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Cryo-electron microscopy (cryo-EM) is a Nobel Prize-winning technique for

determining high-resolution 3D structures of biological macromolecules. A 3D

structure is reconstructed from hundreds of thousands of noisy 2D projection

images. However, existing 3D reconstruction methods are still time-consuming,

and one of the major computational bottlenecks is recovering the unknown

orientation of the particle in each 2D image. The dominant methods typically

exploit an expensive global search on each image to estimate the missing

orientations. Here, a novel end-to-end supervised learning method is introduced

to directly recover the missing orientations from 2D cryo-EM images. A neural

network is used to approximate the mapping from images to orientations. A

robust loss function is proposed for optimizing the parameters of the network,

which can handle both asymmetric and symmetric 3D structures. Experiments

on synthetic data sets with various symmetry types confirm that the neural

network is capable of recovering orientations from 2D cryo-EM images, and the

results on a real cryo-EM data set further demonstrate its potential under more

challenging imaging conditions.

1. Introduction

Cryo-electron microscopy (cryo-EM) is a powerful technique

for determining the structures of biological macromolecules at

atomic or near-atomic resolution. In single-particle cryo-EM,

a central problem is to reconstruct the 3D structure of a

macromolecule from 104–107 noisy 2D projection images

extracted from multiple micrographs. The orientation of the

particle captured in each 2D image is unknown because the

3D particle adopts a random orientation in the ice layer. The

orientation-estimation step is critical in the 3D reconstruction

process because the 3D structure can be reconstructed based

on the Fourier slice theorem (Bracewell, 1956) once the

unknown orientations of the 2D images have been recovered.

Gupta et al. (2021) showed that it is possible to skip the

orientation-estimation step and directly reconstruct the 3D

structure in a generative adversarial network (GAN) frame-

work. Despite these efforts, orientation estimation remains

one of the most crucial steps in mainstream reconstruction

solutions.

Orientation estimation is typically very difficult and time-

consuming. A popular conventional method is to determine

relative orientations based on common lines in Fourier space

(Vainshtein & Goncharov, 1986; Van Heel, 1987). However,

detecting common lines from extremely noisy images is in
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itself very challenging (Wang et al., 2013; Greenberg &

Shkolnisky, 2017; Bendory et al., 2020). Another popular

conventional approach adopts an iterative framework which

alternatively refines the 3D structure and orientation estima-

tions (Scheres, 2012a). The orientation of each image is esti-

mated independently by comparing the image with all possible

projections of the 3D model. Despite its robustness and

accuracy, this process is computationally expensive.

Recently, deep-learning-based methods have shown

promising results in solving many cryo-EM-related problems,

including particle picking (Wang et al., 2016; Zhu et al., 2017;

Bepler, Morin et al., 2019; Wagner et al., 2019; Al-Azzawi et al.,

2019; McSweeney et al., 2020), denoising (Bepler et al., 2020;

Palovcak et al., 2020; Li et al., 2021; Huang et al., 2020), 3D

reconstruction (Gupta et al., 2020, 2021; Zhong et al., 2019) etc.

The neural networks can learn to extract useful features from

cryo-EM images to facilitate cryo-EM tasks. For orientation

estimation, methods based on a variational autoencoder

(VAE) have been proposed to encode in-plane orientations in

a latent space (Bepler, Zhong et al., 2019; Miolane et al., 2020;

Bibas et al., 2021). However, it is nontrivial to extend these

VAE-based methods to recover 3D orientations (Zhong et al.,

2021). To fully recover 3D orientations, Xie et al. (2020)

utilized a k-nearest-neighbor network to refine the orienta-

tions obtained from a global projection-matching method.

Banjac et al. (2021) proposed a two-step deep-learning-based

method in which the network estimates distances between

pairs of cryo-EM images, instead of the 3D orientations for

each image. Jiménez-Moreno et al. (2021) further proposed

dividing the 3D orientations into non-overlapping subsets and

training separate neural networks to classify whether the

unknown orientation belongs to the corresponding subset.

In this work, we present a new supervised learning method

to recover the unknown orientations directly from 2D cryo-

EM images. Following previous work (Jiménez-Moreno et al.,

2021), we assume that an initial model is available and that all

of the observed cryo-EM images are 2D projections of the

same 3D model. Unlike the supervised learning method

(Banjac et al., 2021), our method is end-to-end trainable. We

utilize a single neural network to estimate 3D orientations for

given input images. For symmetric particles, our network will

output one of the orientations that are equivalent with respect

to the symmetry, since the symmetry type can be imposed later

in 3D reconstruction.

We evaluate our network on synthetic data sets with various

symmetry types, and the results confirm that our network is

capable of recovering the orientations from synthetic cryo-EM

images. Evaluation on a real data set further demonstrates

that our method works promisingly under more challenging

imaging conditions.

