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Abstract

In this paper we propose a novel framework for contour based object detection
from cluttered environments. Given a contour model for a class of objects, it is
first decomposed into fragments hierarchically. Then, we group these fragments
into part bundles, where a part bundle can contain overlapping fragments. Given
a new image with set of edge fragments we develop an efficient voting method us-
ing local shape similarity between part bundles and edge fragments that generates
high quality candidate part configurations. We then use global shape similarity be-
tween the part configurations and the model contour to find optimal configuration.
Furthermore, we show that appearance information can be used for improving
detection for objects with distinctive texture when model contour does not suffi-
ciently capture deformation of the objects.
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1. Background

The key role of contours and their shapes in object extraction and recognition
in images is well established in computer vision and in visual perception. Ex-
tracting edges in digital images is relatively well-understood and there are robust
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detectors like [21, 9]. However, it is often difficult to distinguish edge pixels be-
longing to meaningful object contours. The main challenge is due to the fact that
most edge pixels represent background and irrelevant texture, while only a small
subset of edge pixels corresponds to object contours. Further, the edge pixels do
not simply form occluding contours but broken contour fragments due to noise
and occlusion.

Grouping edge pixels into contours using various saliency measures and cues
has been studied for long and is still an active research field [37, 30, 28, 15, 27].
Once contours are identified they can be further grouped into objects by per-
forming shape matching with model contours. For example, Shotton et al.[26]
and Opelt et al. [24] use chamfer distance [2] to match fragments of contours
learnt from training images to edge images. McNeil and Vijayakumar [23] rep-
resent parts learnt from semi-supervised training as point-sets and establish prob-
abilistic point correspondences for the points in edge images. Ferrari et al. [6]
use a network of nearly straight contour fragments and a sliding window search.
Thayananthan et al. [29] modify shape context [1] to incorporate edge orienta-
tions and Viterbi optimization for better matching in clutter. Flezenswalb and
Schwartz [5] present a shape-tree based elastic matching among two shapes and
extend it to match a model and cluttered images by identifying contour parts
(smooth curves) using a min-cover approach [4]. More recently, Zhu et al. [38]
formulate the shape matching of contours (identified using [37]) in clutter as a set-
set matching problem. They present an approximate solution to the hard combina-
torial problem by using a voting scheme ([33, 19]) and a relaxed context selection
scheme using linear programming. They use shape context [1] as shape descrip-
tor. Bai et al. [40] provide a skeleton-based model decomposition scheme to solve
non-rigid object detection problem. Aside from the recent work mentioned above,
there are many early studies that use geometric constraints for model-based object
and shape matching [13, 11, 12].

In this paper we focus on object detection by grouping the edge fragments in
an image according to a contour model. Like many previous studies [33, 19, 26,
38, 7], we follow a two-phase framework: (1) generating object hypotheses, and
(2) picking the best one. Our main contributions are summarized below: For the
first phase, we propose a novel part bundle model that allows us to use local shape
similarity of contour parts to efficiently generate accurate hypotheses. Specifi-
cally, we decompose a given contour model into several part bundles, where each
part bundle contains several overlapping contour fragments (see Fig. 1 for exam-
ple decompositions). The model naturally handles hierarchical relations between
fragments, as well as the AND/OR relations for co-existing and competing frag-
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(a) a bottle model

(b) a giraffe model

(c) an apple logo model

(d) a mug model

(e) a swan model

Figure 1: The part bundles of the hand-drawn contour models. Different parts and the part bundles
are shown in different colors.

ment pairs. By matching the contours composed of fragments in the part bundles
to that of the edge fragments in a given image we can generate concise and accu-
rate hypotheses for part-configurations. The part bundle model is closely related
to the hierarchical Random Filed model [18] and the AND/OR graphs [14, 39, 3].
While our model avoids explicit graph-theoretic parsing it keeps all the necessary
properties for inferring part-configurations.

In the second phase, we compute global shape similarity of the part-configurations
to the model contour using shape context [1] to pick the best part-configuration.
Global shape matching is an expensive operation but we can afford to do this
thanks to the concise and accurate hypotheses generated in the first phase using
local shape matching of edge fragments to the part bundles. The illustration of
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our framework is shown in Fig. 2.
Another contribution we made for the second phase is to investigate if appear-

ance can compensate for the lack of model deformability for objects with distinc-
tive texture. Using the bag-of-features [36, 35, 32, 10] model, we show that the
detection performance can be significantly improved for objects with distinctive
texture.

