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Abstract

Robust tracking of deformable object like catheter or
vascular structures in X-ray images is an important tech-
nique used in image guided medical interventions for effec-
tive motion compensation and dynamic multi-modality im-
age fusion. Tracking of such anatomical structures and de-
vices is very challenging due to large degrees of appearance
changes, low visibility of X-ray images and the deformable
nature of the underlying motion field as a result of complex
3D anatomical movements projected into 2D images. To
address these issues, we propose a new deformable track-
ing method using the tensor-based algorithm with model
propagation. Specifically, the deformable tracking is formu-
lated as a multi-dimensional assignment problem which is
solved by rank-1 {1 tensor approximation. The model prior
is propagated in the course of deformable tracking. Both the
higher order information and the model prior provide pow-
erful discriminative cues for reducing ambiguity arising
from the complex background, and consequently improve
the tracking robustness. To validate the proposed approach,
we applied it to catheter and vascular structures tracking
and tested on X-ray fluoroscopic sequences obtained from
17 clinical cases. The results show, both quantitatively and
qualitatively, that our approach achieves a mean tracking
error of 1.4 pixels for vascular structure and 1.3 pixels for
catheter tracking.

1. Introduction

X-ray fluoroscopy is one of the primary modalities used
in image guided interventional procedures. Robust de-
formable tracking of intravascular devices (e.g. guidewire,
catheters as seen in Fig. 1) or vascular structures in dy-
namic X-ray images is essential in image guided interven-
tions. These structures serve as surrogate signals for dy-
namic overlay of 3D patient-specific anatomical informa-
tion over 2D X-ray images. Fig. 1 demonstrates the chal-

Figure 1. Examples of X-ray fluoroscopic images from different
sequences. Images in the first row contain catheters. Vascular
structures are shown in the second row. The odd column gives
original images, annotations of catheters or vascular structures are
illustrated in the even column (in green).

lenges of the tracking problem. For intravascular devices
and vascular structures, large variations in their appearances
such as shape and intensity are observed. Low visibility and
poor image quality due to a low dose of radiations in inter-
ventional imaging make the deformable tracking more dif-
ficult. Furthermore, these structures undergo complex de-
formable motion as a result of 3D deformable anatomical
movements projected onto the 2D image plane. In this pa-
per, we address the problem of deformable tracking in dy-
namic X-ray images.

Object tracking techniques [21] based on appearance
features such as intensity and color histograms are not suit-
able for deformable tracking due to the large variation and
non-linear deformation in target shapes. Active contour and
level set methods [13] heavily rely on the design of en-
ergy function and the choice of object specific parameters.
Palti-Wasserman et al. [15] used a filter based method to
identify a guidewire in an X-ray image and Hough trans-
form to fit a polynomial curve to track a guidewire. In [1],
guidewire is modeled as a line-like structure and the defor-
mation is achieved by spline optimization. Wang et al. [19]



proposed a learning-based method which aims at detecting a
guidewire in individual frames. The shape of the guidewire
is captured by snake-like energy function involving proba-
bilities computed by guidewire detector. These approaches
rely on appearance detection for tracking and do not explic-
itly address the estimation of guidewire deformation.

Image registration and alignment are another set of tech-
niques suitable for deformable tracking. Bhagalia et al. pre-
sented an importance sampling approach which used sam-
pled image points with larger gradients to perform regis-
tration [4]. To cope with static structures in X-ray images,
Zhu et al. introduced a method to separate static structures
from moving structures through temporal statistics across
frames [24, 10]. A motion layer separation solution for the
similar task was proposed in [23].

In this paper, the objective is to track the curvilinear
structure in the dynamic X-ray sequence. The curvilinear
structure is represented by a model which is manually la-
beled in the first frame. Deformable tracking of the curvi-
linear structure is then estimated during remaining frames.
To address the problem, we propose a new approach us-
ing tensor-based multi-dimensional assignment (TMDA)
framework. First, curvilinear structure candidates are de-
tected by a discriminative classifier. Then, we construct a
high-order tensor from all trajectory candidates over a time
span. Association of detected candidates between adjacent
frames is computer by rank-1 ¢; tensor approximation. Fi-
nally, curvilinear structure tracking is achieved by model
propagation during the frames. Through model propaga-
tion, higher order temporal information helps to reduce am-
biguity during object localization across time. To validate
the proposed approach, we apply it to curvilinear structure
tracking in clinical images obtained from cardiac and liver
interventions. A challenging data set containing 17 clinical
X-ray sequences, together with manually annotated ground
truth, is used for testing. The proposed method demon-
strates very promising results and achieves a mean tracking
error of 1.4 pixels for vascular structure and 1.3 pixels for
catheter tracking.