2. Methods

2.1. Supervised learning pipeline

To estimate the orientations of the particle from each 2D

cryo-EM image in 3D refinement, a conventional method

typically utilizes a global search to find the orientation

that best aligns the observed image with the 3D model. To

accelerate the orientation-estimation process, we propose a

supervised learning method, which is illustrated in Fig. 1.

Instead of a brute-force search, we utilize a neural network to

directly determine estimated orientations from input images.

To train the network in a supervised way, a subset of the

images are used as a training set, and each training image is

annotated with one ground-truth orientation obtained by the

conventional method. For a symmetric particle, one cryo-EM

image may correspond to multiple orientations, and the design

of our training objective allows the network to learn efficiently

from the single annotation. After training, the neural network

is utilized to recover the orientations from the remaining

particle images.

2.2. Image-formation model for cryo-EM images

Our method utilizes the image-formation model for

cryo-EM images. In cryo-EM research, a 3D model V is often

represented as the mapping from a 3D coordinate to the

electron density at this 3D point,

V : R3 ! R: ð1Þ
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Figure 1
Overview of our proposed supervised learning method for orientation
estimation when an initial 3D model is available. We used a subset of the
cryo-EM images as training images and obtained the ground-truth
orientations by aligning the images with the given initial model. After
training, the network can directly infer the unknown orientations for the
remaining images. The 3D model can then be updated based on the
estimations.
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A 2D cryo-EM particle image X (in real space) extracted from

a micrograph can be modeled as a noisy projection of V along

the imaging axis (i.e. the z axis; Bendory et al., 2020),

XR;tðpx; pyÞ ¼ g � R
R

VðRTpþ tÞ drz þ noise; ð2Þ

where g is the point-spread function of the microscope,

p = (px, py, pz)
T is a 3D point, R 2 SO(3) is the orientation of V

and t = (tx, ty, 0) is an in-plane translation corresponding to

imperfect centering of V during the particle-picking process.

Correspondingly, in Fourier space the generative process

for image X̂X from V̂V can be modeled as

X̂XR;tðkx; kyÞ ¼ ĝgSðtÞAðRÞV̂Vðkx; kyÞ þ "; ð3Þ

where ĝg is the Fourier transform of the point-spread function

g, called the contrast-transfer function (CTF) of the micro-

scope, S(t) is a phase-shift operator corresponding to an in-

plane translation t in real space, AðRÞV̂V ¼ V̂V½RTð�; �; 0ÞT � is a
linear slice operator corresponding to the combination of

rotation R and linear projection along the z axis in real space,

and " is frequency-dependent noise in Fourier space.

The Fourier slice theorem (Bracewell, 1956) states that the

two-dimensional Fourier transform of a projection image is

the restriction of the three-dimensional Fourier transform of

the 3D particle to a planar central slice perpendicular to the

viewing direction,

F 2PR � V ¼ SR � F 3V; ð4Þ

where F 2 and F 3 denote the Fourier transform over R2 and

R
3, respectively, R � V = V(RTp), P is the tomographic

projection operator along the z axis and S denotes the

restriction operator to the xy plane.

Based on the Fourier slice theorem, one can reconstruct the

3D structure V by estimating its 3D Fourier transform V̂V using

2D projections with corresponding orientations and in-plane

translations. The idea is popularly used in reconstruction from

cryo-EM particles (Scheres, 2012a; Punjani et al., 2017).

In this work, we focus on orientation estimation, i.e. given

an observed 2D particle image X and a 3D model V in real

space, we aim to recover the 3D orientation R 2 SO(3) in (2)

that best aligns X with V with ground-truth in-plane transla-

tion. For symmetric particles, the orientation is not unique.

Thus, we define the set SðXÞ of orientations R that all corre-

spond to the image X as

SðXÞ ¼ fR 2 SOð3ÞjXR;t ¼ Xg; ð5Þ

where t is the ground-truth in-plane translation. We propose

the use of a neural network to approximate the following

mapping f(�, �)
f : X;V ! rðRÞ; ð6Þ

where rðRÞ 2 R
d is a d-dimensional vector as a represention of

R 2 SðXÞ. If V is symmetric, our network will output one of

the equivalent orientations with respect to the symmetry.

2.3. Representation of orientations

Before designing the architecture of the orientation-

estimation network, we need to determine how to efficiently

represent 3D orientations R 2 SO(3) as network output.

Compared with a 3 � 3 rotation matrix, the axis–angle

representation is a more compact representation which is used

in cryo-EM software packages including cryoSPARC (Punjani

et al., 2017). Suppose that the axis of rotation is a unit vector v

and the magnitude of the rotation about the axis is the angle �;
the rotation can then be represented as a 3D rotation vector r,

r ¼ �v; ð7Þ
and the corresponding 3 � 3 rotation matrix R can be

computed by Rodrigues’ rotation formula (Murray et al., 2017)

as

R ¼ I3 þ sin �½r�� þ ð1� cos �Þ½v�2�; ð8Þ
where I3 is a 3 � 3 identity matrix and [v]� is a skew-

symmetric operator of vector v.

