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Abstract. Tracking of curvilinear structures (CS), such as vessels and catheters,
in X-ray images has become increasingly important in recent interventional ap-
plications. However, CS is often barely visible in low-dose X-ray due to overlay
of multiple 3D objects in a 2D projection, making robust and accurate track-
ing of CS very difficult. To address this challenge, we propose a new tracking
method that encodes the structure prior of CS in the rank-1 tensor approxima-
tion tracking framework, and it also uses the the learned hierarchical features via
a convolutional neural network (CNN). The three components, i.e., curvilinear
prior modeling, high-order information encoding and automatic feature learning,
together enable our algorithm to reduce the ambiguity rising from the complex
background, and consequently improve the tracking robustness. Our proposed
approach is tested on two sets of X-ray fluoroscopic sequences including vas-
cular structures and catheters, respectively. In the tests our approach achieves a
mean tracking error of 1.1 pixels for vascular structure and 0.8 pixels for catheter
tracking, significantly outperforming state-of-the-art solutions on both datasets.

1 Introduction

Reliable tracking of vascular structures or intravascular devices in dynamic X-ray im-
ages is essential for guidance during interventional procedures and postprocedural anal-
ysis [1–3, 8, 13, 14]. However, bad tissue contrast due to low radiation dose and lack of
depth information always bring challenges on detecting and tracking those curvilinear
structures (CS). Traditional registration and alignment-based trackers depend on local
image intensity or gradient. Without high-level context information, they cannot effi-
ciently discriminate low-contrasted target structure from complex background. On the
other hand, the confounding irrelevant structures bring challenges to detection-based
tracking. Recently, a new solution is proposed that exploits the progress in multi-target
tracking [2]. After initially detecting candidate points on a CS, the idea is to model CS
tracking as a multi-dimensional assignment (MDA) problem, then a tensor approxima-
tion is applied to search for a solution. The idea encodes high-order temporal informa-
tion and hence gains robustness against local ambiguity. However, it suffers from the
lack of mechanism to encode the structure prior in CS, and the features used in [2] via
random forests lack discrimination power.
? Correspondence author.
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Fig. 1. Overview of the proposed method.

In this paper, we present a new method (refer to Fig. 1 for the flowchart) to detect
and track CS in dynamic X-ray sequences. First, a convolutional neural network (CNN)
is used to detect candidate landmarks on CS. CNN automatically learns the hierarchical
representations of input images [6, 7] and has been recently used in medical image
analysis (e.g. [9, 10]). With the detected CS candidates, CS tracking is converted to
a multiple target tracking problem and then a multi-dimensional assignment (MDA)
one. In MDA, candidates are associated along motion trajectories cross time, while
the association is constructed according to the trajectory affinity. It has been shown
in [11] that MDA can be efficiently solved via rank-1 tensor approximation (R1TA), in
which the goal is to seek vectors to maximize the “joint projection” of an affinity tensor.
Sharing the similar procedure, our solution adopts R1TA to estimate the CS motion.
Specifically, a high-order tensor is first constructed from all trajectory candidates over
a time span. Then, the model prior of CS is integrated into R1TA encoding the spatial
interaction between adjacent candidates in the model. Finally, CS tracking results are
inferred from model likelihood.

The main contribution of our work lies in two-fold. 1) We propose a structure-aware
tensor approximation framework for CS tracking by considering the spatial interaction
between CS components. The combination of such spatial interaction and higher or-
der temporal information effectively reduces association ambiguity and hence improves
the tracking robustness. 2) We design a discriminative CNN detector for CS candidate
detection. Compared with traditional hand-crafted features, the learned CNN features
show very high detection quality in identifying CS from low-visibility dynamic X-ray
images. As a result, it greatly reduces the number of hypothesis trajectories and im-
proves the tracking efficiency.

For evaluation, our method is tested on two sets of X-ray fluoroscopic sequences
including vascular structures and catheters, respectively. Our approach achieves a mean
tracking error of 1.1 pixels on the vascular dataset and 0.8 pixels on the catheter dataset.
Both results are clearly better than other state-of-the-art solutions in comparison.

2 Candidate Detection with Hierarchical Features

Detecting CS in the low-visibility dynamic X-ray images is challenging. Without color
and depth information, CS shares great similarity with other anatomical structures or
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Fig. 2. The CNN architecture for CS candidate detection.