The rest of the paper describes the details of our framework followed by exper-
imental evaluation. In §2 we describe the first phase of hypotheses generation. §3
describes how we select the best hypothesis in the second phase. In §4 we present
experimental evaluation of our method, followed by conclusions and discussions
in §5.

Figure 2: Illustration of our framework: (a) The edge fragments are generated using edge linking
software [16] (see §2.2). (b) Contour based model is decomposed into part bundles (see § 2.1). (c)
Contour fragments similarity, the color varies from blue to red indicates similarity from weak to
strong. (d) Using contour fragment similarity we perform efficient centroid voting (see § 2.3). (e)-
(f) The part configurations generated using K-NN centroids around each centroid are evaluated
using shape and appearance information and the best part-configuration is picked (see § 2.3 and
§3), the black dots are the centroids estimated by mapping a model fragment to a image fragment.
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2. Hypotheses Generation Using Part Bundles

We aim to find the objects in the image using a shape matching scheme. The
shape matching algorithm by Ferrari [8], called kAS, groups k pieces of adjacent
segments (AS) together and treats the adjacent segments as an individual unit and
performs shape matching between them. Zhu et al. [38] perform many-to-many
matching between sets of model and image segments in their process of contour
selection.

We propose a simple scheme that only allows one-to-one mapping between
a model segment and an image segment. Our part bundle based decomposition
of the model contour allows us to perform the one-to-one matching. We first ex-
plain how a given contour model is hierarchically decomposed into part bundles
and then explain how the edge fragments are obtained from a given image. Us-
ing the part bundle model and edge fragments we generate good candidate part
configurations of edge fragments in the image.

2.1. Part bundles model for shape decomposition
To model an object class, we first get its contour representation by tracing a

sample image as in [8, 38]. As stated in the above subsection, we try to apply
the same criteria to the shape model as that in the image segments to get fairly
straight contour fragments. Since the model contour is a complete contour, we
only apply rule 2 (described below) to break the model contour to several contours
at high curvature contour points. Other methods like discrete curve evolution
(DCE) [17] also represent a shape contour as linear segments connected by several
salient contour points. Salient points are the contour points with high curvature.
Fig. 3 shows an example which use our rule 2 to decompose a shape model to
several contour pieces. Thus, both the image fragments and model segments are
processed with the same criteria, which increases the probability of their one-to-
one matching.

Moreover, we obtain a more flexible model structure by manual interference
based on above decomposition. We manually decompose contour segments at
some salient points and the center of a contour segment to form a hierarchical
structure. Let F = {fi}m

i=1 denote the set of such fragments. A part bundle B
is a subset of F , such that at most one fragment in B is allowed to have corre-
spondence to an edge fragment in E. In other words, all fragments in a bundle
B compete with each other during shape-to-image matching. With this bundle
decomposition, we now can write our contour model as

B = {Bk}m′
k=1 . (1)
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Figure 3: A shape model is decomposed to several pieces at salient contour points using rule 2 of
our edge linking criteria.

where m′ is the number of part bundles in model B, which is usually very small.
For bundles we have the following constraints

Bk ⊂ F , k = 1, ..., m′

Bi

⋂
Bj = ∅ , 1 ≤ i < j ≤ m′ . (2)

Sample bundle decompositions are shown in Fig. 1, we fix them as the models
for ETHZ dataset.1 It can be seen that a bundle can have fragments representing
overlapping parts thus having redundancy and hierarchy. A cognitive motivation
behind such decomposition scheme is that an object can be recognized even if
some parts of it are missing, as can be observed in Fig. 4. There are several reasons
why parts of objects can be missing in real images: missing edge information,
occlusion, failures in contour grouping. The main constraint for the bundle design
is to ensure shape flexibility, i.e., to accommodate for possible deformations and
broken edge fragments in the edge image. Our experimental results presented in
§4 show the superiority of our part bundle scheme over the control point scheme.

