Assessment (AA) network, which share several convolutional layers at
the bottom.
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Fig. 3. (a) Input image I. (b) Ground truth attention map G. (c) Ground
truth attention box generated via [3]. (d) Positive (red) and negative
(blue) defaults boxes are generated for training ABP network according
to ground truth attention box.

the initial cropping; and the AA network determines the
final cropping. As demonstrated in Figure 2, these two
networks share several convolutional blocks in the bottom
and are based on fully convolutional network, which will
be detailed in following sections. Finally, in Section 3.3, we
give more details of our model in training and testing.

3.1 Attention-aware Cropping Candidates
In this section, we introduce our method for cropping
candidates generation, which is based on an Attention Box
Prediction (ABP) network. This network takes an image of
any size as input and outputs a set of rectangular cropping
windows, each with a score that stands for the prediction
accuracy. Then the initial cropping is identified as the most
accurate one, and various cropping candidates with differ-
ent sizes and ratios are generated around it. After that, the
final cropping is selected from those candidates according
to their aesthetic quality based on an Aesthetics Assessment
(AA) network (Section 3.2).

The initial cropping can be viewed as a rectangle that
preserves the most informative part of the image while

has minimum area. Searching for an optimal solution is
common for attention-based cropping methods. Let G ∈
[0, 1]w×h be an attention mask of image I of size w × h,
and larger values in G indicate higher visual importance
of corresponding pixels in I . Formally, we derive a set
of cropping windows W considering their importance or
informativeness:

W =
{
W
∣∣ ∑
x∈W

G(x) > λ
∑

x∈{1..w}×{1..h}

G(x)
}
, (1)

where λ ∈ [0, 1] is a threshold. Then the optimum cropping
rectangle Ŵ is defined as the one with minimum area:

Ŵ = argmin
W∈W

|W |. (2)

Equ. 2 can be solved via sliding window searching with
O(w2h2) computation complexity, while a recent method
[3] shows it can be solved with computation complexity of
O(wh2) (assuming h < w).

Different from the above time consuming strategy, we
design a neural network for predicting an optimal attention
box. Given a training sample (I,G) consisting of an image I
of size w × h× 3 (Figure 3(a)), and a groundtruth attention
map G ∈ [0, 1]w×h (Figure 3 (b)), the optimum rectangle
Ŵ defined in Equ. 2 is treated as the groundtruth attention
prediction box. Here we apply the method in [3] for generat-
ing Ŵ over G (Figure 3 (c)) for computation efficiency, and
set λ = 0.9 for preserving most informative areas. Then
the task of attention box prediction can be achieved via
bounding box regression similar as in object detection [7],
[8], [9]. Note that, our ABP network is not limited to specific
attention scores, and other attention models can be used for
generating groundtruth bounding box as well.

Figure 4 illustrates the architecture of the ABP network.
The bottom of this network is a stack of convolutional layers,
which are borrowed from the first five convolutional blocks
of VGGNet [58]. In our conference version [57], we build the
bounding box regression layers upon the last convolutional
layer with a small network of a 3×3 kernel (see Figure 4(a)).
Thus the network is trained to directly produce the attention
box estimation.

We further improve the ABP network with extra super-
vision from the visual attention map G. It is demonstrated
in Figure 4 (b), showing in the last convolutional layer.
Specifically, we first generate an intermediate output Y for
predicting the visual attention map (the blue cuboid in
Figure 4 (b)) by a convolution layer with a 1× 1 kernel and
sigmoid activation. Then the attention map Y is concatenated
with the last convolutional layer in the channel direction,
and the merged feature maps are fed into the bounding
box prediction layers for generating the final attention box.
Such design is based on the observation that attention box
is derived from the visual attention via Equ. 2. The visual
attention can act as a strong prior for attention box and
teach the network to infer the attention box via leveraging
the strong relevance between visual attention and attention
box. More specially, given the resized groundtruth attention
mapG′ ∈ [0, 1]

w
16×

h
16 and the corresponding prediction map
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Fig. 4. Architecture of the Attention Box Prediction (ABP) network, where the blue cuboid in (b) indicates the predicted attention map.

Y ∈ [0, 1]
w
16×

h
16 , we adopt the Kullback-Leibler Divergence

(KL-Div) for measuring the training loss:

Latt(Y,G
′) =

∑
i
gi log

(
gi
yi

)
. (3)

The KL-Div measure, whose minimization is equivalent to
cross-entropy minimization, is widely used to learn visual
attention models in deep networks.