Another popular compact representation is a quaternion,

which is a four-dimensional unit vector. Given an axis–angle

representation r = �v, the corresponding quaternion q can be

computed as

q ¼ cos
�

2
; sin

�

2
v

� �T

; ð9Þ

and it is easy to check that ||q||2 = 1. The corresponding 3 � 3

rotation matrix R can be computed as

R ¼
1� 2ðq23 � q24Þ 2ðq2q3 � q1q4Þ 2ðq2q4 þ q1q3Þ
2ðq2q3 þ q1q4Þ 1� 2ðq22 þ q24Þ 2ðq3q4 � q1q2Þ
2ðq2q4 � q1q3Þ 2ðq3q4 þ q1q2Þ 1� 2ðq22 þ q23Þ

2
4

3
5
ð10Þ

for q = (q1, q2, q3, q4)
T.

In this work, we adopt the quaternion representation and

let our network regress a four-dimensional vector for an input

image. To fulfill the constraint that ||q||2 = 1, we simply

normalize the network output. Our proposed network can also

be modified to regress other representations such as axis–

angle representations, and we compare the network perfor-

mance with different representations in our experiments.

2.4. Network architecture

For a given 3D model V, we approximate the mapping f in

(6) via an orientation-estimation network f̂f�ð�; �Þ, where �
represents the learnable network parameters.

Fig. 2 illustrates the architecture of our network. Given a

2D cryo-EM image X in real space as the input, the network

outputs an unnormalized four-dimensional vector, which will

be normalized as the estimated quaternion qpred. The size of

the input is fixed as 128 � 128.

To efficiently extract low-level image features including

edges, corners, color conjunctions etc. and reduce the training

time, we utilize the first three layers from the VGG16 network

(Simonyan & Zisserman, 2014) as our feature extractor, which

is pretrained on a large public natural image repository named
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ImageNet (Deng et al., 2009). The parameters are fine-tuned

during training. Since the input cryo-EM image has only one

channel, we normalize the values to (�1, 1) and obtain a

three-channel image by repeating the channel. The VGG16

network layers then extract 256 feature maps with spatial

dimensions 16 � 16.

Two additional convolutional layers are used to process the

extracted low-level features and generate 2048 feature maps

with spatial dimensions 4 � 4. These feature maps are

downsampled to 2 � 2 by a max pooling layer. Finally, an

orientation-regression module composed of several fully

connected layers regresses an unnormalized four-dimensional

vector from the convolutional features. We explicitly

normalize the vector to a unit vactor.

2.5. Loss functions

To train the orientation-estimation network f̂f�, we need to

define proper loss functions to optimize the learnable para-

meters � by penalizing the distance between the network

prediction and the ground truth. A straightforward loss

function is the L1/L2 distance between the predicted normal-

ized quaternion and the ground truth. However, this loss

function does not utilize the underlying geometric structure of

SO(3).

According to the geodesic distance between two quater-

nions q1, q2,

dgðq1; q2Þ ¼ 2 cos�1ðjhq1; q2ijÞ; ð11Þ
we can define a computation-efficient loss function, called

quaternion-distance (QD) loss, as

‘QDðqpred; qgtÞ ¼ 1� hqpred; qgti2; ð12Þ
where qpred is the network prediction and qgt is the ground

truth.

During training, the symmetries of 3D particles can cause

ambiguity because images with similar appearances may

correspond to different annotated orientations. Naively

regressing the annotated orientations often ends up with

predicting an orientation that is closest to all results in the

symmetry group (Manhardt et al., 2019). To handle this issue,

some previous methods restricted the range of orientations

used for training (Kehl et al., 2017; Rad & Lepetit, 2017) or

explicitly incorporated the symmetry type into the loss func-

tions (Park et al., 2019; Labbé et al., 2020). Instead, we propose

another loss function called reprojection loss to ensure that

the 2D projection along the network prediction is consistent

with the observed image. Since we focus on orientation esti-

mation, we remove the CTF and noise corruption from the

projection process (2) and compute the simplified result as

~XXR;t ¼
R
R

VðRTpþ tÞ drz: ð13Þ

The reprojection loss is then defined as the L1 distance

between the simplified projections,

‘reproj ¼ k ~XXRpred;t
� ~XXRgt;t

k1; ð14Þ

where Rpred and Rgt are the 3 � 3 rotation matrices corre-

sponding to qpred and qgt, respectively, and t can be any valid

in-plane translation as long as the particle is projected within

the 2D image. When the 3D model V is asymmetric, both

reprojection loss and QD loss will achieve their optimal values

at the same unique orientation. When V is symmetric, unlike

QD loss, reprojection loss will not penalize estimations that

are equivalent with respect to the symmetry of V.