2.2. Extracting edge fragments from an image

Given is an input image I and its edge map extracted by the edge detection
algorithm [22]. We extract a set of edge fragments, E = {ei}n

i=1, from the edge

1We design the part bundles based on the hand drawn models provided in the ETHZ dataset,
but they are not optimal. For example, we observe that in the giraffe category, the necks of many
giraffes have different bending angles. If we add another giraffe model to this category with a
different neck, the performance of our method on that object category improves significantly.

6



Figure 4: Parts of the objects are missed both due to missing edge information and due to broken
edge links. Objects can still be recognized using shape even if some parts are missing.

map in the following way. First, single pixel wide edge chains are obtained using
the edge linking method of Peter Kovesi [16]. Then each branching chain from
a junction point is treated as an edge segment. An example can be found in Fig.
5(b), where different color represents different edge segments. The connected
edges are partitioned to several branches at junction points.

We observe that if edge segments are long and straight, they are more likely to
correspond to a contour part of the model. Based on this observation, we further
group Peter Kovesi’s edge linker result to generate fairly long and straight edge
segments. At this step, no shape prior is taken into consideration for contour
grouping. We apply following two rules.

• Rule 1 (Linking): Connect two edge segments if the distance between two
of their endpoints is less than DT and the corresponding turn angle is less
than KT , and repeat the process until there are no more edge segments to
link. In cases where there are more than two edge segments at a junction,
edge segments with smaller turn angle should be connected first.

• Rule 2 (Decomposing): Split a given edge segment at a point with turn angle
larger than KT , and continue doing this till there is no more edge segments
to split.

In our work, we set DT = 10 pixels in most cases, and KT is measured by
curvature with a certain scale. KT is typically set to 0.5. In Fig. 5(c), it can be seen
that that short edge fragments are linked to form longer edge segments at junction
points following rule 1, and in Fig. 5(d), all edge segments are decomposed to
fairly straight segments. We apply our edge rules to all the test images in the
ETHZ dataset.
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Figure 5: Decomposing and linking of edge segments in a real image with our two rules described
in the text.

To summarize, we obtain a set of edge fragments E = {ei}n
i=1 by applying

Peter Kovesi’s edge linker [16] and our two rules. A sample set of resulting edge
fragments can be seen in Figs. 5(d) and 2(a).

2.3. Efficient centroid voting with part bundles

Given a set of model fragments F and edge fragments E, the task now is to find
a candidate subset of E such that the global shape composed by it matches to that
ofB. Matching F and E is a hard combinatorial matching problem. In [38], many-
to-many matching is utilized and a context selection scheme is introduced. They
solve a relaxed version (that utilizes additivity of shape context representation)
instead of the discrete version with linear programming.

In contrast by taking advantage of the exclusion property of part bundles and
our edge linking rules, we can model the mapping from B to E as a one-to-one
mapping. Denote such a mapping as π : {1, ..., m′} → {01, 02, . . . , 0m′ , 1, ..., n},
such that Bi ∈ B is mapped to edge fragment eπ(i) ∈ E or empty edge when
π(i) = 0i

2. It can be seen that each such mapping can be considered as a part con-
figuration obtained by the {eπ(i)}m′

i=1 in the image and our task is to find an optimal
one π̂ that maximizes global shape similarity between the part-configuration and

20i denotes a dummy fragment that Bi maps to for handling missing parts.
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the model contour. Searching among all configurations is very expensive since
there are

∏m′−1
i=0 (n+m′− i) = O((n+m′)m′

) ≈ O(nm′
) possible configurations.

As mentioned in the previous section, our part bundle generates a very concise
model decomposition, with m′ ≈ 4 for most objects. Taking advantage of this
fact, we design an efficient voting scheme for searching in the configuration space.
This allows us to explore the configurations explicitly using any high-level shape
matching tool.

The basic idea is to use fragment correspondences between F and E to vote
for the object centroid. Specifically, for an image fragment e ∈ E and a model
fragment f ∈ F , we first build the mapping between the sample points. Using
sequences of tangent directions along e and f as their shape descriptors, we per-
form sequence matching with the Smith-Waterman algorithm[34]. Then, using
the part-centroid relation from the model, we can project the expected centroid of
the object to the image. The scale transformation is estimated by the length ratio
of the image fragment e and the model fragment f . For each f ∈ F , we rank all
fragments in E according to their similarities to f as computed above. Then we
choose the best two matches for centroid voting. Consequently, the whole voting
procedure generates 2m centroid votes (see Fig. 2(c) & (d)).