Then we slide a small network of a 3× 3 kernel and 512
channels over the merged feature map, thus generating a
512-dimensional feature vector for each sliding location. The
feature vector is further fed into two fully-connected layers:
a box-regression layer for predicting attention bounding box
and a box-classification layer for determining whether a box
belongs to attention box. For a given location, those two
fully-connected layers predict box offsets and scores over
a set of default bounding boxes, which are similar to the
anchor boxes used in Faster R-CNN [8].

To train the ABP network for bounding box prediction,
we need to decide the positive and negative training boxes
(samples) correspond to the groundthe attention box and
train the network accordingly. We treat a box as a positive
box if it has the Intersection-over-Union (IoU) score with
the groundtruth box of larger than 0.7, or it has the largest
IoU score. In such case, we give it a positive label (c = 1).
By contrast, we treat a box as negative (c = 0) if it has an
IoU score lower than 0.3 and drop other default boxes. The
above process is illustrated in Figure 3(d). For the preserved
boxes, we define p̄ci ∈ {1, 0} as an indicator for the label of
the i-th box and vector t̄ as a four-parameter coordinate
(coordinates of center, width and height) of the groundtruth
attention box. Similarly, we define pci and ti as predicted
confidence over c class and predicted attention box of the
i-th default box. With the above definition, we consider the
following loss function for bounding box prediction, which
is derived from object detection [59], [8], [60]:

Lbox(p, t) =
∑

i
Lcls(pi, p̄i) +

∑
i
p̄1i Lreg(ti, t̄). (4)

The classification loss Lcls is the softmax loss over confi-
dences of two classes (attention box or not). The regression
loss Lreg is a smooth L1 loss [59] between the predicated box
and the ground truth attention box, and it is only activated
for positive default boxes.

With the above definition, the ABP network is trained
via minimizing the following overall loss function:

L = Latt + Lbox, (5)

where Latt (defined in Equ. 3) is an intermediate loss for
directly feeding supervision into the hidden layers, and the
learned attention acts as a strong prior to improve the final
bounding box prediction. The terminal loss Lbox (defined
in Equ. 4) is for regressing the bounding box location and
predicting the attention box score.

Trained on existing attention prediction datasets, the
ABP network learns to generate reliable attention boxes.
Then we select the one with the highest prediction score (p1i )
as the initial cropping. This initial cropping covers the most
informative part of the image, and it simulates human’s
placement of a cropping window around the desired area
(Figure 5(a)). Next, we generate a set of cropping candidates
around the initial cropping, simulating human’s adjusting
of the location, size and ratio of the initial cropping. A
rectangle can be uniquely determined via the coordinates
of its top-left and bottom-right corners. For the top-left
corner of the initial cropping, we define a set of offsets
{−40,−32, · · · ,−8, 0} in both x- and y-axes. Similarly, a set
of offsets {0, 8, ..., 32, 40} in x- and y-axes are defined for the
bottom-right corner. By disturbing the top-left and bottom-
right corners with these offsets,1 we generate 64 = 1, 296
cropping candidates in total, which is far less than the
sliding windows needed by traditional exhaustive cropping
methods. Each of cropping candidates is designed to cover
the entire initial cropping area, since the initial cropping
is a minimum importance-preserving rectangle to be main-
tained during the cropping process (Figure 5(b)).

3.2 Aesthetics-based Cropping Window Selection
With the attention-aware cropping candidates by the ABP
network, we select the most aesthetically-pleasant one as
the final cropping. It is important to consider aesthetics
for photo cropping, since beyond preserving the impor-
tant content, a good cropping should also deliver pleas-
ant viewing experience. For analyzing the aesthetic qual-
ity of each cropping candidates, one choice is to train

1. Since we resize the input image with min(w, h) = 224, we find the
largest offset of 40 to be sufficient.
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(a) (b) (c)

Fig. 5. (a) Initial cropping (red rectangle) predicted by the ABP network.
(b) Cropping candidates (blue rectangles) generated around the initial
cropping. (c) The final cropping selected as the candidate with the
highest aesthetic score by the AA network.

an aesthetics assessment network, and iteratively applying
forward-propagation for each cropping candidate over this
network. This straightforward strategy is obviously very
time-consuming. Inspired by the recent advantages of object
detection, which shares convolutional features between re-
gions, we propose to build a network that analyzes aesthetic
values of all candidates simultaneously.