Fig. 3. Probability maps and detected candidates of a vessel (left) and catheter (right). For each
example, from left to right are groundtruth, random forests result, and CNN result, respectively.
Red indicates region with high possibility, while green dots show resulting candidates.

imaging noise. Attacking these problems, a four-layer CNN (Fig. 2) is designed to au-
tomatically learn hierarchical features for CS candidate detection. We employ 32 filters
of size 5 × 5 in the first convolution stage, and 64 filters of the same size in the sec-
ond stage. Max-pooling layers with a receptive window of 2 × 2 pixels are employed
to down-sample the feature maps. Finally, two fully-connected layers are used as the
classifier. Dropout is employed to reduce overfitting. The CNN framework used in our
experiments is based on MatConvNet [12].

For each image in the sequence except the first one which has groundtruth anno-
tated manually, a CS probability map is computed by the learned classifier. A threshold
is set to eliminate most of the false alarms in the image. Result images are further pro-
cessed by filtering and thinning. Typically, binarized probability map is filtered by a
distance mask in which locations too far from the model are excluded. Instead of using
a groundtruth bounding box, we take the tracking results from previous image batches.
Based on the previously tracked model, we calculate the speed and acceleration of the
target to predict its position in next image batch. Finally, after removing isolated pixels,
CS candidates are generated from the thinning results. Examples of detection results are
shown in Fig. 3. For comparison, probability maps obtained by a random forests clas-
sifier with hand-crafted features [2] are also listed. Our probability maps contain less
false alarm, which guarantees more accurate candidate locations after post-processing.

3 Tracking with Model Prior

To encode the structure prior in a CS model, we use an energy maximization scheme
that combines temporal energy of individual candidate and spatial interaction energy
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of multiple candidates into a united optimization framework. Here, we consider the
pairwise interactions of two candidates on neighboring frames. The assignment matrix
between two consecutive sets O(k−1) and O(k) (i.e. detected candidate CS landmarks)
can be written as X(k) = (xik−1ik)(k), where k = 1, 2, . . . ,K, and o

(k)
ik
∈ O(k) is the

ik-th landmark candidate of CS. For notation convenience, we use a single subscript jk
to represent the entry index (ik−1, ik), such as x(k)jk

.
= x

(k)
ik−1ik

, i.e., vec(X(k)) = (x
(k)
jk

)

for vectorized X(k). Then our objective function can be written as

f(X ) =
∑

cj1j2...jKx
(1)
j1
x
(2)
j2
. . . x

(K)
jK

+
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∑
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(k)
lk
x
(k)
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where cj1j2...jK is the affinity measuring trajectory confidence;w(k)
lkjk

the likelihood that

candidates x(k)jk
and x(k)lk

are neighboring on the model; and e(k)lkjk
the spatial interaction

of two candidates on two consecutive frames. The affinity has two parts as

ci0i1,...iK = appi0i1,...iK × kini0i1,...iK , (2)

where appi0i1,...iK describes the appearance consistency of the trajectory, and kini0i1,...iK
the kinetic affinity modeling the higher order temporal affinity as detailed in [2].

Model Prior. CS candidates share two kinds of spatial constrains. First, trajectories of
two neighboring elements should have similar direction. Second, relative order of two
neighboring elements should not change so that re-composition of CS is prohibited.
Thus inspired, we formulate the spatial interaction of two candidates as

elkjk
.
= emk−1mkik−1ik = Epara + Eorder, (3)

where
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mk
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,

such that Epara models the angle between two neighbor trajectories, which also penal-
izes large distance change between them; and Eorder models the relative order of two
adjacent candidates by the inner product of vectors between two neighbor candidates.

Maximizing Eq. 1 closely correlates with the rank-1 tensor approximation (R1TA) [4],
which aims to approximate a tensor by the tensor product of unit vectors up to a scale
factor. By relaxing the integer constraint on the assignment variables, once a real valued
solution of Xk is achieved, it can be binarized using the Hungarian algorithm [5]. The
key issue here is to accommodate the row/column `1 normalization in a general assign-
ment problem, which is different from the commonly used `2 norm constraint in tensor
factorization. We develop an approach similar to [11], which is a tensor power iteration
solution with `1 row/column normalization.

Model Likelihood. Coefficient w(k)
lkjk

.
= w

(k)
mk−1mkik−1ik

measures the likelihood that

two candidates o(k−1)
ik−1

and o
(k−1)
mk−1 are neighboring on model. In order to get the associ-

ation of each candidate pair in each frame, or in other words, to measure the likelihood
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Algorithm 1 Power iteration with model prior
1: Input: Global affinity C = (cj1j2...jK ), spatial interaction elkjk , k = 1 . . .K, and CS

candidates O(k), k = 0 . . .K.
2: Output: CS Matching.