The correspondences in the optimal configuration (π̂(1), . . . , π̂(m)) should
consistently estimate the centroid of the object. Assuming there exists a cen-
troid whose K-NN centroids correspond to the optimal fragment-bundle corre-
spondences, we just need to examine part-configurations obtained from K-NN
centroids around all 2m centroids (see Fig. 2(e)). A group of K-NN centroids

gives us
(

K
m′

)m′
part-configurations. So we have to examine a total of 2m

(
K
m′

)m′

hypotheses or part configurations. We denote the set of these hypotheses as H.
The number of configurations to be explored is exponential in the number of
part bundles but usually m′ ≈ 4 for most of the models. Also since m << n,

2m
(

K
m′

)m′
<< O(nm′

) as long as K << nm′. Theoretically, a larger K implies
higher probability to get the optimal configuration, thus, the larger the value of
K, the better the performance is. However, the search time increases significantly
with the increasing of the value of K, and we observe that the performance im-
proves only slightly when K is larger than 20. This is explained by the fact that
we have a concise model structure and the improved edge linking method allows
one-to-one mapping. We chose K = 20 empirically to strike a balance between
performance and time complexity.

Note that the proposed searching approach uses a brute force scheme, which
provides a more robust configuration estimation than traditional solutions that usu-
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ally rely on mode seeking or relax the matching problem. Though more reliable,
brute force solutions are usually forbidden due to their high computational com-
plexity. The key factor that makes our solution computationally trackable is the
part bundle model and the one-to-one mapping scheme. In particular, we benefit
from the fact that the number of part bundles m′ is small. This fact is a general
property that is rooted in human visual perception, since humans decompose a
given shape only in a small number of parts of visual form [25].

3. Hypotheses Evaluation

3.1. Utilizing local and global shape information

Our part configurations are groups of image edge fragments and our models
are based on contour parts. Hence it is natural to use shape constraints for evalu-
ating the part configurations. Instead of just using geometric relationship between
contour parts, we use global shape similarity to judge the quality of candidates.

We perform a coarse-to-fine shape matching to evaluate the hypotheses (part
configurations). We first eliminate hypotheses hi ∈ H whose cumulative part-to-
fragment similarities measured using [34] is below a certain similarity threshold.
Then for the remaining hypotheses we use Shape Context [1] which is a well
known global shape descriptor and has demonstrated excellent performance for
shape analysis tasks. We use it to estimate the similarity between a model and a
hypothesis. The shape distance between them is defined by the their shape context
distance ([1]) dsc(hi,B). We then pick the best candidate according to dsc:

argmin
hi

dsc(hi,B) (3)

3.2. Combining shape and appearance

In addition to shape, appearance information often provides distinctive cues
for object detection and recognition. Appearance can be helpful in cases of objects
with distinctive texture and where the object model does not capture the variance
in the shape. In this subsection, we describe our investigation along this line.

We use the popular bag-of-features [36, 32] framework for appearance analy-
sis. First, local patch descriptors are generated from training images using SIFT
[20], which are used to build a dictionary D = {wi}M

i=1 using k-means. Second,
all local features in a window are mapped to visual words in D, and the window
is then represented by its word frequency vector. Third, we collect all such word
frequency vectors to form a training set, and use support vector machine (SVM)
[31] to learn a classifier.
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For object class, Giraffes, the neck in the model does not capture the variance
in the neck poses of the test images. Further, Giraffes have distinctive texture.
For this class we evaluate the hypotheses by combining appearance and shape.
Again we first eliminate part-configurations whose cumulative part-fragment sim-
ilarities is below a certain threshold. Then for each of the remaining hypothesis
h, we use the texture inside the smallest bounding box enclosing the fragments to
get its visual word frequency representation. Then we measure its relevance to a
class using the confidence of the learned SVM model, denoted as dapp(h). Com-
bining shape context and appearance similarity, we have the following weighted
evaluation criterion for picking the best hypothesis:

argmin
hi

dsc(hi,B) + λ dapp(hi) (4)

where λ balances the weight between shape and appearance.