We achieve this via an Aesthetics Assessment (AA)
network (Figure 6), which takes an entire image and a set
of cropping candidates as input, and outputs the aesthetic
values of the cropping candidates. The bottom of the AA
network is the first four convolutional blocks of VGGNet
[58] excluding the pool4 layer. Here we adopt a relatively
shallow network mainly due to two reasons. First, aesthetics
assessment is a relatively easy problem (with only two
labels: high quality vs low quality) compared with image
classification (with 1000 classes for ImageNet). Second, for
an image of size of w × h× 3, the spatial dimensions of the
final convolutional feature map of AA network is w

8 ×
h
8 ,

which preserves discriminability for the offsets defined in
Section 3.1.

On the top of the last convolutional layer, we adopt a
region of interest (RoI) pooling layer [8], which is a special
case of spatial pyramid pooling (SPP) [7], to extract a fixed-
length feature vector from the last convolutional feature
map. The RoI pooling layer uses max-pooling to convert the
features inside any cropping candidate into a small feature
map with a fixed-dimensional vector, which is further fed
into a sequence of fully-connected layers for aesthetic qual-
ity classification. This operation allows us to handle images
with arbitrary aspect ratios, thus avoiding undesired defor-
mation in aesthetics assessment. For a cropping candidate of
size ofw′×h′, the RoI pooling layer divides it into n×n (n=7
in our experiments) spatial bins and applies max-pooling for
the features within each bins.

For training, given an image from existing aesthetics
assessment datasets, it takes an aesthetic label c ∈ {1,0},
where 1 indicates high aesthetic quality and 0 indicates low
quality. We resize the image so that min(w, h) = 224, same
as for the ABP net, and the whole image can be viewed as a
cropping candidate for training. For the i-th training image,
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Fig. 7. Schematic diagram of our model in training.

we define q̄ci ∈ {1, 0} as an indicator for its aesthetics-
quality label and qci as its predicted aesthetics-quality score
for class c.

Based on the above definition, the training of the AA
network is done by minimizing the following softmax loss
over N training samples:

Lcls(q, q̄) = − 1

N

∑
i

∑
c∈{1,0}

q̄ci log(q̂ci ), (6)

q̂ci =
exp(qci )∑

c′∈{1,0} exp(qc
′

i )
. (7)

With the cropping candidates generated from the APB
network, the AA network is capable of producing their
aesthetics-quality scores ({q1i }i), where the one with the
highest score is selected as the final cropping (Figure 5(c)).

3.3 Implementation Details

3.3.1 Training

Two large-scale datasets: SALICON [32] and AVA [61], are
used for training our model.

The SALICON dataset is used for training our ABP
network. It contains 20,000 natural images with eye fixation
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annotations. In the area of saliency prediction, the publica-
tion of SALICON dataset has enabled end-to-end training
of deep architectures specifically for attention prediction.
To obtain smooth saliency maps, we follow [32] to apply
a Gaussian filter with a small kernel for filtering a binary
mouse-clicking map into a grey-scale human attention map.
To obtain the groundtruth attention box, we apply the
algorithm in [3] to the saliency map to generate attention
bounding boxs according to Equ. 2 with λ = 0.9.

The AVA dataset is the largest publicly available aesthet-
ics assessment benchmark, containing about 250,000 images
in total. The aesthetics quality of each image was rated on
average by roughly 200 people with the ratings ranging
from one to ten, with ten indicating the highest aesthetics
quality. Followed the work in [49], [51], [53], [61], about
230,000 images are used for training our AA network. More
specifically, images with mean ratings smaller than 5 are
assigned as low quality and the rest as high quality. More
details of the two datasets can be found in Section 4.1.

Our two sub-networks are trained simultaneously. In
each training iteration, we use a min-batch of 10 images, 5 of
which are from the SALICON dataset with the groundtruth
attention boxes and the rest from the AVA dataset with aes-
thetics quality groundtruth. Before feeding the input images
and ground-truth to the network, we scale the images such
that the short side is of size 224. The whole training scheme
of our model is presented in Figure 7. The conv1 and conv2
blocks are shared between both the tasks of attention box
prediction and esthetics assessment, and they are trained
for both the tasks simultaneously using all the images in the
batch. For the layers specialized for each sub-network, they
are trained using only those images in the batch with the
corresponding ground-truth.

Both ABP and AA networks are initialized from the
weights of VGGNet [58], which is pre-trained on the large-
scale image classification dataset, ImageNet [62], with 1M
images. Our model is implemented with Keras and trained
with the Adam optimizer [63]. The learning rate is set to
0.0001. The networks were trained over 10 epochs. The
entire training procedure takes about 1 day with an Nvidia
TITAN X GPU.