Although reprojection loss can automatically handle the

particle symmetry, the forward computation and back-propa-

gation of reprojection loss is much more complex than that of

QD loss. Using only reprojection loss is prone to a local

minimum. To make the training process more efficient, we

further propose the use of a weighted sum of QD loss and

reprojection loss as our training objective,

‘ ¼ w‘QD þ ð1� wÞ‘reproj; ð15Þ

where w 2 (0, 1) is a weighting factor to balance these two

losses. Adding QD loss can accelerate the convergence of

training, especially when the 3D particle V is asymmetric.

Intuitively, w should be close to 1 when the 3D model does not
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Figure 2
The architecture of our proposed orientation-estimation network. We first normalized the input image in the range (�1, 1) and converted it to a three-
channel image by repeating the channel. The features extracted by convolutional layers are passed to a 2 � 2 max pooling layer and then input to the
fully connected layers to regress a four-dimensional vector, which will be normalized to be a unit quaternion as the estimated orientation.
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have symmetry and close to 0 when the 3D model has any type

of symmetry, which is also confirmed in our experiments.

2.6. Data sets

To test the feasibility of our supervised learning method

for orientation estimation, we first generated two noiseless

synthetic data sets from PDB models following the cryo-EM

image-formation model (2) named EMPIAR-10061-simu and

EMPIAR-10028-simu. To generate EMPIAR-10061-simu, we

utilized a known �-galactosidase structure. The 3D cryo-EM

density map of EMPIAR-10061-simu was obtained by fitting a

3 Å resolution map from PDB entry 5a1a (Bartesaghi et al.,

2015) in UCSF Chimera (Pettersen et al., 2004) and low-pass

filtering it to a 12 Å resolution map in cryoSPARC (Punjani et

al., 2017). We then uniformly sampled 3D rotation matrices

but set the translation as zero. We also randomly sampled the

defocus parameters of the CTF. In this way, we obtained

10 000 noiseless synthetic projection images. For EMPIAR-

10028-simu, we utilized PDB entries 3j7a and 3j79, which are

the small subunit and the large subunit of the Plasmodium

falciparum 80S ribosome, respectively (Wong et al., 2014). We

fitted one single 4 Å resolution density map in UCSF Chimera

from the PDB models and again low-pass filtered it to a 12 Å

resolution map in cryoSPARC. We then followed the same

sampling procedure to generate 10 000 noiseless synthetic

projection images.

Besides using PDB models, we also generated projections

from an initial model produced by cryoSPARC to create

another synthetic data set called EMPIAR-10025-simu.

Specifically, we picked 8111 good particle images from the

subset of 20 movies in the EMPIAR-10025 Thermoplasma

acidophilum 20S proteasome data set (Campbell et al., 2015)

in cryoSPARC, and ran ab initio reconstruction in cryo-

SPARC to obtain a 12 Å resolution initial model. We then

uniformly sampled 3D rotation matrices in SO(3) and 2D

translations in (tmin, tmax) � (tmin, tmax), where tmin and tmax are

the minima and maxima of the translations estimated from the

real cryo-EM images, respectively. For the CTF parameters, we

directly used the estimations from the real cryo-EM images.

Finally, we generated 8000 projection images from the ab initio

model with uniformly sampled orientations and translations.

To see the performance of our method on sets of real cryo-

EM images, we generated another data set called EMPIAR-

10025-real. We reused the same 3D model and the first 8000

real cryo-EM images from the ab initio reconstruction process

which was used to generate EMPIAR-10025-simu. The signal-

to-noise ratio was 0.18. For simplicity, we treated the 3D

orientations and 2D translations estimated in the ab initio

reconstruction process as the ground-truth pose, which was

close enough to the real ground truth for a proof of concept.

Since the size of our network is 128 � 128, for all data sets

we resized the box size of the 3D models to 1283, so the

synthetic projections are naturally 128 � 128. We also resized

the real cryo-EM images to 128� 128. We split all of the image

sets into training sets and test sets using a 4:1 ratio.

An important property of these data sets is that they have

different levels of symmetry. For EMPIAR-10028-simu, the

3D model is asymmetric. For EMPIAR-10061-simu, the 3D

model has D2 symmetry. For EMPIAR-10025-simu and

EMPIAR-10025-real, the 3D model has D7 symmetry. We

believe that varying symmetry levels are necessary to test the

robustness of orientation-estimation methods.

2.7. Implementation details

We implemented our method in PyTorch (Paszke et al.,

2017). For all experiments, we trained the network on a single

Nvidia TITAN Xp GPU for 2000 iterations with a batch size of

24, and it took about 10 min to finish. We used the Adam

optimizer (Kingma & Ba, 2014) and fixed the ‘2 penalty factor
to 10�4. We also decayed the learning rate by a factor of 5 after

the first 1600 iterations. Without specification, the initial

learning rate �0 was set as a default value, i.e. 5 � 10�5. We

also implemented a differentiable projection process in

PyTorch, which was used to generate projections for synthetic

data sets and compute the reprojection loss during training.