4. Experimental Results

We present results on the ETHZ shape classes ([8]). This dataset has 5 dif-
ferent object categories with 255 images in total. Many objects are surrounded
by extensive background clutter and have interior contours. All categories have
significant intra-class variations, scale changes, and illumination changes. The
advantage of our method is to be able to identify good part-configurations among
clutter. The ability to handle deformations depends on the capacity of global shape
matching module or in other words the hypothesis evaluation method.

4.1. Experiments using shape information

Similar to the experimental setup in [38], we use only the single hand-drawn
models provided for each class. For each model we introduce breakpoints at high
curvature contour points. The part bundles created from the contour models can
be seen in Fig. 1. In addition to longer contour segments, we need to select shorter
ones, since contour parts may be missing in edge images.

Since we compare our results to the state-of-the-art [38], we use Precision vs.
Recall (P/R) curves for quantitative evaluation. To compare with the results of [7]
that are evaluated by detection rate (DR) vs. false positive per image (FPPI), we
translate their results into P/R values as in [38]. Fig. 6 shows P/R curves for the
three methods: Contour Selection method of [38] in black, that of [7] in green,
and our method in red. Our approach performs better than method in [7] on three
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categories, outperforms the Contour Selection method [38] on three categories,
and outperforms both methods on two categories (“applelogos” and “swans”).

We also compare the precision to [38] and [7] at the same recall values in
Table 1. The precision / recall pairs of [38] and [7] are quoted from [38]. We use
the same criterion for correct detection as in [7]. Sample successful detections,
failure cases and false-positives are shown in Fig. 7.

On a PC with 2.3GHz Pentium (D) CPU and 3GB RAM, the average process-
ing time of our method in MATLAB implementation is around 25 seconds per
image.

Figure 6: Precision/Recall curves of the Contour Selection method by Zhu et al. [ 38] (black)
and the method by Ferrari et al. [7] (green) on ETHZ shape classes. Our method (red) performs
significantly better on two categories viz. Applelogos and Swans.

4.2. Experiments using shape and appearance information
We now present results of using appearance information on the class of giraffes

that have distinctive texture because of their skin. We pick the first 16 images
from the class to obtain the code book D of 100 visual words. We only selected
the SIFT features inside the ground truth bounding boxes. The detection is based
on a nearest neighbor retrieval according the distance dmix, with λ = 8.
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Class (Recall%) [7] [38] Our method
Applelogos (86.4%) 32.6% 49.3% 56.0%
Bottles (92.7%) 33.3% 65.4% 48.0%
Mugs (83.4%) 40.9% 25.7% 27.8%
Giraffes (70.3%) 43.9% 69.3% 50.0%
Swans (93.9%) 23.3% 31.3% 59.0%

Table 1: Precision / recall pairs of the method of [7] and the Contour Selection method of [38] are
quoted from [38]. Our precision is higher than [7] on four classes (except for “mugs”) and higher
than [38] on three classes (except for “bottles” and “giraffes”).

Fig. 8 shows the P/R curves using only shape and combining shape and ap-
pearance. Fig. 9 shows the improvement of using appearance information on two
sample images. As can be seen using appearance information can significantly
improve the detection performance.

5. Conclusions

In this paper we study the problem of contour based object detection. A new
contour model, part bundles, is proposed that decomposes contour fragments into
subsets. We show that this decomposition efficiently groups competing fragments
and therefore enables brute force search hypothesis voting, which generates high
quality and concise candidate detection sets. With these candidate sets, we use
global shape similarity for false positive pruning and achieved excellent perfor-
mance on ETHZ dataset. In addition, we show that appearance information, which
can be easily integrated into our approach, can help to achieve further improve-
ment for objects with distinctive texture when contour model and shape matching
do not sufficiently capture the deformability of objects. Integrating such additional
cues is straightforward in our framework.
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Figure 7: Sample detection results. The edge map is overlaid on the image in white. The detected
fragments are shown in black. The corresponding model parts are shown in top left corners. The
bottom most row (enclosed in red) shows some failure cases and false positives.
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Figure 8: The Precision/Recall curves using shape based evaluation (dSC ) and combining shape
and appearance (dmix) on the class of giraffes. We also show the results of [38] for comparison.
The combination of shape and appearance significantly improves the results.

Figure 9: Two examples to show the improvement obtained by combining appearance information.
Top row: Results of using only shape. Bottom row: Results of combining appearance with shape.
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