3.3.2 Testing
While our two sub-networks are trained in parallel, they
work in a cascaded way (see Figure 8) during testing. Given
an input image (resized such that min(w, h) = 224) for
cropping, we first gain a set of attention boxes generated by
forward propagation on the APB network. Then the initial
cropping is selected as the one with the highest accuracy
of attention box prediction. After that, a set of cropping
candidates are generated around the initial one. Since the
two initial convolutional blocks are shared between the
ABP and the AA networks, we directly feed the cropping
candidates and the convolutional feature of last layer of
conv2 into the AA network. The final cropping is selected
as the cropping candidate with best aesthetic quality. The
whole algorithm runs at about 5 fps.

4 EXPERIMENTAL RESULTS

In this section, we first detail the datasets used for training
and testing in Section 4.1. Then we examine the performance
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Fig. 8. Schematic diagram of our model in testing.

of our ABP and AA networks on their specific tasks (Section
4.2 and 4.3). The goal of these experiments is to investi-
gate the effectiveness of individual components instead of
comparing them with the state-of-the-arts. Then, in Section
4.4, we evaluate the performance of our whole cropping
model on two widely used photo cropping datasets with
other competitors. In Section 4.5, detailed discussions for
limitation and future work are presented.

4.1 Datasets
There are totally six datasets, namely SALICON [32],
PASCAL-S [38], AVA [61], Image Cropping Dataset from
MSR (MSR-ICD) [5], FLMS [6], and Flickr Cropping Dataset
(FCD) [10], used in our experiments. Some statistics of these
datasets and experimental settings are summarized in Table
1. SALICON and PASCAL-S are employed, respectively, for
training and testing our ABP network (Section 4.2); AVA
is used for training and testing our AA network (Section
4.3); MSR-ICD, FLMS and FCD are used for accessing the
performance of our full cropping solution (Section 4.4). Next
we give detailed descriptions for each of the datasets.
• SALICON. This is one of the largest saliency datasets
available in the public domain. It contains 20,000 natural
images from the MSCOCO dataset [64] with eye fixation
annotations that are simulated through mouse movements
of users on blurred images. These images contain diverse
indoor and outdoor scenes and display a range of scene
clutter. 10,000 images are marked for training, 5,000 for val-
idation and 5,000 for testing. We use the training and vali-
dation sets (with publicly available annotations) for training
our ABP network. Since the fixation data for the test set is
held-out, we turn to another widely used dataset, PASCAL
[38], for accessing the performance of ABP network.
• PASCAL-S. This dataset contains 850 natural images
from the validation set of PASCAL 2010 [65] segmentation
challenge. There are totally eight subjects are instructed to
perform the “free-viewing” task in the fixation experiment.
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TABLE 1
Datasets used for training and testing our cropping model.

Dataset Ref Year #Images Purpose
Train Test

ABP SALICON [32] 2015 20,000 X
network PASCAL-S [38] 2014 850 X
AA
network

AVA [61] 2012 ∼250,000 X X

Deep-
cropping

MSR-ICD [5] 2013 950 X
FLMS [6] 2014 500 X
FCD [10] 2017 1,743 X

Each image is presented for 2 seconds, and the eye gaze
data is recorded using Eyelink 1000 eye-tracker, at 125Hz
sampling rate. The smooth attention map for each image is
obtained by blurring the fixation map with a fixed Gaussian
kernel (σ = 0.005 of the image width).
• AVA. The Aesthetic Visual Analysis (AVA) dataset contains
about 250,000 images in total. These images are obtained
from DPChallenge.com and labeled for aesthetic scores.
Specifically, each image receives 78∼549 votes of a score
ranging from 1 to 10. For the task of binary aesthetic quality
classification, images with an average score higher than 5
are treated as positive examples, and the rest image are
treated as negative ones. Accordingly, a large-scale stan-
dardized partition is obtained, which has about 230,000
images for training and about 20,000 images for testing.
• MSR-ICD. The MSR-ICD dataset includes 950 images
which are originally from an image aesthetics assessment
database [46]. The photos are acquired from the professional
photography websites and contributed by amateur photog-
raphers and span a variety of image categories, including
animal, architecture, human, landscape, night, plant and
man-made objects. Each image is carefully cropped by three
expert photographers.
• FLMS. The FLMS dataset contains 500 natural images
collected from Flickr. For each image, 10 expert users on
Amazon Mechanical Turk who passed a strict qualification
test are employed for cropping groundtruth box.
• FCD. It consists of 1,743 images collected from Flickr.
Seven workers on Amazon Mechanical Turk were recruited
for annotation. The images are split into a training set of
1,369 images and a test set of 374 images.