For all experiments, we set t in (13) as the ground-truth in-

plane translation when computing reprojection loss.

2.8. Evaluation metrics

For all data sets, we evaluated the network performance on

test images by computing the root-mean-square error (RMSE)

between the simplified projections ~XXRpred;t
and ~XXRgt;t

as

RMSE ¼
PN
i¼1

k ~XX ðiÞ
Rpred;t

� ~XX ðiÞ
Rgt;t

k22
N

0
BB@

1
CCA

1=2

; ð16Þ

where N is the number of test images and i = 1, 2, . . . , N is the

index of the test image. This metric, called the reprojection

RMSE, is well defined for data sets with any types of

symmetry.

3. Results

3.1. Orientation estimation from synthetic cryo-EM images

We first evaluated our network on three synthetic data sets

to see whether the network could recover the orientations

from synthetic projections, and how the performance is

affected by the weighting factor w in our training objective.

Thus, on each synthetic data set, we trained the network with

various w and evaluated the network predictions for test

images in terms of reprojection RMSE. The quantitative

results are presented in Fig. 3 and Table 1.

On EMPIAR-10028-simu, the asymmetric synthetic data set

for the P. falciparum 80S ribosome, the quantitative results

show that the network can generate reasonable predictions

when w 	 0.6. The network achieves the lowest reprojection

RMSE (0.1097) when w = 0.8, and the visualization in Fig. 4

confirms that the network predictions are close to the ground-

truth orientations.

On the two symmetric synthetic data sets, the quantitative

results show that the network is capable of recovering the
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orientations when w
 0.4. The lowest reprojection RMSEs on

EMPIAR-10061-simu (�-galactosidase) and EMPIAR-10025-

simu (the T. acidophilum 20S proteasome) are 0.1469 and

0.1025, respectively, which are both achieved when w = 0.1.

The visualizations of the best performances in Fig. 4 also

confirm that the projections along network predictions are

highly consistent with the input images, even though the data

sets have certain types of symmetry.

From the results on synthetic data sets, we can see that the

network trained with weighted loss can handle different types

of symmetry. Specifically, the QD weighting factor w should

have a large value for asymmetric particles and a small value

for symmetric particles.

3.2. Orientation estimation from real cryo-EM images

Next, we evaluated our network on a real data set,

EMPIAR-10025-real (the T. acidophilum 20S proteasome), to

see whether our network could recover orientations under

real-life imaging conditions. We again trained the network

with various w and the quantitative results are shown in Fig. 3

and Table 1. The network can output acceptable predictions

when w 
 0.4, which is consistent with our observations on

symmetric synthetic data sets. The network achieves the

lowest reprojection RMSE (0.1233) when w = 0.0, and the

visualization in Fig. 4 shows that the network is capable of

recovering the orientations from real cryo-EM images.

3.3. Cross-validation tests for w

To determine the optimal values of w in our weighted

training objective, we ran fivefold cross-validation tests on our

four data sets. For each data set, we split the images into five

equal-sized subsets. For w from 0.0 to 1.0 with a fixed step size

of 0.1, in the ith (1 
 i 
 5) test the ith subset was then used as

validation data while the remaining subsets were used to train

our network. Finally. we report the average reprojection

RMSEs on the validation data in Fig. 5.

For EMPIAR-10028-simu (the P. falciparum 80S ribo-

some), the asymmetric data set, the cross-validation results

showed that the optimal w is 0.8, and our network can
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Figure 3
The network performance in terms of reprojection RMSE on test sets,
with different weighting factors w, on four data sets.

Figure 4
Visualization of the network performance on the test set of four data sets. (a) EMPIAR-10028-simu with w = 0.8. (b) EMPIAR-10061-simu with w = 0.1.
(c) EMPIAR-10025-simu with w = 0.1. (d) EMPIAR-10025-real with w = 0.0. For each data set, the first row shows the network inputs, the second row
shows the corresponding simplified projections along the ground-truth orientations and the third row shows the simplified projections along the network
predictions.

Table 1
The best performance of our network on each data set in terms of
reprojection RMSE.

Data set w RMSE

EMPIAR-10028-simu 0.8 0.1097
EMPIAR-10061-simu 0.1 0.1469
EMPIAR-10025-simu 0.1 0.1025
EMPIAR-10025-real 0.0 0.1233
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generate reasonable predictions when w 
 0.6. For EMPIAR-

10061 (�-galactosidase) with D2 symmetry the optimal w was

0.1, while for EMPIAR-10025-simu and EMPIAR-10025-real

(the T. acidophilum 20S proteasome) with D7 symmetry the

optimal w was 0.0. Besides, our network is capable of reco-

vering the orientations when w 
 0.4 for the three symmetric

data sets.