In summary, there are two main contributions of our
work.  First, we propose to use tensor-based multi-
dimensional assignment for curvilinear structure tracking.
Deformable tracking is estimated by using higher order
information from multiple frames. In contrast, most tra-
ditional methods only consider two frames in the track-
ing. Second, model propagation is applied in tensor ap-
proximation to preserve the model’s spatial constrain dur-
ing the tracking. Unlike standard tensor approximation,
our method does not require the computation of curvilin-
ear structure candidates matching between two consecutive
frames. The curvilinear structure can be directly computed
from model propagation. Another benefit of model prop-
agation is to reduce unnecessary associations of detected

curvilinear structure. Therefore, only the model is propa-
gated in the tracking.

The remaining of the paper is organized as follows. Re-
lated work is reviewed in Sec. 2. In Sec. 3, we formulate
the deformable tracking problem in the tensor-based multi-
dimensional assignment framework. Experimental results
are presented in Sec. 5. Finally, Sec. 6 concludes the paper.

2. Related Work

With observations of a batch of frames, object tracking is
formulated as data association of these observations across
frames. The classic method is Multiple Hypothesis Track-
ing (MHT) [16] which finds all possible association com-
binations and selects the most likely association set as the
optimal solution. In general, MHT optimization is an NP-
hard problem and the computation is prohibitive when the
numbers of objects and frames are large.

Multiple target association across K frames can be for-
mulated as the multiple dimensional assignment (MDA)
problem. Although there exits exact solutions with poly-
nomial time for two-frame association. For instance, Hun-
garian algorithm is one popular method for this special case
of MDA, where K = 2. It is usually infeasible to search the
global optimal solution of MDA with K > 2, which is NP-
hard when no assumption is provided. Recent studies focus
on approximation solution of MDA problem. In [17], a rank
constrained continuous formulation of multi-frame multi-
target tracking problem is approximated by semi-definite
program method. The Lagrange relaxation strategy is ap-
plied in [9] to present an efficient and generalized assign-
ment algorithm.

Some works treat MDA as a graph theory problem
such as bipartite matching, incorporate a limited-temporal-
locality of the sequence. One of them is to formulate MDA
as a network flow problem by decomposing the cost of the
trajectory as the product of pairwise terms. Then the net-
work flow problem is solved by linear programming [12],
shortest path algorithm [3], etc. Although global optimal
solution by polynomial time complexity can be achieved by
these methods, higher order temporal information is miss-
ing in the network flow formulation. In order to achieve
long term data association, in [22], generalized minimum
clique graph is proposed to incorporate long term tempo-
ral span. Maximum weight independent set of the graph
built by pairs of detections is provided to solve similar
MDA problem in [5]. Other alternative approaches include
Markov Chain Monte Carlo Data Association approaches
[2, 14], greedy search [20] and hierarchical target associa-
tion [11].

Our work is closely related to the framework in [18] by
using rank-1 tensor approximation of MDA. Their itera-
tive approximate solution is inspired by [7], which itera-
tively solves two-frame assignments in turn while keeping



all other assignments fixed. Sharing similar procedure of
[18], the curvilinear structure tracking is formulated as a
MDA problem. Tensor based approximation is borrowed to
estimate the motion of curvilinear structure. Compared to
[18], a model is involved in the tensor based formulation
of MDA. In addition, our model prior is preserved during
tracking by performing model propagation.

3. Curvilinear Structure Tracking

We first introduce notations used in this paper. We will
denote scalars by lower-case italic letters (a, b, . . . ); vectors
by lower-case boldface letters (a, b, .. . ), matrices by bold-
face capitals (A, B, ...), and tensors by calligraphic letters
(A, B,...). The notation is consistently used for lower-
order parts of a given structure. For example, the i-th entry
of a vector a is denoted by a;, the (¢, 7)-th entry of a matrix
A by a;; and the (ig,%1,...,7x)-th entry of a K-th order
tensor A by @;qi, .. ix-

3.1. Problem Formulation

A deformable object is often modeled as a set of ele-
ments whose spatial relations vary across time. To track a
deformable object, roughly speaking, is to localize or de-
tect its elements across time span. We plan to formulate
deformable tracking as a spatial constrained tensor based
multi-dimensional assignment.