4.2 Performance of the ABP Network
We first evaluate the ABP network on the PASCAL-S dataset
[38], which is widely used for attention prediction. With the
binary eye fixation images, we follow [38] to generate gray-
scale attention maps. Then, as described in Section 3.3, we
generate a groundtruth attention box for each image.

TABLE 2
Attention box prediction with IoU for PASCAL-S dataset [38].

Method Ours [57] ITTI [17] AIM [18] GBVS [19] SUN [20]
IoU 0.517 0.318 0.327 0.319 0.273

Method Ours DVA [21] SIG [66] CAS [67] SalNet [33]
IoU 0.583 0.346 0.272 0.356 0.379

We test eight state-of-the-art attention models including
ITTI [17], AIM [18], GBVS [19], SUN [20], DVA [21], SIG

TABLE 3
Aesthetics assessment accuracy on the AVA dataset [61].

Method Ours AVA [61] RAP-DCNN [49] RAP-RDCNN [49]
Accuracy 0.770 0.667 0.732 0.745

Method Ours RAP2 [68] DMA-SPP [51] DMA [51]
Accuracy 0.770 0.754 0.728 0.745

Method Ours DMA-Alex [51] ARC [52] CPD[53]
Accuracy 0.770 0.754 0.773 0.774

[66], CAS [67] and SalNet [33]. Previous attention models
are for imitating human visual attention behavior, and their
output is a continuous saliency map. In contrast, our AA
network generates an important bounding box as an initial
cropping. Thus PR curves or AUC curves used in visual
attention prediction cannot be directly applied for compar-
ison. For the sake of a relatively fair comparison, we first
extract the attention boxes of above methods via the same
strategy used for generating the groundtruth bounding box.
Then we apply the Intersection over Union (IoU) score for
quantifying the quality of extracted attention boxes. We also
report the results from our preliminary conference version
[57].

The quantitative results are illustrated in Table 2. As
seen, our attention box prediction results are more accurate
than previous attention models, since our ABP network is
specially designed for this task. Additionally, comparing
the performance of our conference version, the improve-
ment is significant (0.517→0.583). This is mainly due to the
incorporation of visual attention supervision in our ABP
network, which offers strong prior knowledge for attention
box prediction.

4.3 Performance of the AA Network
We adopt the testing set of the AVA dataset [61], as described
in Section 3.3, for evaluating the performance of our AA
network. The testing set of AVA dataset contains 19,930
images. The testing images with mean ratings smaller than
5 are labeled as low quality; otherwise they are labeled as
high quality.

We compare our methods with the state-of-the-art meth-
ods including AVA [61], RAP [49], RAP2 [68], DMA [51],
ARC [52] and CPD [53], where AVA offers the state-of-the-
art result based on manually designed features while other
methods are based on deep learning model.

We opt the overall accuracy metric, which is the most
popular evaluation criterion in the research area of image
aesthetics assessment, for quantitative evaluation. It can be
expressed as Accuracy = TP+TN

P+N , where TP, TN,P and
N refer to true positive, true negative, total positive, and
total negative, respectively. This metric accounts for the
proportion of correctly classified samples.

It is clear from Table 3 that, our AA network achieves
state-of-the-art performance even with a relatively simple
network architecture. In Figure 9, we present some examples
with aesthetics values predicted by our AA network.

Overall, our two sub-networks generate the promising
results aligned with existing top-performance approaches.
This is mainly due to a relatively shallow network and
simple network architecture, compared with exiting deep



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

(a) Images with highest aesthetics values predicted by our AA network

(b) Images with lowest aesthetics values predicted by our AA network

(c) Images classified as high-quality but labeled as low-quality

(d) Images classified as low-quality but labeled as high-quality

Fig. 9. Aesthetics assessment results via our AA network. The images with the highest predicted aesthetics values and those with the lowest
predicted aesthetics values are presented in (a) and (b), respectively. (c) and (d) show the images that are miscategorized.

TABLE 4
Performance of automatic image cropping on MSR-ICD dataset [5]. Higher IoU score and lower BDE indicate better cropping predictor.