We further visualized the evolution of training losses and

evaluation metrics on each data set with the corresponding

optimal w in Figs. 6 and 7, which demonstrate that the training

process can converge after 2000 iterations. For EMPIAR-

10028-simu, the asymmetric data set, QD loss decreases

rapidly especially during the first 1000 iterations; thus, setting

a large weight for QD loss can lead to rapid convergence. For

the three symmetric data sets the QD loss oscillates severely,

while the reprojection loss steadily decreases.

3.4. Influence of different noise levels

To see how the level of noise affects the performance of our

method, following the image-formation model (2) we

perturbed the images of the three synthetic data sets with

different levels of additive Gaussian noise. Specifically, we

trained our network with four different signal-to-noise ratios

(SNRs): 1.0, 0.7, 0.4 and 0.1. The quantitative results are

shown in Table 2. For EMPIAR-10028-simu (the P. falciparum

80S ribosome), the quantitative results in Table 2 and visua-

lization in Fig. 8 show that the network can generate reason-

able predictions when the SNR varies from 1.0 to 0.4. For

EMPIAR-10061-simu (�-galactosidase), the quantitative

results in Table 2 and visualization in Fig. 9 show that the

network can generate reasonable predictions when SNR = 1.0

and SNR = 0.4. For EMPIAR-10025-simu (the T. acidophilum

20S proteasome), the quantitative results in Table 2 and

visualization in Fig. 10 show that the network can generate

reasonable predictions when the SNR varies from 1.0 to 0.1.

From the results with different noise levels, we can see that our

network is capable of learning orientation estimation from

noisy cryo-EM images.

3.5. Comparison of different representations of 3D
orientations

To see how the representations of 3D orientations affect

our supervised learning method, we compare the network

performance on the asymmetric EMPIAR-10028-simu data

set (the P. falciparum 80S ribosome) with axis–angle repre-

sentation and quaternion representation using different initial

learning rates and loss-weighting factors. For axis–angle

representation, we reduced the dimension of the network

output layer from four to three, and restricted each compo-

nent in (��, �). The quantitative results are shown in Table 3.

We can see that the best performance with quaternion

representation is much better than the best performance with

axis–angle representation in terms of reprojection RMSE.

Besides, the performance with quaternion representation is

more robust under different initial learning rates �0 and loss-

weighting factors w.

3.6. 3D reconstruction using network estimation

Here, we show the results of 3D reconstruction using

orientations estimated by our network. We obtained the 3D

structure from 1600 test images of the EMPIAR-10025-real

data set (the T. acidophilum 20S proteasome) using ground-

truth orientations (Fig. 11a). We also ran the reconstruction

process using estimations from our network trained with

w = 0.0, 0.4 and 0.8, respectively (Figs. 11b–11d). Since we are

focusing on the orientation-estimation step at this stage of

development, all of the reconstructions were performed by a
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Figure 5
The network performance in terms of reprojection RMSE for fivefold
cross-validation tests on four data sets.

Table 3
Comparison of the performance of the orientation-estimation network
trained with different loss-weighting factors w, orientation representa-
tions and initial learning rates �0 on the EMPIAR-10028-simu data set.

w Representation �0 RMSE

0.8 Axis–angle 1 � 10�4 0.1800
5 � 10�5 0.1364
1 � 10�5 0.1698

Quaternion 1 � 10�4 0.1136
5 � 10�5 0.1097
1 � 10�5 0.1728

1.0 Axis–angle 1 � 10�4 0.2090
5 � 10�5 0.1406
1 � 10�5 0.1717

Quaternion 1 � 10�4 0.1154
5 � 10�5 0.1169
1 � 10�5 0.1750

Table 2
The performance of our network with different levels of noise in terms of
reprojection RMSE.

Data set w Noiseless
SNR =
1.0

SNR =
0.7

SNR =
0.4

SNR =
0.1

EMPIAR-10028-simu 0.8 0.1097 0.1300 0.1315 0.1426 0.1846
EMPIAR-10061-simu 0.1 0.1469 0.1559 0.1826 0.1548 0.2309
EMPIAR-10025-simu 0.0 0.0982 0.1130 0.1124 0.1125 0.1165
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Figure 6
The curves of training losses and evaluation metrics in fivefold cross-validation. (a) EMPIAR-10028-simu (w = 0.8). (b) EMPIAR-10061-simu (w = 0.1).
The first row shows the curves of our weighted training objective, as well as QD loss and reprojection loss. The second row shows the reprojection RMSE
of the batch of training images and the evaluation data.
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Figure 7
The curves of training losses and evaluation metrics in fivefold cross-validation. (a) EMPIAR-10025-simu (w = 0.0). (b) EMPIAR-10025-real (w = 0.0).
The first row shows the curves of our weighted training objective, as well as QD loss and reprojection loss. The second row shows the reprojection RMSE
of the batch of training images and the evaluation data.
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simple back-projection algorithm inRELION (Scheres, 2012b)

instead of more robust iterative methods. Besides, we back-

project each 2D image along the orientations that are

equivalent to the given one with respect to D7 symmetry.