The model is manually labeled in the first frame and
tracking is performed in the following frames. Denote
00 = {ogf)}{gzl as the model to be tracked with Ij el-
ements. The topology of the object is encoded by an edge
set E = {(io, 1) : 0(-3) and o' are connected}. Then, let

) i

ok = {051:)},[ *_, be the set of curvilinear candidate el-
ements for the k-th frame, £ = 1,2,..., K, and Iy < I}.
We assume all sets have equal number of items for notation
convenience. This assumption will not affect the algorithms
and analysis, since we can always pad the sets with virtual
items, as used for handling missing or noisy items. There-
fore, we can rewrite O(%) = {ogf)}szl which has I items
for each frame.

MDA aims to find a (K + 1)-partite assignment from
these sets that maximizes the total matched affinity. The
problem can be formally defined as the following con-
strained optimization:

arg max ") = ZZ e Zafml,.._mxfml,...m (1
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Figure 2. Overview of proposed method.

dicates whether O; ;, .., is selected (= 1) or not (= 0);
and X* = (z}; . ). Finally, the tracking result of curvi-
linear structure O(®) can be retrieved from the joint assign-
ments in k-th frame. The overview of the proposed method

is provided in Fig 2.
3.2. Low Rank Tensor Approximation

Following the approach presented in [18], the MDA
problem is converted to a new tensor-based MDA formula-

tion. Taking benefit of the non-negativity of a; ; , —and

T} ;. ix» /T can be represented in a tensor form as:
fAx) =[x e |k, ©)

where A* = aj,; . is the affinity tensor, ‘e’ the

Hadamard product, and || - || the Frobenius norm.
Intuitively, to maximize f*, a large a} ; .,  encour-
ages alarge 7 ; which in turn suggests a sequence of

binary matching (01(-2)02(-11)), (0511)01(-22)), . (ogf:ll)ogf)).
This suggests us to seek solutions through between-set as-
signments, hereafter referred as local assignments. By con-
trast, we refer to the joint assignment as global assignment
in the rest of the discussions.

We first decompose a global assignment variable

as a sequence of local assignment ones. Let

1, TK°

37:0111 ®
the local assignment between two consecutive sets OF~!
and OF be represented by an assignment matrix X* =
(25, i)™ € RI*I which can be reshaped as a vector
denoted as x(F) = (a:é“k) € R’, where J = I°. Hereafter
we use the same scalar symbol x to denote entries in both X
and x, with double subscripts and a single subscript respec-
tively. In addition, given the matrix entry index (i1, i2), we
denote its index after vectorization by | (i1,42); and given
a vector entry index j, we denote its corresponding matrix
index as (7, j). To summarize, we have (X); s, = Tj,i, =
Tyinia) = (X yiniz) and (x); = z; = 25, = (X)3;.
With the above notation, we have the following decomposi-
tion
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Combining Eqn. 4 and 5, the MDA problem is reshaped
as a new tensor based MDA (TMDA) formulation as

2).

argm;gxf(X):Axlx(l) xyx e B (6)

Vk=0,1,...,K
Vk=0,1,....,. K (7)
VE=0,1,...,K

Zik,l iffi”k =1,
st.¢ Do xikzm =1,
s €01}

where X = {x(1 x() . x(F)} is the set of local as-
signment vectors and X is the k-mode tensor product.

With the TMDA formulation, the problem can be viewed
as to seek vectors X to maximize the “joint projection” of
A on X. This way TMDA closely correlates with the rank-
1 tensor approximation [8], which aims to approximate a
tensor by the tensor product of unit vectors up to a scale
factor. By relaxing the integer constraint on the assignment
variables, once a real valued solution of X is achieved, it
can be binarized using the Hungarian algorithm. The key
issue here is to accommodate the row/column ¢; constraints
of Eqn. 7, which are different from the /5 norm constraint
commonly involved in tensor factorization. We use the ap-
proach developed in [ 18], which is a tensor power iteration
solution with row/column normalization.

The key steps of power iteration are listed below,

x®) o (Ax x®) ex(M xyxP) @®)
X1 xF T g x D e X(K))v
x®) « renorm(x()), )

where rcnorm(-) indicates a row/column normalization.