Method
* Photographer 1 Photographer 2 Photographer 3 Average
IoU ↑ BDE ↓ IoU ↑ BDE ↓ IoU ↑ BDE ↓ IoU ↑ BDE ↓

ATC [16] 0.605 0.108 0.628 0.100 0.641 0.095 0.625 0.101
AIC [3] 0.469 0.142 0.494 0.131 0.512 0.123 0.491 0.132
LCC [5] 0.748 0.066 0.728 0.072 0.732 0.071 0.736 0.0670

MPC [69] 0.603 0.106 0.582 0.112 0.608 0.110 0.598 0.109
SPC [4] 0.396 0.177 0.394 0.178 0.385 0.182 0.391 0.179

ARC [52] 0.448 0.163 0.437 0.168 0.440 0.165 0.442 0.165
Ours [57] (conference version) 0.813 0.030 0.806 0.032 0.816 0.032 0.812 0.031

Ours 0.815 0.031 0.810 0.030 0.830 0.029 0.818 0.029
* MSR-ICD dataset offers separate annotations from three different expert photographers.
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TABLE 5
Performance of automatic image cropping on the FLMS dataset [6].

Higher IoU score and lower BDE indicate better cropping results.

Dataset Method
Measure

IoU ↑ BDE ↓

FLMS

ATC [16] 0.72 0.063
AIC [3] 0.64 0.075
LCC [5] 0.63 –

MPC [69] 0.41 –
VBC [6] 0.74 –

Ours [57] (conference version) 0.81 0.057
Ours 0.83 0.052

- The authors in LCC [5], MPC [69] and VBC [6] have not
released results with the BDE measure.

learning aesthetics network. Considering the shared convo-
lutional layers in the bottom of these two networks, our
model achieves a good tradeoff between performance and
computation efficiency. More importantly, the robustness of
these two basic components greatly contributes to the high-
quality of our cropping suggestions, which will be detailed
in the next section.

4.4 Performance of Cropping Network
4.4.1 Evaluation on MSR-ICD and FLMS Datsets
We first evaluate our full cropping model on two widely-
used image cropping datasets, including the Image Crop-
ping Dataset from MSR (MSR-ICD) [5] and the FLMS
dataset [6] . We adopt the same evaluation metrics as [5], i.e.,
the IoU score and the Boundary Displacement Error (BDE)
to measure the cropping accuracy of image croppers. BDE is
defined as the average displacement of four edges between
the cropping box and the groundtruth rectangle:

BDE =
∑

i
||Bg

i −B
c
i ||/4, (8)

where i ∈ {left, right, bottom, up} and {Bi}i denote the
four edges of the cropped window or groundtruth cropping.
Note that BDE has to be normalized by the width or height
of the image. Clearly, a good cropping solution favors a high
IoU score and a low BDE.

We compare our cropping method with two main cat-
egories of image cropping methods, i.e., attention-based and
aesthetics-based methods.

For attention-based methods, we select the ATC algo-
rithm [16] which is a classical image thumbnail cropping
method, and the AIC algorithm [3]. The results of AIC
algorithm are obtained via applying cropping window re-
searching method [3] with top-performing saliency detec-
tion method. Here we apply context-aware saliency [67] and
optimal parameters, as suggested by [3], for maximizing its
performance. For aesthetics-based methods, we select LCC
[5], MPC [69], and VBC [6]. In addition, we consider SPC,
which is an advanced version of [4], as described in [5].
Additionally, we adopt a recent aesthetics ranking method
[52] combined with sliding window strategy as a baseline:
ARC. We select the cropping as the one with the highest
ranking score from sliding windows.

The quantitative comparison results on the MSR-ICD
and FLMS datasets are demonstrated in Table 4 and Table

TABLE 6
Performance of automatic image cropping on the test set of FCD [10].

Higher IoU score and lower BDE indicate better cropping results.

Dataset Method
Measure

IoU ↑ BDE ↓

FCD

ATC [16] 0.58 0.10
AIC [3] 0.47 0.13

ATC [16] + eDN [29] (MaxAvg) 0.35 0.17
ATC [16] + eDN [29] (MaxDiff) 0.48 0.13
ATC [16] + BMS [70] (MaxAvg) 0.34 0.18
ATC [16] + BMS [70] (MaxDiff) 0.39 0.16

SVM+DeCAF7 0.51 0.13
AVA+DeCAF7 0.52 0.12
FCD+DeCAF7 0.60 0.10

Ours [57] (conference version) 0.63 0.09
Ours 0.65 0.08

5, respectively. As seen, our cropping method achieves
the best performance on both datasets. The improvement
over our conference version verifies the effectiveness of our
improved ABP network. Qualitative results on the MSR-ICD
and FLMS datasets are presented in Figure 10.