Fig. 11(e) shows the Fourier shell correlation (FSC) curves

between the reconstructions using network estimations and

the reconstruction using ground-truth orientations. The esti-

mation from our network trained with w = 0.0, which has the

lowest reprojection RMSE, results in the closest reconstruc-

tion (Fig. 11b) to the ground truth (Fig. 11a). When we use the

larger value of w = 0.4, the orientation estimation becomes

worse in terms of reprojection RMSE and the quality of the

reconstruction (Fig. 11c) also decreases. When we further

increase the value of w to 0.8, the accuracy of the orientation

estimation is even lower and the quality of the reconstruction

(Fig. 11d) significantly declines.

4. Discussion

4.1. Orientation estimation

In this work, we have explored the possibility of using a

single neural network to estimate orientations from 2D
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Figure 8
Visualization of the network performance on the EMPIAR-10028-simu data set with different noise levels. The first row shows the network inputs and
the second row shows the simplified projections along the network predictions. (a) Noiseless input. (b) SNR = 1.0. (c) SNR = 0.7. (d) SNR = 0.4. (e) SNR
= 0.1. For all experiments, we trained our network using w = 0.8.

Figure 9
Visualization of the network performance on the EMPIAR-10061-simu data set with different noise levels. The first row shows the network inputs and
the second row shows the simplified projections along the network predictions. (a) Noiseless input. (b) SNR = 1.0. (c) SNR = 0.7. (d) SNR = 0.4. (e) SNR
= 0.1. For all experiments, we trained our network using w = 0.1.
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cryo-EM images. We conducted experiments on four data sets

with various symmetry types and imaging conditions, and the

results demonstrate that after being trained for 2000 iterations

on 
8000 images, our network can achieve a decent perfor-

mance in terms of reprojection RMSE.

Our orientation-estimation method can be exploited during

the 3D refinement process, where an initial 3D model is

available. To prepare the training data, we can run global

searching on a small subset of the cryo-EM images to obtain

the ground-truth orientations. After training, the network can

directly output the orientation estimations for the remaining

images. Since the 3D refinement process typically updates the

orientation estimation and 3D reconstruction iteratively, we

claim that our network only needs to be trained from scratch
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Figure 11
3D reconstruction results from test images with D7 symmetry on the EMPIAR-10025-real data set. (a) Reconstruction using ground-truth orientations.
(b, c, d) Reconstructions using estimations from out network trained with w = 0.0, 0.4 and 0.8, respectively. (e) The FSC curve of ground-truth
reconstruction (a), as well as the FSC curves between the reconstructions using network estimations and the ground truth.

Figure 10
Visualization of the network performance on the EMPIAR-10025-simu data set with different noise levels. The first row shows the network inputs and
the second row shows the simplified projections along the network predictions. (a) Noiseless input. (b) SNR = 1.0. (c) SNR = 0.7. (d) SNR = 0.4. (e) SNR
= 0.1. For all experiments, we trained our network using w = 0.0.
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in the first refinement iteration. For the subsequent refinement

iterations, our network can be quickly fine-tuned. This will

significantly reduce the total training time and accelerate the

3D refinement process.

4.2. Training objective

Our training objective is a weighted combination of two loss

terms. The first term, called QD loss, directly regresses the

orientations based on geodesic distance. The second term,

called reprojection loss, encourages the projections along the

estimated orientations to be consistent with the input images.

The computation of reprojection loss (14) is much complex

than that of QD loss (12). However, for symmetric particles

the reprojection loss allows the network to output one of the

orientations that are equivalent to the ground truth with

respect to the symmetry. In this way, our training objective can

implicitly handle the symmetry of the given 3D model without

restricting the range of orientations used for training.

The weighting factor w in the training objective is used to

balance the QD loss and the reprojection loss. Our experi-

ments show that the network is robust within a large range of

weighting factors w (Fig. 3). For asymmetric data sets we can

use a large value such as w 	 0.6, and for data sets with

potential symmetry we can set a small value such as w 
 0.4.

Although using only reprojection loss is prone to a local

minimum due to the complexity of the loss function, for

EMPIAR-10025-real, the real data set with D7 symmetry, the

experimental results show that simply setting w = 0.0 is ideal to

achieve optimal results. In practice, to find a suitable w for

training a new data set one can test values from 0.0 to 1.0 with

a fixed step size of 0.1.

When computing the reprojection loss, we treat the in-plane

translations as known values and use the ground-truth values

in our experiments. One may extend our method to recover in-

plane translations simultaneously. This is because the output

layer of our network can be modified to estimate in-plane

translations as well, and the reprojection loss can be directly

used to jointly optimize the prediction for 3D orientation and

in-plane translation.