3.3. Model Propagation

To solve the proposed TMDA problem for curvilin-
ear structure tracking, local assignment matrix X(*) be-
tween curvilinear structure sets 0*~1) and o(*) is consecu-
tively computed by the power iteration algorithm. Bipartite
matching of 0*~1 and o(*) is obtained by Hungarian al-
gorithm. In order to get the tracking result of curvilinear
structure of 0(?) in other following frames. The straightfor-
ward method is to link these binary assignments together.

Figure 3. Model propagation example.

Curvilinear structure o(?) is then passed in the sequence by
these binary assignments during K frames.
A key issue is to measure, before reaching final results,

*) matches a model element part

whether a candidate o;

ogg). We address the issue by dynamically maintain a “soft

assignment”. In particular, we use Gl(fi)k to indicate the like-
(0)

lihood that ogf) corresponds to o; “, it can be estimated by

ol — @k-DxX® L —19 . . K, (10)

where ©) = (9)) € R/’ and ©) is fixed as the iden-
tity matrix. An illustration example of model propagation
is given in Fig. 3.

Together with local assignment matrix X (*), the model
likelihood ©(¥) is then propagated in the sequence. There-
fore, the model likelihood ©(¥) is incorporated in the power
iteration based rank-1 tensor approximation for our curvi-
linear tracking problem. More specially, the model propa-
gation is updated in each step of the power iteration. Final
tracking result, which is matching between 0(*) and o*) is
computed from ©(*).

Specifically, the curvilinear structure model is propa-
gated to k-th frame denoted as C'S(®). Curvilinear structure
CS™) can be directly computed by ©*). We summarize
the proposed method in Algorithm 1.

4. High-Order Tensor Construction

Given a batch with K + 1 frames from one X-ray se-
quence, the tensor is constructed from curvilinear structure
candidates O®) | where k € {0,1,..., K}. The model,
O is manually annotated on the first image in the batch.
Candidates on other frames are detected by a discriminative
classifier.

4.1. Curvilinear Structure Candidates Detection

A random forest classifier of curvilinear structure is
learned using only the first image of each sequence. Then



Algorithm 1 Power iteration with model propagation
1: Input: Global affinity A : aj,. j,. k- k = 1... K,
curvilinear structure candidates O%), k = 0.

2: Output: curvilinear structure C'S*) k= 1. K
3: Initialize X k =1... K,CS© = 0© and ©0) —
I

4: repeat

5: fork=1,..., K do

6: forj,=1,...,Jdo

7: update :U( ) - ocgf)”k by

P o™ S gl gl

Jrif#k

8: end for

9:  row/column normalize X (¥)

10:  update model likelihood: ©%) = @+~ X (*)
11: end for

12: until convergence

13: fork=1,..., K do

14:  discretize ©F) to get curvilinear structure C'S*)
15: end for

the classifier is applied to find candidates in other frames.

Local features are proposed to capture the visual appear-
ance of curvilinear structure. A few local features for each
sampling point are extracted from the image. Local visual
features such as intensity and gradient are fed into the learn-
ing process. For example, given a point centered at x, the
feature components are I, g,, gy, ||g||. For each feature
component f, the following values are computed as addi-
tional features: f, /|| f|, £2, f> and log(||f]|). All the fea-
tures are normalized by the variance of intensity values in
the local patch.

For each image in the sequence except the first frame,
a curvilinear structure probability map is computed by the
learned classifier. A threshold is set to eliminated most
of the false alarms in the image. These results are further
processed by a thinning algorithm. Final curvilinear struc-
ture candidates are down-sampled from the thinning results.
Down-sampling approach is applied to keep a small number
of detection candidates, which is aim to avoid building huge
number of trajectories in tensor construction.

4.2. Trajectory Hypotheses

We follow the conventional method to build trajectory
hypotheses based on the association of two adjacent frames
[18]. The association between two consecutive frames is
created by O*~—1) and O®). Usually, it is unnecessary to
build the bipartite graph by linking all the candidates to-
gether . A link between ogk; ) and 0( )1s only established
when these two candidates are spatially close. A threshold

is taken to eliminate candidates far away from each other,
which in turn reduces the number of trajectory hypotheses
in multi-frame batch.

As proposed in [6], a practical tracking algorithm must
handle missing detections and variable numbers of targets
exiting each frame. To address this issue, a virtual dummy
node is added to each frame. This dummy node is linked to
all the real curvilinear structure candidates in the previous
frame and with each real curvilinear structure in the next
frame. A link is also built for dummy observations of two
consecutive frames to process short-time missing or exiting
candidates. These virtual nodes enlarge the number of po-
tential trajectories.