4.4.2 Evaluation on FCD Datset
We further test the proposed cropping method on the test
set of the recently released FCD [10] dataset. Following the
settings in FCD dataset, we extend the attention-based ATC
algorithm [16] with two state-of-the-art attention methods,
i.e., BMS [70] and eDN [29], using two search strategies,
i.e., MaxAvg (searching an optimal cropping window with
the highest average saliency) and MaxDiff (maximizing
the difference of average saliency between the crop and
the outer region). For aesthetics-based methods, we consider
three baselines in [10]: SVM+DECAF7, AVA+DECAF7 and
FCD+DECAF7, corresponding to a combination of the SVM
classifier and DECAF7 features [71], training on the AVA
and FCD datasets, respectively. As summarized in Table 6,
the results on the FCD dataset demonstrate again that our
method compares favorably with the previous state-of-the-
art methods using the two evaluation metrics.

4.4.3 User Study
Since photo cropping is a human-centric task, we conduct a
user study for assessing the quality of cropping suggestions
from our system and other competitors, including ATC [16]
and AIC [3]. A corpus of 20 participants (8 females and 12
males) with diverse backgrounds and ages were recruited to
participate in the user study. None of the participants had
received any special technical instructions or had any prior
knowledge about the experimental hypotheses. 200 images
randomly selected from the MSR-ICD [5] and FLMS [6]
datasets are used in this user study. The original image and
its cropped versions from our method and other competitors
are presented to the participants. Each participant examines
all the selected images and is required to answer which
cropped image they prefer. Figure 11 shows the distribution
of votes averaged over all participants. As seen, our method
receives the most overall votes, confirming the strong pref-
erence of the proposed method over other methods.
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Fig. 10. Qualitative results on MSR-ICD [5] and FLMS [6] datasets. The red rectangles indicate the initial cropping generated by the ABP network,
and the yellow windows correspond to the final cropping selected by the AA network.
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Fig. 11. User preference rate in user study.

4.4.4 Ablation Study

To give a deeper insight of the proposed cropping method,
we study different ingredients and variants of our method.
We experiment on the FLMS dataset [6] and measure the
performance using the IoU metric. Four baselines derived
from our method are considered:
• ABP: It directly uses the initial cropping from the ABP
network as the final cropping.
• Sliding window+AA: We apply sliding windows (∼10,000
windows for an image with typical resolution of 224×224)
and use the AA network to select the best aesthetics-
preserved one as the final cropping.
• ATC+AA: It corresponds to the results that we treat
the cropping results from attention-based cropping method
ATC [16] as the initial cropping and further apply the AA
network for determining the final cropping.
• AIC+AA: Similar to ATC+AA, we combine the AA network

TABLE 7
Ablation study on FLMS dataset [6].

Aspect Description
Measure

IoU↑ Time(s)↓
full model ABP+AA 0.83 0.23

variant

ABP 0.77 0.12
Slidingwindow+AA 0.69 134

ATC[16]+AA 0.78 1.3
AIC[3]+AA 0.73 32.5

competitor
ATC[16] 0.72 1.1
AIC[3] 0.64 32.3

cropping
Randomly sampling

(1,000 candidates)
0.80 0.23

candidates
Larger sampling step

(step=16)
0.81 0.23

with the results from attention-based AIC [3] for outputting
the final cropping.

The evaluation results and computation time are sum-
marized in Table 7. We can draw the following three impor-
tant conclusions:

1) Aesthetics is important for photo cropping. The
improvement brought from AA network (ABP+AA:
0.83 vs ABP: 0.77, ATC+AA: 0.78 vs ATC: 0.72,
AIC+AA: 0.73 vs AIC: 0.64) indicates that the crop-
ping performance is benefited from aesthetic assess-
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ment. This conclusion aligns with the claims shared
by pervious aesthetics-based cropping methods.

2) Both visual importance and photo aesthetics are
critical. A drop of performance can be observed
when only considering photo aesthetics (ABP+AA:
0.83 vs Sliding window+AA: 0.78). This observa-
tion can be attributed to omitting important image
content when only considering photo aesthetics. It
supports one of our motivations to combine visual
importance and photo aesthetics together for cor-
rectly determining the cropping.

3) The proposed cropping solution achieves high
computation efficiency. With the full implementa-
tion, the proposed algorithm achieves a high pro-
cessing speed of 5 fps on a modern GPU, which is
faster than other competitors.