4.3. Evaluation metric and reconstruction quality

For evaluation, we compute the reprojection RMSE for

the orientations estimated from our network. Similar to the

reprojection loss used in our training objective, this evaluation

metric measures the inconsistency between the projections

along the network predictions and the input images. Intui-

tively, lower inconsistency will lead to higher quality 3D

reconstructions. The reconstruction results on the EMPIAR-

10025-real data set (Fig. 11) also indicate that orientation

estimations with lower reprojection RMSE result in better 3D

reconstructions. Thus, it is reasonable to improve the network

performance in terms of reprojection RMSE in order to

achieve better 3D reconstructions after recovering the orien-

tations.

Since the ultimate goal of recovering orientations is to

obtain a high-resolution 3D density map, a future research

direction is to incorporate the metric for reconstruction

quality into our end-to-end trainable pipeline. One may

modify the training objective by adding another loss term

based on FSC.

4.4. Handling real cryo-EM images

In practice, the signal-to-noise ratio (SNR) of real cryo-EM

images is typically far below 1 (Frank & Al-Ali, 1975). The

extremely low SNR poses a challenge for orientation estima-

tion because it is difficult to distinguish particles from noise.

In the experiment on the EMPIAR-10025-real data set, we

input the real cryo-EM images into our network without

denoising. The result (Figs. 3 and 4) indicates that our network

is promising for the recovery of orientations from noisy cryo-

EM images. One can also add a denoising module to our

orientation-estimation framework, so that our network can

focus on the signal of the particle, and the training process will

be more efficient. This can be performed by conventional

methods such as low-pass filtering or recent deep-learning-

based methods (Bepler et al., 2020; Palovcak et al., 2020; Li et

al., 2021; Huang et al., 2020).

In our current implementation, the image size of the

network input is fixed at 128 � 128. This may not be sufficient

for processing the images of large complexes such as viruses,

or running iterations of 3D refinement that require high-

resolution images. A future research direction is to efficiently

process larger network inputs without significantly increasing

the computational cost.

5. Concluding remarks

Recovering 3D orientations from hundreds of thousands of

2D cryo-EM images is still a time-consuming step in the 3D

reconstruction pipeline. To efficiently estimate the unknown

orientations, we have proposed a novel end-to-end trainable

framework with a robust weighted loss function. We have also

tested the method on synthetic and real images. Our method

may be extended to also recover the in-plane translations and

incorporate them into the iterative 3D reconstruction pipeline.

Funding information

This work was supported in part by the SBU–BNL Seed Grant

Program and National Science Foundation (NSF) Grant

1814745. QL was supported by the US Department of Energy,

Office of Science, Office of Biological and Environmental

Research as part of the Quantitative Plant Science Initiative at

Brookhaven National Laboratory.

References

Al-Azzawi, A., Ouadou, A., Tanner, J. J. & Cheng, J. (2019). Genes,
10, 666.

Banjac, J., Donati, L. & Defferrard, M. (2021). arXiv:2104.06237.
Bartesaghi, A., Merk, A., Banerjee, S., Matthies, D., Wu, X., Milne,
J. L. & Subramaniam, S. (2015). Science, 348, 1147–1151.

Bendory, T., Bartesaghi, A. & Singer, A. (2020). IEEE Signal Process.
Mag. 37, 58–76.

research papers

Acta Cryst. (2022). D78, 174–186 Ruyi Lian et al. � End-to-end orientation estimation 185
electronic reprint



Bepler, T., Kelley, K., Noble, A. J. & Berger, B. (2020). Nat. Commun.
11, 5208.

Bepler, T., Morin, A., Rapp, M., Brasch, J., Shapiro, L., Noble, A. J. &
Berger, B. (2019). Nat. Methods, 16, 1153–1160.

Bepler, T., Zhong, E. D., Kelley, K., Brignole, E. & Berger, B. (2019).
arXiv:1909.11663.

Bibas, K., Weiss-Dicker, G., Cohen, D., Cahan, N. & Greenspan, H.
(2021). arXiv:2101.03549.

Bracewell, R. N. (1956). Aust. J. Phys. 9, 198–217.
Campbell, M. G., Veesler, D., Cheng, A., Potter, C. S. & Carragher, B.
(2015). eLife, 4, e06380.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. & Fei-Fei, L. (2009).
2009 IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 248–255. Piscataway: IEEE.

Frank, J. & Al-Ali, L. (1975). Nature, 256, 376–379.
Greenberg, I. & Shkolnisky, Y. (2017). J. Struct. Biol. 200, 106–117.
Gupta, H., McCann, M. T., Donati, L. & Unser, M. (2021). IEEE
Trans. Comput. Imaging, 7, 759–774.

Gupta, H., Phan, T. H., Yoo, J. & Unser, M. (2020). Computer Vision –
ECCV 2020 Workshops, edited by A. Bartoli & A. Fusiello, pp.
429–444. Cham: Springer.

Huang, Q., Zhou, Y., Du, X., Chen, R., Wang, J., Rudin, C. &
Bartesaghi, A. (2020). arXiv:2011.11020.
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