4.3. Trajectory Affinity

The affinity of one trajectory hypothesis O, ;... i =
{0/ 0., 0%V is defined by

i 2 Qdy 1
* .
Qioiy,oine — APPigin,..ie X ]ﬂnioii,mifw 1

where app;,i,...i, describes the appearance consistence
and kin,,;, ..., is to model the kinetic affinity. Essentially,
APPiyis,...ix Can be written as

X APPig i (12)

APPigiy,...ix = APPigiy X APPiyiy X

where app;, _,;, is the appearance similarity between curvi-
linear structure candidates o

iy ! and 0
Similar as in [7, 18], the motion afﬁnlty of a trajec-

tory OZO i1yeine 18 deﬁned as a joint assignment of item

— (K) : : :
Oipironi {010 , 21 ,...,oiK Yo kinggiy . i 1S writ-
ten as

kininil,...i;{ = exp(_aEcont - ﬂEcurv)a (13)

where
K+1
k k—1
Eeont = % et ||O£k) OZ('k 1 )H
K41
k41 k k—1
Ecurv = ﬁ = ||01(';€+1 ) - 20513 + 07(lk71 )”

(14

Continuous term FE.,,; penalizes large movement of
curvilinear structure in position using the average distance
between successive pairs of points o (k) and offj 11) FEovrv
is the curvature measurement computed by the sum of cur-
vature segments over the trajectory. The motion consistence
of the trajectory is a variant of internal energy term of the
popular “snake” active contour. Parameters «, 3 are weighs

of Econt and Ecurv-

5. Experiments

To investigate the performance of the proposed approach
for curvilinear structure deformable motion tracking, we



use X-ray images from clinical cases of liver and cardiac in-
tervention. The data is acquired with pixel size of 512 x 512
and resolution of 0.4313mm, 0.3450mm or 0.3660mm.
These cases are chosen due to the visibility of the vascular
structure and catheter throughout the entire image, which
provide groundtruth for evaluation (as shown in even col-
umn of Fig. 1).

These X-ray sequences are categorized into two groups.
One group has 6 sequences vascular structure tracking. 11
sequences in the second group are used for catheter track-
ing. The results of proposed method are compared to regis-
tration based approach and bipartite graph matching.

5.1. Vascular Structure Tracking

Our first experiment is evaluated on vascular structure
tracking in X-ray image sequence. There are 6 X-ray im-
age sequences which contain vascular structures in all the
frames.

Vascular Structure Candidates Detection. The first
frames from these sequences are used to generate training
samples. Random forest is applied to train a vascular struc-
ture detector. An independent training sample set is col-
lected for each tree in the forest. From annotation, 1000 vas-
cular structure points and 1000 negative samples are gener-
ated for each image. Totally, 2000 x6x 2 = 24, 000 training
samples are used to train a decision tree in the forest. Due
to the large width of vascular structure, the sampling pat-
tern for local features descriptor is 30 x 30 pixels, which
provides a feature vector with dimension 18,000. A ran-
dom forest of 50 trees with depth 10 is constructed in the
experiment. In the node optimization, 100 active features
are randomly sampled from the whole feature space. Stump
is chosen in the node optimization.

The vascular structure probability map of X-ray images
could be obtained by the learned classifier. Pixels with prob-
ability value larger than 0.5 are selected for post-processing.
After thinning and down-sampling, around 200 vascular
structure candidates left in each frame. Number of points
on the model is around 50 for each sequence.

Parameter of Tensor. In our experiment, we investigate
K = 3 which provides 4 frames in the batch. Curvilinear
structure model is annotated in the first frame. In order to
capture the possible large movement of curvilinear struc-
ture, the distance threshold to establish the links between
two consecutive frames is 25 pixels. Shape context feature
is used to represent the appearance of vascular structure.
Appearance similarity app;, i, is calculated by shape con-
text feature of 0?,;11 and ofk. The parameter of kini,i, .. .ix
is set to « = 0.01, 8 = 0.01 in our experiments.

Tracking results. Using proposed method, curvilinear
structures model C'S(®) is propagated to its consecutive

frames. Curvilinear structure C'S*) in the k-th frame is
computed by ©). A B-Spline is then fitted to represent
the vascular structure in X-ray images. For these selected
sequences, we manually annotate the vascular structure on
the X-ray images. Tracking error is defined as the short-
est distance between tracked pixels and groundtruth anno-
tations. For each performance metric, we compute its mean
and standard deviation.