3: Initialize X(k), k = 1 . . .K, CS(0) = O(0) and Θ(0) = I.
4: repeat
5: for k = 1, . . . ,K do
6: for jk = 1, . . . , J do
7: update x(k)jk

.
= x

(k)
ik−1ik

by x
(k)
jk

∝ x
(k)
jk

∑
jf :f 6=k cj1...jk...jKx

(1)
j1
. . . x

(f)
jf

. . . x
(K)
jK

8: end for
9: row/column normalize X(k)

10: update model pre-likelihood: Θ′(k) = Θ(k−1)X(k)

11: for jk = 1, . . . , J do
12: update xjk

.
= x

(k)
ik−1ik

by x
(k)
jk

∝ x
(k)
jk

∑
lk
w

(k)
lkjk

elkjkx
(k)
lk

13: end for
14: update model likelihood: Θ(k) = Θ(k−1)X(k)

15: end for
16: until convergence
17: discretize Θ(k) to CS Matching.

a candidate o
(k)
ik

matching a model element part o(0)
i0

, we maintain a “soft assignment”.

In particular, we use θ(k)i0ik
to indicate the likelihood that o(k)

ik
corresponds to o

(0)
i0

. It can
be estimated by

Θ(k) = Θ(k−1)X(k), k = 1, 2, . . . ,K, (4)

where Θ(k) = (θ
(k)
i0ik

) ∈ RI0×Ik and Θ(0) is fixed as the identity matrix.
The model likelihood is updated in each step of the power iteration. After the update

of the first term in Eq. 1, a pre-likelihood Θ′(k) is estimated for computing w(k)
lkjk

. Since
Θ(k) associates candidates directly with the model, final tracking result of the matching
between o(0) and o(k) can be derived from Θ(k).

With Θ′(k), the approximated distance on model of o(k−1)
ik−1

and o
(k−1)
mk−1 can be cal-

culated as following

d
(k)
ikmk

=

∑
i0
‖(o(0)

i0
− o

(0)
i0+1)‖θ(k)i0ik

θ
(k)
i0+1mk∑

i0
θ
(k)
i0ik

θ
(k)
i0+1mk

. (5)

Thereby, w(k)
lkjk

then can be simply calculated as

w
(k)
lkjk

.
= w

(k)
mk−1mkik−1ik

=
2d

(k−1)
ik−1mk−1

d̄

(d
(k−1)
ik−1mk−1

)2 + (d̄)2
, (6)

where d̄ is the average distance between two neighboring elements on model O(0). The
proposed tracking method is summarized in Algorithm 1.

5



4 Experiments

We evaluate the proposed CS tracking algorithm using two groups of X-ray clinical data
collected from liver and cardiac interventions. The first group consists of six sequences
of liver vessel images and the second 11 sequences of catheter images, each with around
20 frames. The data is acquired with 512× 512 pixels and physical resolution of 0.345
or 0.366 mm. Groundtruth of each image is manually annotated (Fig. 4(a)).
Vascular Structure Tracking. We first evaluate the proposed algorithm on the vascular
sequences. First frame from each sequence is used to generate training samples for
CNN. To be specific, 800 vascular structure patches and 1500 negative patches are
generated from each image. From the six images, a total of 2300×6 = 13, 800 samples
are extracted and split as 75% training and 25% validation. All patches have the same
size of 28× 28 pixels. Distance threshold of predictive bounding box is set to 60 pixels
for enough error tolerance. Finally, there are around 200 vascular structure candidates
left in each frame. The number of points on the model is around 50 for each sequence.

In our work, K = 3 is used to allow each four consecutive frames to be as-
sociated. During tracking, tensor kernel costs around 10s and 100MB (peak value)
RAM to process one frame with 200 candidates in our setting running on a single
Intel Xeon@2.3GHz core. The tracking error is defined as the shortest distance be-
tween tracked pixels and groundtruth annotation. For each performance metric, we
compute its mean and standard deviation. For comparison, the registration-based (RG)
approach [14], bipartite graph matching [2] (BM) and pure tensor based method [2]
(TB) are applied to the same sequences. For BM and TB, same tracking algorithms but
with the CNN detector are also tested and reported. The first block of Fig. 4 illustrates
the tracking results of vascular structures. B-spline is used to connect all tracked candi-
dates to represent the tracked vascular structure. The zoom-in view of a selected region
(rectangle in blue) in each tracking result is presented below, where portions with large
errors are colored red. Quantitative evaluation for each sequence is listed in Table 1.
Catheter Tracking. Similar procedures and parameters are applied to the 11 sequences
of catheter images. The second block of Fig. 4 shows example of catheter tracking
results. The numerical comparisons are listed in Table 1.