To study the influence of the sampling strategy of our
cropping candidates (Section 3.1), we further evaluate the
following two baselines:
• Randomly sampling: Instead of using a set of fixed size
offsets, we randomly extract 1,000 cropping candidates, all
of which cover the initial cropping area.
• Larger sampling step: We enlarge the original sampling steps
(=8) as 16, then apply AA network for selecting the final
cropping.

From Table 6, we can observe performance drops of these
two baselines. For random sampling, since the feature map
of AA network is with ×8 downsampling, some similar
neighbor candidates may be repeatedly considered while
some other important candidates may be missed. When
we increase the sampling step, the performance becomes
worse since some candidate regions are ignored. Overall, the
proposed cropping algorithm that combines the ABP and
AA networks achieves the best performance and is much
more computationally efficient.

4.5 Discussions

4.5.1 Limitations

The proposed algorithm suffers from a few limitations. A
potential drawback of utilizing visual attention is that un-
faithful importance maps might negatively affect cropping
results. The attention model (the ABP network) may omit
parts of a salient object which occupies a large portion
of the scene (see examples in Figure 12). This issue can
be partly alleviated by considering the aesthetics quality
from the AA network. Besides, since most of the training
images in the AVA dataset are manually selected and pre-
manipulated, the discriminability of the AA network may
be limited with daily raw images. For training the AA
network, the negative samples and the positive samples are
from different scenes. However, such image-level aesthetics
annotation is insufficient to provide enough supervision for
the AA network for rating cropping cases from the same
original image. For remedying this, more negative training
examples with false cropping (e.g., splitting an important
object into parts) should be mined for training a more robust
AA model.

(a) (b)

Fig. 12. Two cases for illustrating the limitations of our cropping solution,
where the left images in (a) (b) show the importance maps and initial
cropping (red rectangles) generated by the ABP network, the yellow
windows in the right images are the final cropping selected by the AA
network. We can find that the ABP network tends to select the most
informative but small parts, which may discard some parts of a large
object. See Section 4.5.1 for more discussion.

4.5.2 Future work
The proposed method is among the first attempts to ap-
ply deep learning for photo cropping, and opens vari-
ous research directions that are worth future exploration.
• Bottom-up attention vs top-down attention: Similar to
most previous attention based cropping algorithms, our
method employs bottom-up attention model to determine
the image parts to preserve. The bottom-up model imitates
the selective mechanisms of human visual system in gen-
eral scenes without considering high-level information. It
is interesting to explore the integration of top-down task-
driven attention into the proposed cropping framework.
Such attention may help reveal the rationale behind human
cropping behavior, e.g., understanding the searching strat-
egy of human, examining the correlation between purely
visual importance and cropping-specific importance.
• Classification vs ranking: In our current approach, we
formulate aesthetics analysis as a binary classification prob-
lem (i.e., low- or high-aesthetics). However, the aesthet-
ics assessment may be more of a ranking problem, since
individuals have different aesthetics tastes but are more
consistent with the relative aesthetic ranks. This can be
achieved by specially designed aesthetics rating networks
and ranking loss (like [52]), thus our cropping model may
be more powerful and consistent with human aesthetic
preference among different cropping cases.
• Incorporating high-level human knowledge: In photo
aesthetics analysis, numerous efforts have been seen in
designing features for encapsulating the intertwined aes-
thetic rules. It might be promising to incorporate human-
knowledge of photographic rules (e.g., region composition
and rule of thirds) into our current cropping solution, since
such domain knowledge is still instructive and widely used
in photographic practice and visual design.

5 CONCLUSIONS

In this work, we proposed a deep learning-based photo
cropping approach with the determining-adjusting philos-
ophy. The proposed deep model is composed of two sub-
networks: an Attention Box Prediction (ABP) network and
an Aesthetics Assessment (AA) network, both of which
share multiple initial convolution layers. The ABP network
infers initial cropping as a bounding box covering the vi-
sually important area (attention-aware determining), and
then the AA network selects the best cropping with the
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highest aesthetic quality from a few cropping candidates
generated around the initial cropping (aesthetic-based ad-
justing). Extensive experiments have been conducted on
several publicly available benchmarks and detailed analysis
are reported on issues such as the effectiveness of each key
components, and the computation cost. These experiments,
together with a carefully designed user study, consistently
validate the effectiveness and robustness of our algorithm
in comparison to the state-of-the-arts.
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