The proposed method is compared to registration based
approach [24]. In their method, the first image is fixed as
reference image, registration is conducted between other
floating frames and the reference image. Two-level pyra-
mid is applied in the registration based method to recover
large motion of curvilinear structure. The number of itera-
tions for the first level of the pyramid is set to 16 and the
second to 24.

Solutions calculated by bipartite graph matching is also
compared to our method. We use the same affinity formula-
tion for fair comparison. Hungarian algorithm is applied to
compute the bipartite matching. Curvilinear structure O(®)
is propagated to C'S(*) by bipartite graph matching. The
final curvilinear structure is represented by a B-Spline fitted
by CSH),

An example of vascular structure tracking results are il-
lustrated in the first row of Fig. 4. The qualitative experi-
mental results of vascular structure tracking are listed in Ta-
ble 1. It can be seen that our approach performs better than
the registration based method. The tracking results are bet-
ter than most of results computed by bipartite graph match-
ing. The reason is that our proposed method incorporates
high order information from multiple frames, however, bi-
partite graph matching is only computed from 2 frames.

5.2. Catheter Tracking

Our proposed approach is also evaluated on the sec-
ond group for catheter tracking. We has 11 sequences for
catheter tracking.

Catheter Candidates Detection. Similar as vascular
structure detection, training samples are generated from 11
images which are the first image in each sequence. 1000
catheter points and 1000 negative samples are generated
from each image. Totally, 1000 x 11 x 2 = 22,000 train-
ing samples are used to train a decision tree in the forest.
The feature space has a dimension of 2000 where sampling
pattern for local features descriptor is 10 x 10 pixels. The
same parameter of random forest as in vascular structure
experiment is set for training a catheter detector.

The probability map threshold is chosen to 0.5. Conse-
quently, around 200 catheter candidates are kept for each
frame. Model in the first frame is annotated to have around
50 points on it.



Table 1. Tracking error of vascular structure.

bipartite matching

proposed

1.5397 £+ 1.5850

1.3346 £+ 1.0761

1.4885 + 1.5743

1.4926 £ 1.7403

1.6519 £ 2.3965

1.4089 + 1.5470

1.6069 + 2.2493

1.9900 £ 3.0176

27115 £ 4.3623

1.3642 + 1.4405

1.4048 £ 1.9433

1.3159 + 1.6788

seq id registration [24]
VAS1 | 2.7656 + 3.2464
VAS2 | 2.0180 + 3.1024
VAS3 | 3.2530 + 7.6413
VAS4 | 2.1581 4+ 2.5227
VAS5 | 3.0399 + 5.4569
VAS6 | 2.8646 + 5.5972
Over all | 2.6881 + 5.0251

1.7498 £+ 2.6012

1.4898 + 1.8598

Parameter of Tensor. K is set to 3 in our proposed
method which gives a batch with 4 frames. The parameter
of kingi, ,..is is set to a = 0.001, 8 = 0.01 in our experi-
ments. Other parameters are the same as vascular structure
tracking.

Tracking results. Fig. 4 shows several examples of
catheter structure tracking results. We use the same evalua-
tion metric for catheter tracking. Registration based method
[24] and bipartite graph matching are also compared to our
method. The comparison results of catheter tracking are
listed in Table 2. We can observe that our high order tensor
based method outperforms other two approaches.

6. Conclusion and Discussion

In this paper, we model the curvilinear structure track-
ing as tensor based multiple data association problem with
model propagation. Rank-1 tensor approximation is used to
solve the optimization problem. Specially, £; unit norm ten-
sor power iteration is applied in the tensor decomposition.
Our model propagation automatically propagates curvilin-
ear structure to consecutive frames in the sequence. More-
over, curvilinear structure can be obtained directly from
model propagation without solving the two adjacent frame
matching in standard tensor approximation. Experiments
on two groups of curvilinear structure demonstrate the ef-
fectiveness of our proposed approach.
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Figure 4. Curvilinear structure tracking results. An example of a vascular structure is displayed in the first row. Other rows give tracking
results of catheters. (a) Annotations of curvilinear structure. (b), (c) and (d) provide curvilinear structure tracking results of registration
based method [24], bipartite matching and our proposed method. For bipartite matching and our method, green dot repents propagated

model points. Red line is the fitting result of B-Spline of model points.
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