The results show that our method clearly outperforms other three approaches. Can-
didates in our approach are detected by a highly accurate CNN detector, ensuring most
extracted candidates to be on CS, while registration-based method depends on the first
frame as reference to identify targets. Our approach is also better than the results of
bipartite graph matching where K = 1. The reason is that our proposed method incor-
porates higher-order temporal information from multiple frames; by contrast, bipartite
matching is only computed from two frames. Compared with the pure tensor based al-
gorithm, the proposed method incorporates the model prior which provides more pow-
erful clues for tracking the whole CS. Confirmed by the zoom-in views, with model
prior, our proposed method is less affected by neighboring confounding structures.

5 Conclusion

We presented a new method to combine hierarchical features learned in CNN and en-
code model prior to estimate the motion of CS in X-ray image sequences. Experiments
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Table 1. Curvilinear structure tracking errors (in pixels)

Dataset Seq ID RG [14] BM [2] TB [2] BM+CNN TB+CNN Proposed

Va
sc

ul
ar

st
ru

ct
ur

es VAS1 2.77±3.25 1.54±1.59 1.33±1.08 1.44±2.37 1.15±0.91 1.14±0.84
VAS2 2.02±3.10 1.49±1.14 1.49±1.74 1.11±0.83 1.30±2.48 1.09±0.83
VAS3 3.25±7.64 1.65±2.40 1.41±1.54 1.19±0.91 1.17±0.92 1.17±0.91
VAS4 2.16±2.52 1.61±2.25 1.99±3.02 1.12±1.00 1.95±5.00 1.17±1.53
VAS5 3.04±5.46 2.71±4.36 1.36±1.44 1.95±3.94 1.14±1.55 1.09±1.42
VAS6 2.86±5.60 1.40±1.94 1.32±1.68 1.39±2.53 1.09±1.70 1.11±1.90

75%ile, 100%ile - 2.00, 31.2 2.00, 26.8 1.40, 32.6 1.40, 56.9 1.40, 23.2
Overall 2.69±5.03 1.75±2.60 1.49±1.86 1.37±2.26 1.30±2.64 1.13±1.30

C
at

he
te

rs

CAT1 2.86±3.83 1.47±1.57 1.29±1.06 1.13±1.19 1.08±0.85 1.00±0.77
CAT2 1.98±2.66 2.38±5.33 1.11±1.58 1.77±4.11 0.77±1.06 0.56±0.89
CAT3 2.20±1.56 1.55±1.98 1.39±1.70 0.99±1.52 0.72±0.66 0.74±0.65
CAT4 1.07±0.76 2.12±3.35 1.15±1.33 0.94±1.37 0.92±1.34 0.76±0.77
CAT5 2.54±3.65 2.02±4.85 1.04±0.88 1.65±5.36 0.84±1.01 0.83±0.97
CAT6 1.93±2.15 2.06±3.92 1.14±0.95 1.19±2.03 0.96±0.92 0.93±0.89
CAT7 1.39±2.18 1.86±3.79 1.00±0.78 0.76±0.72 0.76±0.72 0.73±0.63
CAT8 2.74±4.32 2.30±5.53 1.31±2.21 1.22±2.21 1.74±3.81 0.96±1.37
CAT9 1.74±1.25 2.80±4.78 2.00±2.74 1.54±3.44 1.18±2.02 0.99±1.33

CAT10 3.17±5.26 2.86±4.33 2.48±3.59 0.86±1.26 0.81±1.12 0.86±1.29
CAT11 3.96±5.89 2.68±4.36 1.17±0.97 3.50±11.3 1.35±3.72 0.80±0.74

75%ile, 100%ile – 2.00, 47.7 1.40, 24.0 1.00, 70.5 1.00, 48.4 1.00, 19.2
Overall 2.40±3.62 2.17±4.14 1.38±1.90 1.39±4.16 1.01±1.93 0.83±0.98

on two groups of CS demonstrate the effectiveness of our proposed approach. Achiev-
ing a tracking error of around one pixel (or smaller than 0.5mm), it clearly outperforms
the other state-of-the-art algorithms. For future work, we plan to adopt pyramid detec-
tion strategy in order to accelerate the pixel-wised probability map calculation in our
current approach.
Acknowledgement: We thank the anonymous reviewers for valuable suggestions. This
work was supported in part by NSF grants IIS-1407156 and IIS-1350521.
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